(34.237.124.210) 您好!臺灣時間:2021/02/25 19:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王雅真
研究生(外文):Wang Ya-Jen
論文名稱:低分子量有機酸影響金屬離子氧化還原反應之密度泛函理論計算
論文名稱(外文):Redox reactions of metal ions affected by low molecular weight organic acids – A DFT study.
指導教授:林正錺張家銘張家銘引用關係
指導教授(外文):Chenfang LinChia M. Chang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土壤環境科學系
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:104
中文關鍵詞:密度泛函理論錯合常數
外文關鍵詞:Density function theoryformation constant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
低分子量的有機酸(LMWOAs)是來自於自然界中植物根的分泌物、微生物的代謝產物和有機質降解後的物質,土壤中的重金屬容易和這些有機酸形成鍵結,進而影響金屬離子在環境當中的溶解度、生物可利用性、錯合、沉澱和氧化還原作用。本研究是採用密度泛涵理論(Density functional theory, DFT)的計算,探討有機酸和金屬離子錯合後,錯合物在溶液當中的氧化還原特性之研究。
結果顯示,四種有機酸(草酸、胡蘿蔔酸、琥珀酸和水楊酸)和第一列過渡金屬離子的錯合常數,可以錯合反應前後的總能量變化對實驗的錯合常數值作線性迴歸,其R2分別為0.95、0.95、0.94及0.92。對於同一金屬離子和不同有機酸的錯合常數,其大小依序是水楊酸(pht) >草酸(ox) >胡蘿蔔酸(mal) > 琥珀酸(suc)。主要影響的因素有配位基的酸度、硬度和立體遮敝效應(steric hindrance)。而影響金屬離子和有機酸錯合能力的強弱,主要和金屬離子本身內層水合水的鍵強及金屬離子的LUMO軌域能階有關。
金屬離子和這四種有機酸錯合後,其錯合物的氧化還原電位下降,使錯合後之三價的金屬離子得電子的能力下降,而二價金屬離子的錯合分子則比未錯合的金屬離子更容易氧化。本論文在水合系統當中的計算,可以準確地計算出水合金屬離子二價和三價之間的電子傳遞速率。在草酸錯合的系統當中,隨著有機配位基逐漸增加,錯合物氧化還原反應的電子傳遞速率會增快。
Low-molecular weight organic acids ((LMWOAs) are produced from root exudates, microbial processes and decomposition of organic material in soil environmental. These organic acids have a high complex ability with heavy metals in soil and can affect the metal ions solubility, bio-ability, complex, precipitation and redox reaction. The density functional theory was used to investigate the character of the redox reactions that organic acids complex with the first row metal ions.
In the results, calculated total energy change is in linear correlation with the complex formation constant, the R square of organic acids (oxalic, malonic, succinic and salicylic) is 0.95, 0.92, 0.94 and 0.91 respectively. The order of complex formation constant of the first row metal ions complex with four organic ligands is salicylic > oxalic > malonic > succinic. The most important chemical property affecting complex ability in organic ligands are acid, hardness and steric hindrance and the main factors affect metal ions complex with one ligand are bond order between first hydration shells and the Lowest Unoccupied Molecular Orbital (LUMO) of center metal ions.
Metal ions complex with these four organic ligands and shift redox potential to more negative value. This decreased the ability to accept electorn on trivalent metal-organic ligand and for the divalent metal-organic ligands complexes that is a much stronger one-electron oxidant than aqueous divalent metal ions. Use solvent effect system via quantum chemistry calculation can calculate outer sphere electron transfer rates of hydration metal ions accurately. In an oxalic acid complex system, the self-exchange electron transfer rate increase with increasing the ligand number.
目錄
謝誌
中文摘要i
英文摘要iii
目錄v
圖次vii
表次ix
第一章 文獻回顧1
第一節 低分子量有機酸的基本特性3
第二節 有機酸和金屬錯合反應之探討5
第三節 有機酸存在下,氧化還原反應之研究10
第四節 金屬和有機酸錯合後,電子傳遞速率之研究12
第二章 理論與方法15
第一節 量子化學理論之回顧15
第二節 研究方法與理論23
第三章 結果與討論32
第一節 有機酸和金屬離子的錯合能力36
一、 錯合常數的預測36
二、 影響錯合常數的因子51
第二節 有機酸存在下,對氧化還原電位的改變59
一、以能量變化量來預估氧化還原電位60
二、以電子親和力來預估氧化還原電位69
三、 以分子軌域能階來才預測氧化還原反應71
四、有機酸錯合在復育上的應用74
第三節 金屬錯合離子的外層電子傳遞速率75
一、水合金屬離子氧化還原對的電子傳遞速率75
二、草酸錯合後,錯合物電子傳遞速率的改變78
第四章 結論83
第五章 參考文獻85
王伯昌、王鴻偉。2003。奈米管與球烯衍生物的結構與電子性質之理論計算研究。淡江大 學化學研究所博士論文。
王明光、張家銘。1997。北台灣與澎湖島紅壤中鐵淦氧磁性氧化鐵之鑑定以及晶石型式鐵與鋁氧化物表面去質子化反應的量子化學研究。國立臺灣大學農業化學研究所博士論文。
林正錺、劉怡玲。1990。腐植酸影響銅與高嶺石反應之探討。國立中興大學土壤環境科學系碩士論文。
連敏雄、陳永祥。2002。Ab initio分子軌域與密度泛函數理論計算:壹、烷基類疊氮化合物熱裂解反應之研究。貳、烷基類偶氮化合物熱裂解反應之研究。國立中興大學化學系碩士論文。
陳國成、江瑞湖。2000。環境科學概論。
Ahmed, I. T. Formation constants of ternary complexes involving some metal ions, tricine, dicarboxylic amino acids, as well as N-(2-Acetamido) iminodiacetic Acid and 3-Amino-5-mercapto-1,2,4- triazole. J. Chem. Eng. Data 48:272-276, 2003.
Barthel, E. R., I. B. Martini, and B. J. Schwartz. How does the solvent control electron transfer? Experimental and theoretical studies of the simplest charge transfer reaction. J. Phys. Chem. B 105:12230-12241, 2001.
Beltran, F. J., F. J. Rivas, and R. Montero-de-Espinosa. Ozone-enhanced oxidation of oxalic acid in water with cobalt catalysts. 1. Homogeneous catalytic ozonation. Ind. Eng. Chem. Res. 42:3210-3217, 2003.
Bjerrum, J. On the tendency of the metal ions toward complex formation. Chem. Rev. 46:381-401, 1950.
Blumberger, J., L. Bernasconi, I. Tavernelli, R. Vuilleumier, and M. Sprik. Electronic structure and solvation of copper and silver ions: A theoretical picture of a model aqueous redox reaction. J. Am. Chem. Soc. 126:3928-3938, 20043.
Bourg, P., M. Astruc, and J. Bonastre. Coulometric generation of titanium(III) in aqueous ethylenediaminetetraacetic acid solution. Anal. Chem. 47(3):538-540, 2004.
Bu, Y., F. Xu, and C. Deng. Reorganization energies of electron hetero-exchange reaction of hydrated redox pairs in solution from a hydration function model. Journal of Molecular Structure (Theochem) 392:141-152, 1997.
Bu, Y., Y.Wang, F. Xu, and C. Deng. Direct evaluation of the electron transfer integral for self-exchange reactions in solution. Journal of Molecular Structure (Theochem) 453:43-48, 1998.
Calvo, M. E., R. J. Candal, and S. A. Bilme. Photooxidation of organic mixtures on biased TiO2 films. Environ. Sci. Technol. 35:4132-4138, 2001.
Codd, R., P. A. Lay, and A. Levina. Stability and ligand exchange reactions of chromium(IV) carboxylato complexes in aqueous solutions1. Inorg. Chem. 36:5440-5448, 1997.
Drever, J. I. and L. L. Stillings. The role of organic acids in mineral weathering. Colloids and Surfaces 120:167-181, 1997.
Duckworth, O. W. and S. T. Martin. Surface complexation and dissolution of hematite by C1-C6 dicarboxylic acids at pH 5.0. Geochimica et Cosmochimica Acta 65(23):4289-4301, 2001.
Farrell, R. P., P. A. Lay, A. Levina, I. A. Maxwell, R. Bramley, S. Brumby, and Ji-Ying Ji. An EPR spectroscopic study of chromium(V) oxalato complexes in aqueous solutions. Mechanism of the chromium(VI) oxidation of oxalic acid. Inorg. Chem. 37:3159-3166, 1998.
Farrell, R. P., R. J. Judd, P. A. Lay, R. Bramley, and Ji-Ying Ji. Ligand exchange and reduction reactions of oxochromate(V) complexes: characterization of the common chromium(V) intermediates in the reductions of chromi (VI) and of trans-bis (2-ethyl-2- hydroxybutanoato (2-)) oxochromate (V) by oxalic acid. Inorg. Chem. 28(19):3401-3403, 1989.
Ferris, J. P., Roderick D. G., and G. R.Gapski. Detoxication mechanisms. II. Iron-catalyzed dealkylation of trimethylamine oxide. J. Am. Chem. Soc. 89(20):5270-5275, 1967.
Filella, M., R. M. Town, and M. G.Bugarn. Cadmium succinate and cadmium malate stability constants revisited. J. Chem. Eng. Data 44:1009-1019, 1999.
Gao, Y., J. He, W. Ling, H. Hu, and F. Liu. Effects of organic acids on copper and cadmium desorption from contaminated soils. Environment International 29:613-618, 2003.
German, E. D., A. M. Kuznetsov, I. Efremenko, and M. Sheintuch. Theory of the self-exchange electron transfer in the dioxygen/superoxide System in Water. J. Phys. Chem. A 103:10699-10707, 1999.
Ghosh, S. K., R. N. Bose, and E. S. Gould. Electron transfer. 91. Reactions of carboxylato-bound chromium(V) with arenediols. Inorg. Chem. 27(9):1620-1625, 1998.
Guan, D., Y. Bu, and C. Deng. Nonadiabatic electron transfer rate of hydrated Fe2+/Fe3+ redox couples in solution: a novel scheme for the hydration potential function. Journal of Molecular Structure (Theochem) 47:145-155, 1997.
Hery, M. and K. Wieghardt. Titanium(III) reductions of binuclear and tetranuclear μ-carboxylato cobalt(III)-ammine complexes. Evidence for remote attack of titanium(III) at an unprotonated carboxylate. Inorg. Chem. 17(5):1130-1134, 1978.
Hintze, R.E. and J. Rocek. Catalysis in oxidation reactions. 3. The oxalic acid catalyzed chromic acid oxidation of tris(1,10-phenanthroline)iron(II). J. Am. Chem. Soc. 99(1):132-137, 1977.
Hollaway, W. F., V. S. Srinivasan, and E. S. Gould. Electron transfer. 69. Mediation by phenylglyoxylate. Inorg. Chem. 23(14):2181-2185, 1984.
Huang, Q., Z. Zha, and W. Chen. Effects of several low-molecular weight organic acids and phosphate on the adsorption of acid phosphatase by soil colloids and minerals. Chemosphere 52:571-579, 2003.
Jeffers, P. M., L. M. Ward, L. M. Woytowltch, and L. Wolfe. Homogeneous hydrolysis rate constants for selected chlorinated methanes, ethanes, ethenes, and propanes. Environ. Sci. Technol. 23(8):965-969, 1989.
Jihua, H., and N. P. Peter. 1996. Desorption-complexation-dissolution characteristics of adsorbed cadmium from kaolin by chelators. Water Air Soil Pollut. 86:35-50, 1996.
Kondratiev, V. V., E. M. Nestorovich and V. V. Malev. Kinetics of electroreduction of tris-oxalate cobalt (III) complex on the dropping mercury electrode. Journal of electroanalytical chemistry 450:109-119, 1998.
Krishnamurty, K. V. and G. M. Harris. The chemistry of the metal oxalate complexes. Chem. Rev. 61:213-246, 1961.
Krishtalik, L. I. pH-dependent redox potential: How to use it correctly in the activation energy analysis. Biochimica et Biophysica Acta 1604:13-21, 2003.
Krumpolc, M. and J. Rocek. Chromium(V) oxidations of organic compounds. Inorg. Chem. 24(4):617-624, 1985.
Kubicki, J. D., D. Sykes, and S. E. Apitz. Ab initio calculation of aqueous aluminum and aluminum-carboxylate complex energetics and 27Al NMR chemical shifts. J. Phys. Chem. A 103:903-915, 1999.
Liang, L., A. Hofmann, and B. Gu. Ligand-induced dissolution and release of ferrihydrite colloids. Geochimica et Cosmochimica Acta 64(12):2027-2037, 2000.
Lingane, J. J. and L. Meites. Polarographic characteristics of +2 and +3 Vanadium. II. Polarography in complexing solutions. J. Am. Chem. Soc. 73(5):2165-2170, 1951.
Lingane, J. J., and J. Louis Meites. Polarographic characteristics of vanadium in oxalate solutions. J. Am. Chem. Soc. 69(5):1021-1025, 1947.
Marcus, R. A. Ion Pairing and Electron Transfer. J. Phys. Chem. B 102:10071-10077, 1998.
Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transsfer V. Comparison and properties of electrochemical and chemical rate constants. J. Phys. Chem. A 67(4):853-857, 1963.
Marcus, R. A. Theory of Electron-Transfer Rates across Liquid-Liquid Interfaces. J. Phys. Chem. A 94(10):-4152, 1990.
Marcus, R. A. Tutorial on rate constants and reorganization energies. J ournal of electroanalytical chemistry 483:2-6, 2000.
McBride, M. B. Reactions controlling heavy metal solubility in soils. Adv. Soil Sci. 10:1-56, 1989.
Meites, L. Polarographic studies of metal complexes. II. The copper (II) citrates1. J. Am. Chem. Soc. 72(1):180-184, 1950.
Meites, L. Polarographic studies of metal complexes. III. The copper (II) oxalates and carbonates. J. Am. Chem. Soc. 72(1):184-189, 1950.
Meites, L. Polarographic studies of metal complexes. V. The cadmium(II), zinc(II) and iron(III) citrates. J. Am. Chem. Soc. 73(8):3727-3731, 1951.
Mentasti, E., F. Secco, and M. Venturini. Complex formation of nickel(II) and cobalt(II) with salicylic acids. Equilibria and reaction mechanisms. Inorg. Chem. 19:3528-3531, 1980.
Mentasti, E., F. Secco, and M. Venturini. Mechanism of complex formation: Equilibria and kinetics of Fe3+ and FeOH2+ interactions with substituted salicylic acids. Inorg. Chem. 21:602-606, 1982.
Minisci, F., F. Recupero, G. F. Pedulli, and M. Lucarini. Transition metal salts catalysis in the aerobic oxidation of organic compounds Thermochemical and kinetic aspects and new synthetic developments in the presence of N-hydroxy-derivative catalysts. Journal of molecular catalysis A 204-205:63-90, 2003.
Li, N. C., W. M. Westfall, A. Lindenbaum, J. M. White, and J. Schubert. Manganese-54, Uranium-233 and Cobalt-60 Complexes of Some Organic Acids. J. Am. Chem. Soc. 79(22), 5864-5870. 1957.
Nowack, B. and L. Sigg. Dissolution of Fe(III) (hydr)oxides by metal-EDTA complexes. Geochimica et Cosmochimica Acta 61(5):951-963, 1997.
Pecsok, R. L. A Polarographic study of the oxalato complexes of titanium. J. Am. Chem. Soc. 73(3):1304-1308, 1951.
Pines, D. S. and D. A. Reckhow. Effect of dissolved cobalt(II) on the ozonation of oxalic acid. Environ. Sci. Technol. 36:4046-4051, 2002.
Prapaipong, P., E.L. Shock, and C. M. Koretsky. Metal-organic complexes in geochemical processes: Temperature dependence of the standard thermodynamic properties of aqueous complexes metal cations and dicarboxylate ligands. Geochimica et Cosmochimica Acta 63(17):2547-2577, 1999.
Qin, F., X. Shan, and B. Wei. Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere 57:253-263, 2004.
Regazzon, A. E., P. Mandelbaum, M. Matsuyoshi, S. Schiller, S. A. Bilmes, and M. A. Blesa. Adsorption and photooxidation of salicylic acid on titanium dioxide: A surface complexation description. Langmuir 14:868-874, 1998.
Renella, G., L. Landi, and P. Nannipieri. Degradation of low molecular weight organic acids complexed with heavy metals in soil. Geoderma 122:311-315, 2004.
Rodenas, L. A. G., A. M. Iglesias, A. D. Weisz, P. J. Morando, and M. A. Blesa. Surface complexation description of the dissolution of chromium(III) hydrous oxides by oxalic acid. Inorg. Chem. 36:6423-6430, 1997.
Rodenas, L. A.G., A. D. Weisz, G. E. Magaz and M. A. Blesa. Effect of light on the electrokinetic behavior of TiO2 particles in contact with Cr(VI) aqueous solutions. Journal of Colloid and Interface Science 230:181-185, 2000.
Rosso, K. M. and J. J. Morgan. Outer-sphere electron transfer kinetics of metal ion oxidation by molecular oxygen. Geochimica et Cosmochimica Acta 66(24):4223-4233, 2002.
Rosso, K. M. and J. R. Rustad. Ab initio calculation of homogeneous outer sphere electron transfer rates: Application to M(OH2)63+/2+ redox couples. J. Phys. Chem. A 104:6718-6725, 2000.
Rosso, K. M., D. M. A. Smith, and M. Dupuis. Aspects of aqueous iron and manganese (II/III) self-exchange electron transfer reactions. J. Phys. Chem. A 108:5242-5248, 2004.
Rosso, K. M., D. M. A. Smith, Z. Wang, C. C. Ainsworth, and J. K. Fredrickson. Self-exchange electron transfer kinetics and reduction potentials for anthraquinone disulfonate. J. Phys. Chem. A 108:3292-3303, 2004.
Rosso, K. M., J. R. Rustad, and G. V. Gibbs. Trivalent ion hydrolysis reactions II: Analysis of electron density distributions in metal-oxygen bonds. J. Phys. Chem. A 106:8133-8138, 2002.
Rudolph, M., S. Dautz, and E.-G. Jager. Macrocyclic [N42-]coordinated Nickel Complexes as Catalysts for the Formation of Oxalate by Electrochemical Reduction of Carbon Dioxide. J. Am. Chem. Soc. 122:10821-10830, 2004.
Rustad, J. R., D. A. Dixon, K. M. Rosso, and A. R. Felmy. Trivalent ion hydrolysis reactions: A linear free-energy relationship based on density functional electronic structure calculations. J. Am. Chem. Soc. 121:3234-3235, 1999.
Schubert, J., E. L. Lind, W. M. Westfall, R. Pfleger, and N. C. Li. Ion-exchange and Solvent-extraction Studies on Co (II) and Zn(II) Complexes of Some Organic Acids. J.Am.Chem.Soc. 80(18):4799-4802, 1958.
Shi, T. and L. I. Eldin. Linear free energy relationships for complex formation reactions between carboxylic acids and palladium(II). Equilibrium and high-pressure kinetics study. Inorg. Chem. 36:528-536, 1997.
Sillen, L. G., J. Bjerrum, and A. E. Martell. Stability constants of metal-ion complexes. London :Chemical Society, 1964.
Slattery, S. J., J. K. Blaho, J. Lehnes, and K. A. Goldsby. pH-dependent metal-based redox couples as models for proton-coupled electron transfer reactions. Coordination Chemistry Review 174:391-416, 1998.
Small, D. W., D. V. Matyushov and G. A. Voth. The theory of electron transfer reactions: What may be missing? J. AM. CHEM. SOC. 125:7470-7478, 2003.
Srinivasan, V. and J. Rocek. Formation of a long-lived chromium(V) intermediate in the chromic acid oxidation of oxalic acid. J. Am. Chem. Soc. 96(1):127-133, 1974.
Stadlober, M., K. Kalcher, G. Raber, and C. Neuhold. Anodic stripping voltammetric determination of titanium(IV) using a carbon paste electrode modified with cetyltrimethylammonium bromide. Talanta 43:1915-1924, 1996.
Strobel, B. W. Influence of vegetation on low-molecular-weight carboxylic acids in soil solutiona review. Geoderma 99:169-198, 2001.
Strom, L., A. G. Owen, D. L. Godbold, and D. KL. Jones. Organic acid behaviour in a calcareous soil: Sorption reactions and biodegradation rates. Soil biology & Biochemistry 33:2125-2133, 2001.
Su, C. and R. W. Puls. Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate. Environ. Sci. Technol. 38:2715-2720, 2004.
Suter, D., S. Banwart, and W. Stumm. Dissolution of Hydrous Iron( 111) Oxides by ReductiveMechanisms. Langmuir 7:809-813, 1991.
Taha, A. Spectral, electrochemical and molecular orbital studies on solvatochromic mixed ligand copper(II) complexes of malonate
and diamine derivatives. Spectrochimica Acta Part A 59:1373-1386, 2003.
Taube, H. Catalysis by manganic ion of the reaction of bromine and oxalic acid. Stability of manganic ion complexes. J. Am. Chem. Soc. 70(11):3928-3935, 1948.
Theis, T. L. and P. C. Singer. Complexation of iron(II) by organic matter and its effect on iron(II) oxygenation. Environ. Sci. Technol. 8(6):569-573, 1974.
van Hees, P. A. W. and U. S. Lundstrom. Equilibrium models of aluminium and iron complexation with different organic acids in soil solution. Geoderma 94:201-221, 2000.
Vandegrift, G. F. and J. Rocek. Catalysis in oxidation reactions. II. The oxalic acid catalyzed oxidation of iodide. J. Am. Chem. Soc. 98(6):1371-1376, 1976.
Veeken, A. H. M. and H. V. M. Hamelers. Removal of heavy metals from sewage sludge by extraction with organic acids. Wat. Sci. Tech. 40:129-136, 1999.
Wu, L. H., Y. M. Luo, P. Christie, and M. H. Wong. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere 50:819-822, 2003.
Wu, Z., Z. Gu, X. Wang, L. Evans, and H. Guo. Effects of organic acids on adsorption of lead onto montmorillonite goethite and humic acid. Environmental Pollution 121:469-475, 2003.
Xu, Y., M. A. A. Schoonen, and D. R. Strongin. Thiosulfate oxidation: Catalysis of synthetic sphalerite doped with transition metals. Geochimica et Cosmochimica Acta 60(23):4701-4710, 1996.
Yang, W.-C., A.-M. Yu, Y.-Q. Dai, and H.-Y. Chen. Separation and determination of di- and tricarboxylic acids in fruits by capillary zone electrophoresis with amperometric detection. Analytica Chimica Acta 415:75, 2000.
Young, A. and T. R. Sweet. The stability of metal chelates of compounds related to anthranilic Acid. J. Am. Chem .Soc. 80(4):800-803, 1958.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔