(3.239.192.241) 您好!臺灣時間:2021/03/02 19:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃敏嘉
研究生(外文):Min-Chia Huang
論文名稱:磁性可分離中孔徑吸附質材的合成及其對含氯酚類吸附特性之研究
論文名稱(外文):Synthesis and Chlorophenol Adsorption Properties of Magnetically–Separable Mesoporous Materials
指導教授:張家銘張家銘引用關係
指導教授(外文):Chia-Ming Chang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土壤環境科學系
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:107
中文關鍵詞:磁性可分離的含氯酚類磁性修飾分子篩
外文關鍵詞:Magnetically–Separablechlorophenolmagnetically modifiedmolecular sieveMCM-41
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究合成之磁性可分離中孔徑吸附質材為未經鍛燒之磁性修飾型MCM-41( Magnetically Modified Mobil Composition of Matter )分子篩,是MCM-41之衍生應用。因為MCM-41分子篩具有表面積大、吸附、熱穩定性以及孔徑單一性等優異特質而被廣泛應用,諸如分子催化、離子選擇性吸附等,而未經鍛燒MCM-41孔洞中保有界面活性劑的結構與疏水性有機污染物的吸附行為以及MCM-41分子篩材料的磁性分離,是近幾年來中孔分子篩應用發展研究的另一重點。未鍛燒MCM-41本身具有吸附疏水有機物之能力,若能再賦予MCM-41具有磁性,將其應用於污水或地下水中吸附有機污染物後可借助外部磁場方便簡單地回收,將能提高MCM-41的使用效率,並可避免吸附劑滯留未能清除的二次污染。此篇研究論文之主軸即在合成磁性修飾型MCM-41並探討侷限在分子篩孔徑中的界面活性劑對於疏水性含氯酚類的吸附行為,並結合理論計算參數,給予此吸附行為模式化的預測,希冀此磁性可分離吸附材質可應用於地下水吸附含氯酚類,並以電磁力將此磁性質材吸起,達到去污目的。

未經鍛燒磁性修飾型MCM-41之合成是參考前人文獻合成MCM-41方法並加以改良而來,首先在水溶液中以十六烷基三甲基溴化銨( Hexadecyltrimethylammonium Bromide,HDTMABr )界面活性劑之自組織膠束作為模版,矽酸鈉,因靜電引力而聚合在界面活性劑親水端上,進而形成矽氧骨架,並加入磁鐵礦為磁性來源,形成磁性修飾型MCM-41。合成樣品除了磁性修飾型MCM-41外,另有未鍛燒MCM-41、鍛燒MCM-41及磁鐵礦等,共四種樣品,樣品以X-ray繞射、SQUID磁性量測鑑定樣品之結構與磁性等基本性質,另外也以SEM、HR-TEM等電子顯微鏡觀察未鍛燒MCM-41、鍛燒MCM-41外貌型態之差異並獲得樣品之基本結構參數。

實驗結果顯示,未鍛燒MCM-41及鍛燒MCM-41在HR-TEM的觀測下皆呈現有序排列之單一孔徑結構,且其孔徑與孔壁厚度之和與XRD所測得之結果相吻合;在SEM的觀測下兩者皆呈現球狀或橢圓球狀之膠聚型態。另外,經由磁性量測的結果證實磁性修飾型MCM-41確實具有磁性,其飽和磁化量約為24 emu g-1,且可由手執磁鐵礦將磁性修飾型MCM-41吸取起來。等溫吸附方面,未鍛燒MCM-41及磁性修飾型MCM-41孔洞中仍保有界面活性劑,因此對於疏水性分子態及解離態氯酚物種有良好的吸附能力。磁性修飾型MCM-41對各種分子態及離子態含氯酚類的等溫線型態分別符合Freundlich及Lagmuir吸附模式,迴歸分析結果顯示,KF與各分子態含氯酚類之LogKow同時加入LUMO(ev)及Mayer Bond Order S.D.等理論計算參數後可提升方程式對KF值的預測,R2值高達0.95,甚至只有LUMO(ev)及Mayer Bond Order S.D.等理論計算參數與KF值作迴歸,R2值亦高達0.92。KL、Smax各別與LogKow、HOMO(ev)、Mayer Bond Order S.D.皆有良好之相關性,它們的R2值分別都在0.80及0.90以上,LogKow同時加入HOMO(ev)、Mayer Bond Order S.D.等理論計算參數後R2 略為提升。
The magnetically–separable mesoporous adsorption material we want to synthesize is uncalcined magnetically modified MCM-41 molecular sieve, a derivative application from MCM-41 molecular sieve. MCM-41 has been applied extensively in molecular catalysis and selected ion adsorption because its excellent properties of large surface area, adsorption, heat stability and uniform pore size. However, the adsorption behavior of hydrophobic organic compounds on the structure with the surfactant remain in pore of uncalcined MCM-41 and the magnetic separability of MCM-41 are another important study aspects recently. The uncalcined MCM-41 has ability to adsorb hydrophobic organic compounds. If MCM-41 could be given magnetism and combine its adsorption ability, we can use electro-magnetic power to assimilate MCM-41 conveniently after it adsorbs organic pollutant in waste water or groundwater. It not only can raise the utility rate of MCM-41 but also can avoid the second pollution of uncleared sorbent by this way. The major purpose of this study is to synthesize magnetically modified MCM-41 and confer the adsorption behavior of chlorophenols on this molecular sieve, moreover combining theory calculation to give this adsorption behavior a model anticipation. We hope this magnetically–separable adsorption material could be apply in groundwater to adsorb chlorophenols and finally use electro-magnetic power to assimilate this magnetic material to achieve the goal of getting rid of contamination.

The synthesis method of magnetically modified MCM-41 was got from the reference by modifying. It was made in aqueous system, the self-assembly micelle of hexadecyltrimethylammonium bromide surfactant be the template and the inorganic sodium silicic acid gather to hydrophilic side of surfactant by static electricity attraction at this time adding magnetite to cosynthesize. The synthesized samples except magnetically modified MCM-41 another are as-synthesized MCM-41, calcined MCM-41 and magnetite. Their structure and magnetism were identified by X-ray diffraction and suoer-conducting quantum interference device. The different appearances between as-synthesized MCM-41 and calcined MCM-41 was observed by SEM and HR-TEM. Their basic structure parameters got from SEM and HR-TEM were compared with the result from X-ray diffraction.

The result presented the structure of as-synthesized MCM-41 and calcined MCM-41 exhibit a regular arry of uniform pore openings under HR-TEM observing. The sum of their pore diameter and pore wall was match the XRD result. Under SEM observing both samples display spherical or elliptical aggregate. Over the above, the magnetism measurement result verify that the magnetically modified MCM-41 did has magnetism and it’s saturated magnetization is about 24 emu g-1 beside that it can be attracted by hand magnet. At adsorption isotherm aspect, because the as-synthesized MCM-41 and magnetically modified MCM-41 have the structure that the surfactant remained in pore so they have excellent adsorption capability for hydrophobic molecular-type and ion-type chlorophenol. The adsorption isotherm type of molecular-type and iontype chlorophenol on magnetically modified MCM-41 fit in with Freundlich and Lagmuir adsorption model dividually. The result of regression-analysis presented the correlation between Freundlich adsorption parameter KF and the experimental LogKow value of molecular-type chlorophenol is not good, but when we add LUMO and Mayer Bond Order S.D. theory calculation parameters, the result of regression-analysis is improved distinctly. The R2 value reaches to 0.95. Even only LUMO(ev) and Mayer Bond Order S.D. theory calculation parameters proceed regression-analysis with KL the R2 value reaches to 0.92. Langmuir adsorption parameter KL, Smax both have good correlation with the experimental LogKow value , HOMO(ev), Mayer Bond Order S.D. of ion-type chlorophenol. Their R2 value reache higher than 0.8. When we add LogKow, HOMO and Mayer Bond Order S.D. theory calculation parameters at the same time, the result of regression-analysis is improved slightly.
中文摘要……………………………………………………………… i
英文摘要………………………………………………………………iv
目錄………………………………………………………………… vi
表目錄……………………………………………………………… ix
圖目錄……………………………………………………………… x
壹、前言…………………………………………………………………1
一、MCM-41分子篩的發現、合成機制及應用發展………………1
二、含氯酚類的來源及用途……………………………………… 7
三、等溫吸附模式…………………………………………………11
四、有機污染物的吸著作用—吸附作用與分配作用…………… 13
五、溶液中離子強度及pH值對含氯酚類分配作用的影響………15
六、複迴歸分析…………………………………………………… 16
七、總結…………………………………………………………… 17
貳、材料與方法………………………………………………………18
一、各種樣品的合成 …………………………………………… 19
(1)未鍛燒MCM-41、鍛燒MCM-41的合成…………………… 19
(2)磁性修飾型MCM-41的合成……………………………… 19
(3)磁鐵礦,Fe3O4的選購……………………………………… 20
二、磁分離實驗 ………………………………………………… 20
三、X光粉末繞射………………………………………………… 20
(1)小角度X射線粉末繞射…………………………………… 20
(2)X射線粉末繞射……………………………………………… 21
四、含氯酚類物種分佈之Visual Minteq軟體計算…………… 22
五、掃描式電子顯微鏡觀察……………………………………… 22
六、高解析穿透式電子顯微鏡觀察……………………………… 22
七、磁性量測 …………………………………………………… 23
八、等溫吸附實驗……………………………………………… 25
九、動力吸附實驗……………………………………………… 25
十、理論計算…………………………………………………… 26
十一、複因子迴歸分析………………………………………… 26
參、結果與討論………………………………………………………28
一、各種合成樣品之X射線繞射鑑定……………………………28
二、合成樣品之高解析穿透式電子顯微鏡觀測…………………34
三、合成樣品之掃描式電子顯微鏡觀測…………………………35
四、超導量子干涉磁化儀( SQUID )之磁性量測…………………38
五、含氯酚類基本理化性質及其在不同pH範圍下的物種分佈…46
六、動力吸附實驗…………………………………………………53
七、等溫吸附實驗………………………………………………… 55
(1)各合成樣品之等溫吸附-界面活性劑的影響……………… 55
(2)鐵氧化物及矽氧化物對含氯酚類之等溫吸附實驗…………71
(3)磁性修飾型MCM-41與各含氯酚類之等溫吸附型態…………75
八、複因子迴歸分析………………………………………………78
肆、結論………………………………………………………………87
伍、參考文獻…………………………………………………………89
王明光。2000。土壤環境礦物學。藝軒圖書出版社。

江文仁、袁紹英、張碧芬、潘子明。1993。環境檢驗所環境調查研年報。

余樹楨。1987。晶體之結構與性質。渤海堂文化事業有限公司。

金相燦、程振華、徐南妮、李海生。1998。環境毒性有機物污染化學。淑馨出版社。

徐國財、張立德。2004。奈米複合材料。五南圖書出版股份有限公司。

張家銘。1997。北台灣與澎湖島紅壤中鐵淦氧磁性氧化鐵之鑑定以及尖晶石型式鐵與鋁氧化物表面去質子化反應的量子化學研究。台灣大學農業化學研究所博士論文。

張立德。2002。奈米材料。五南圖書出版股份有限公司。

黃俊英。1991。多變量分析。中國經濟企業研究所。

Bandara, J., J. A. Mielczarski and J. Kiwi. 2001. Adsorption mechanismof chlorophenols on iron oxides, titanium oxide and aluminum oxide as detected by infrared spectroscopy. Applied Catalysis B: Environmental 34: 307-320.

Becke, A. D. 1986a. Density functional calculations of molecular bond energies. J. Chem. Phys. 84: 4524-4529.

Becke, A. D. 1986b. On the large-gradient behavior of the density functional exchange energy. J. Chem. Phys. 85: 7184-7187.

Becke, A. D. 1988a. Correlation energy of an inhomogeneous electron gas: A coordinate-space model. J. Chem. Phys. 88: 1053-1062.

Becke, A. D. 1988b. A multicenter numerical integration scheme for
polyatomic molecules. J. Chem. Phys. 88: 2547-2553.

Bourlinos, A. B., A. Simpoulos, N. Boukos, and D. Petridis. 2001. Magnetic modification of the external surfaces in the MCM-41 porous silica: synthesis, characterization, and functionalization. J. Phys. Chem. B. 105: 7432-7437.

Broyer, M., S. Valange, J. P. Bellat, O. Bertrand, G. Weber, and Z. Gabelica. 2002. Influence of aging, thermal, hydrothermal, and mechanical treatments on the porosity of MCM-41 mesoporous silica. Langmuir. 18: 5083-5091.

Choudhary, V. R. and K. Mantri. 2000. Adsorption of aromatic hydrocarbons on highly siliceous MCM-41. Langmuir. 16:7031-7037.

Chou, C. H. and S. J. Chiou. 1979. Auto intoxication mechanism of oryza sativa. II. Effect of culture treatments on the chemical nature of paddy soil and rice productivity. J. Chem. Ecol. 5: 839-859

Delly, B. and D.E. Ellis. 1982. Efficient and accurate expansion methods for molecules in local density models. J. Chem. Phys. 76: 1974-1960.

Delley, B. 1990. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92: 508-517.

Delley, B. 1991. Analytic energy derivatives in the numerical local-
density-functional approach. J. Chem. Phys. 94: 724-725.

Denoyel, R. and E. S. Rey. 1998. Solubilization in confined surfactant mesophases. Langmuir. 14: 7321-7323.

DMol. 1995. Biosym technologies, 10065 Barnes Canyon Road, San Diego, CA92121, U.S.A.

Fine, P. and M. J. Singer. 1989. Contribution of ferromagnetic minerals to oxalate- and dithionite-extractable iron. Soil Sci. Soc. Am. J. 53: 191-196.

Fine, P., M. J. Singer and K. L. Verosub. 1992. Use of magnetic-
susceptibility measurements in assessing soil uniformity in
chronosequence studies. Soil Sci. Soc. Am. J. 56: 1195-1199.

Fine, P., M. J. Singer and K. L. Verosub and J. TenPas.1993. New
evidence for the origin of ferromagnetic minerals in loess from China. Soil Sci. Soc. Am. J. 57: 1537-1542.

Foresman, J. B. 1993. Exploring chemistry with electronic structure methods. Gaussian, Inc.

Fryxell, G. E., J. Liu, T. A. Hauser, Z. Nie, K. F. Ferris, S. Mattigod, M. Gong, and R. T. Hallen. 1999. Design and synthesis of selective mesoporous anion traps. Chem. Mater. 11: 2148-2154.

Hanley, H. J. M., C. D. Muzny, and B. D. Butler. 1997. Surfactant adsorption on a clay mineral: application of radiation scattering. Langmuir. 13: 5276-5282.

Han, J., R. L. Deming, and Fu-Ming Tao. 2004. Theoretical study of molecular structures and properties of the complete series of chlorophenols. J. Phys. Chem. A. 108: 7736-7743.

Hassett, J. J. 1980. Sorption properties of sediments and energy-related pollutants. Athens, GA:USEPA USEPA-600/3-80-041.

Keith, L. H. and W. A. Telliard. 1979. Priority pollutants- A perspective view. Environ. Sci. Technol. 13:416-423.

Konovalov, T. A., Y. Gao, R. Schad, and L. D. Kispert. 2001.
Photooxidation of carotenoids in mesoporous MCM-41, Ni-MCM-41
and Al-MCM-41 molecular sieves. J. Phys. Chem. B. 105:7459-7464.

Kung, K. H. S., and M. B. McBride. 1991. Bondind of chlorophenols on iron and aluminum oxides. Environ. Sci. Technol. 25: 702-709.

Lee, L. S., P. S. C. Rao, P. Nkedl-Klzza, and J. J. Delfino.1990.
Influence of solvent and sorbent characteristics on distribution of pentachlorophenol in octanol-water and soil-water systems. Environ. Sci.Technol. 24: 654-661.

Lee, C., W. Yang, and R. G. Parr. 1988. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37: 785-789.

Levine, I. N. 2000. Quantum chemistry. Prentice-Hall, Inc.

Liu, S., Q. Wang, P. V. D. Voort, P. Cool, E. F. Vansant, and M. Jiang. 2004. Magnetism of iron-containing MCM-41 spheres. Journal of Magnetism and Magnetic materials. 280: 31-36.

Mokaya, R. 2000. Al content dependent hydrothermal stability of directly synthesized aluminosilicate MCM-41. J. Phys. Chem. B. 104: 8279-8286.

Morrision, R. T. and R. N. Boyd. 1982. Organic chmistry. Allyn and Bason. Boston. p.957.

Mukhopadhyay, K., B. R. Sarkar, and R. V. Chaudhari. 2002. Anchored Pd complex in MCM-41 and MCM-48: novel heterogeneous catalysts for hydrocarboxylation of aryl olefins and alcohols. J. AM. CHEM. SOC. 124: 9692-9693.

Schellenberg, K., C. Leuenberger, and R. P. Schwarzenbach. 1984. Sorption of chlorinated phenols by natural sediments and aquifer materials. Environ. Sci. Technol. 18: 652-657.

Shen, J., A. D. Ebner, and J. A. Ritter. 1999. Points of zero charge and intrinsic equilibrium constants of silica magnetite composite oxides. Colloid and Interface Science. 214: 333-343.

Srivastava, D. N., N. Perkas, A. Gedanken, and I. Felner. 2002.
Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties. J. Phys. Chem. B. 106: 1878-1883.

Takada, S., M. Fujii, and S. Kohiki. 2001. Intraparticle magnetic properties of Co3O4 nanocrystals. NANO LETTERS. 1: 379-382.

Thompson, R. and F. Oldifield. 1986. Environmental magnetism, Allen & Unwin Ltd.

Westall, J. C. 1985. Influence of pH and ionic strength on the aqueous-nonaqueous distribution of chlorinated phenols. Environ. Sci Technol. 19: 193-198.

Yu, J., J. L. Shi, L. Z. Wang, M. L. Ruan, and D. S. Yan. 2000.
Roomtemperature synthesis of mesoporous aluminosilicate marerials. Cermics International. 26: 359-362.

Yu, J., Z. Feng, L. Xu, M. Li, Q. Xin, Z. Liu, and C. Li. 2001. Ti-MCM-41 synthesized from colloidal silica and titanium trichloride: synthesis, characterization, and catalysis. Chem. Mater. 13: 994-998.

Zhao, H., K. L. Nagy, J. S. Waples, and G. F. Vance. 2000.Surfactant-templated mesoporous silicate materials as sorbents for organic pollutants in water. Environ. Sci. Technol. 34: 4822-4827.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔