|
曾才郁.2002. 百合中參與調控花朵發育基因及其機制之研究. 國立中興大學農業生物科技學研究所論文.
陳星宇.2000. 洋桔梗中與胚珠發育及花器形成相關MADS box基因之分子選殖與特性分析. 國立中興大學農業生物科技學研究所論文.
Angenent G.C., Busscher M., Franken J., Mol JNM., van Tunen AJ., (1992). Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4: 983–993.
Angenent, G.C., Franken, J., Busscher, M., Weiss, D., van Tunen, A.J., (1994). Co-suppression of the petunia homeotic gene fbp2 aflects the identity of the generative meristem. Plant J. 5, 33–44.
Alvarez-Buylla, E.R., pelaz, S., Liljegren, S.j., Gold, S.E., Burgr., C., Ditta, G.S., Ribas, D.P., Martinez-Castilla, L., Yanofsky, M.F. (2000b).An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. 97, 5328-5333.
Bowman, J.L.,Alvarez, Meyerowitz, E.M., and Smyth, D.R. (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting gene. Development 119, 721-743.
Bradley, D., Carpenter, R., Sommer H., Hartley, N., and Coen, E. (1993). Complementary floral homeotic phenotypes results from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72,85-95.
Cho, S., Jang, S., Chae, S., Chung, K.M., Moon, Y., An, G., Jang, S.K., (1999). Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol. Biol. 40, 419–429.
Chung, Y.-Y., Kim, S.-R., Finkel, D., Yanofsky, M.F., An, G., (1994). Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene. Plant. Mol. Biol. 26, 657–665.
Coen,E.S., and Meyerowitz, E.M.(1991).The war of the whorls: genetic interactions controlling flower development. Nature 353, 31-37.
Colombo, L., Franken, J., Koetje, E., van Went, J., Dones, H.J.M., Angenent, G.C., and van Tunen , A.J.(1995). The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7, 1859-1868.
Colombo, L., Franken, J.,Alexander, R., van der Krol, R., Wittch, P.E., Dons, H.J.M., and Angenent, G.C.,(1997a). Down regulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development, Plant Cell 9, 703-715.
Colombo, L., van Tunen , A.J.,Dons ,H.J.M.,, and Angenent,G.C. (1997b). Molecular control of flower development in Petunia hybrida. Adv.Bot. res. 26, 229-250
Davies B., Motte P., Keck E., Saedler H., Sommer H., Schwarz-Sommer Z. (1999). PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling. flower development .EMBO J 18, 4023-4034.
Drews, G.N., Bowman J.L., and Meyerowitz, E.M. (1991). Negative regulation of the Arabidopsis thaliana gene Agamous by the Apetal2 Product. Cell 65, 991-1002.
Egea-Cortines, M., Saedler, H., Sommer, H., (1999). Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Anthirrinum majus. EMBO J. 18, 5370–5379.
Favaro,R., Pinyopich,A., Battaglia,R., Kooiker,M., Borghi,L., Ditta,G., Yanofsky,M.F., Kater,M.M., Colombo,L.(2003).MADS-Box protein complexes control carpel and ovule development in Arabidopsis. The Plant Cell. 15, 2603–2611.
Ferrario,S. , Immink,R., Shchennikova, A., Busscher-Lange,J., Angenent,G.(2003). The MADS Box gene FBP2 is required for SEPALLATA function in petunia. The Plant Cell.15, 914–925.
Fischer, A., Baum, N., Saedler, H., Theisen, G., (1995a). Chromosomal mapping of the MADS-box multigene family in Zea mays reveals dispersed distribution of allelic genes as well as transposed copies. Nucleic Acids Res. 23, 1901–1911.
Fischer, A., Saedler, H., Theisen, G., (1995b). Restriction fragment length polymorphism-coupled domain-directed differential display: a highly efficient technique for expression analysis of multigene families. Proc. Natl. Acad. Sci. USA 92, 5331–5335.
Flanagan CA., Ma H., (1994). Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol Biol 26: 581–595
Goto, K., and Meyerowitz, E.M. (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 1548- 1560.
Hasebe, M., Banks, J.A., (1997). Evolution of MADS gene family in plants. In: Iwatsuki, K., Raven, R.H. (Eds.), Evolution and diversification of land plants. Springer-Verlag, Tokyo, Japan, pp. 179–197.
Henschel, K., Kofuji, R., Hasebe, M., Saedler, H., Muuunster, T., Theisen, G., 2002. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol. Biol. Evol. 19, 801–814.
Honma, T., Goto, K.,( 2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409, 525–529.
Huang, H., Mizukami, Y., Hu, Y., and Ma, H. (1993). Isolation and characterization of the binding sequence for the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucl. Acids Res. 21, 4769-4776.
Immink.G.H., Gadella T.W.J., Ferrario S., Busscher M., Angenent G.C.(2002).Analysis of MADS box protein-protein interaction in living plant cells. Proc.Natl.Acad.Sci.99, 2416-2412.
Jack, T., (2001). Plant development going MADS. Plant Mol Biol. 46, 515-520.
Jack, T., Brockman, L.L., and Meyerowitz, E.M.(1992). The homeotic gene APETAL3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68, 683-688.
Jofuku, K.D., den Boer, B.G., Montagn E.M., and Okamuro, J.K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETAL2. Plant cell 6, 1211-1225.
Kang, H.-G., An, G., (1997). Isolation and characterization of a rice MADS box gene belonging to the AGL2 gene family. Mol. Cells 7, 45–51.
Kyozuka, J., Harcourt, R., Peacock, W.J., and Dennis, E.S. (1997). Eucalyptus has functional equivalents of Arabidopsis AP1 gene.Plant Mol. Biol.35,573-584.
Ma, H., Yanofsky, M.F., Meyerowitz, E.M., (1991). AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5, 484–495.
Mandel, M.A., Gustafson-Brown, C., Savidge, B., Yanofsky, M.F., (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273–277.
Mandel, M.A., Yanofsky, M.F., (1995). A gene triggering flower formation in Arabidopsis. Nature 377,522-524.
Mandel, M.A., Yanofsky, M.F., (1998). The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sex Plant Reprod. 11, 22–28.
Muunster, T., Deleu, W., Wingen, L.U., Ouzunova, M., Cacharr on, J., Faigl, W., Werth, S., Kim, J.T.T., Saedler, H., Theisen, G., (2002a). Maize MADS-box genes galore. Maydica 47, 287–301.
Munster T., Pahnke J., Di Rosa A., Kim J.T., Martin W., Saedler H., theissen G. (1997). Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc Natl Acad Sci 94, 2415-2420.
Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., Yanofsky, M.F., (2000). B and C organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200–203.
Pelucchi, N., Fornara, F., Favalli, C., Masiero, S., Lago, C., P e, E., Colombo, L., Kater, M.M., (2002). Comparative analysis of rice MADS-box genes expressed during flower development. Sex Plant Reprod. 15, 113–122.
Pnueli, L., Abu-Abeid, M., Zamir, D., Nacken, W., Schwarz-Sommer, Z., Lifschitz, E., (1991). The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J. 1, 255–266.
Pnueli, L., Hareven, D., Broday, L., Hurwitz, C., Lifschitz, E., (1994). The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6, 175–186.
Pollock, R., and Treisman, R. (1991). Human SRF-related proteins: DNA-binding properties and potential regulatory targets Genes Dev. 5,2327-2341.
Riechmann, J.L., Meyerowitz, E.M., (1997). MADS domain proteins in plant development. Biol. Chem. 378, 1079–1101.
Rounsley, S.D., Ditta, G.S., Yanofsky, M.F., (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7, 1259–1269.
Savidge B, Rounsley SD, Yanofsky MF (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7: 721–733
Shore, P., and Sharrocks, A.D. (1995). The MADS-box family of transcription factors. Eur J Biochem. 229, 1-13
Sommer, H., Beltran, J.P., Huijser, P., Pape, H., Lonning, W.E., Saedler, H., and Schwarz-Sommer, Z. (1990). Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus:The protein shows homology to transcription factors. EMBO J. 9, 605-613
Theissen, G., (2001). Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75–85.
Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Muunster, T., Winter, K.-U., Saedler, H., (2000). A short history of MADS-box genes in plants. Plant Mol. Biol. 42, 115–149.
Theissen, G., Kim, J., Saedler, H., (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43, 484–516.
Theissen, G., Saedler, H., (2001). Floral quartets. Nature 409, 469–471.
Trobner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lonnig, W.E., Saedler, H., Sommer, H., and Schwarz-Sommer, Z. (1992). GLOBOSA:A homeotic gene which interacts with DEFICIENS in control of Antirrhinum floral organogenesis. EMBO J.11, 4693-4704.
Tzeng, T.Y., Hsiao,C.C., Chi,P.J., Yang,C.H.(2003). Two Lily SEPALLATA-Like genes cause different effects on floral formation and floral transition in Arabidopsis. Plant Physiology. 133, 1091–1101.
Uimari,A., Kotilainen,M., Elomaa, P., Yu, D.,Albert,V.A., Teeri,T.H.,(2004). Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. PNAS. 101,15817–15822. PLANT BIOLOGY Weigel, D., Meyerowitz, E.M., (1994). The ABCs of floral homeotic genes. Cell 78, 203–209.
Yanofsky, M.F., Ma, H., Bowman, J.L., Drews G.N., Feldmann, K.A., and Meyerowitz, E.M. (1990). The protein encoded by the Arabidopsis homeotic gene agamus resembles transcription factors. Nature 346, 35-39.
曾才郁.2002. 百合中參與調控花朵發育基因及其機制之研究. 國立中興大學農業生物科技學研究所論文.
陳星宇.2000. 洋桔梗中與胚珠發育及花器形成相關MADS box基因之分子選殖與特性分析. 國立中興大學農業生物科技學研究所論文.
Angenent G.C., Busscher M., Franken J., Mol JNM., van Tunen AJ., (1992). Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4: 983–993.
Angenent, G.C., Franken, J., Busscher, M., Weiss, D., van Tunen, A.J., (1994). Co-suppression of the petunia homeotic gene fbp2 aflects the identity of the generative meristem. Plant J. 5, 33–44.
Alvarez-Buylla, E.R., pelaz, S., Liljegren, S.j., Gold, S.E., Burgr., C., Ditta, G.S., Ribas, D.P., Martinez-Castilla, L., Yanofsky, M.F. (2000b).An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. 97, 5328-5333.
Bowman, J.L.,Alvarez, Meyerowitz, E.M., and Smyth, D.R. (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting gene. Development 119, 721-743.
Bradley, D., Carpenter, R., Sommer H., Hartley, N., and Coen, E. (1993). Complementary floral homeotic phenotypes results from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72,85-95.
Cho, S., Jang, S., Chae, S., Chung, K.M., Moon, Y., An, G., Jang, S.K., (1999). Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol. Biol. 40, 419–429.
Chung, Y.-Y., Kim, S.-R., Finkel, D., Yanofsky, M.F., An, G., (1994). Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene. Plant. Mol. Biol. 26, 657–665.
Coen,E.S., and Meyerowitz, E.M.(1991).The war of the whorls: genetic interactions controlling flower development. Nature 353, 31-37.
Colombo, L., Franken, J., Koetje, E., van Went, J., Dones, H.J.M., Angenent, G.C., and van Tunen , A.J.(1995). The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7, 1859-1868.
Colombo, L., Franken, J.,Alexander, R., van der Krol, R., Wittch, P.E., Dons, H.J.M., and Angenent, G.C.,(1997a). Down regulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development, Plant Cell 9, 703-715.
Colombo, L., van Tunen , A.J.,Dons ,H.J.M.,, and Angenent,G.C. (1997b). Molecular control of flower development in Petunia hybrida. Adv.Bot. res. 26, 229-250
Davies B., Motte P., Keck E., Saedler H., Sommer H., Schwarz-Sommer Z. (1999). PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling. flower development .EMBO J 18, 4023-4034.
Drews, G.N., Bowman J.L., and Meyerowitz, E.M. (1991). Negative regulation of the Arabidopsis thaliana gene Agamous by the Apetal2 Product. Cell 65, 991-1002.
Egea-Cortines, M., Saedler, H., Sommer, H., (1999). Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Anthirrinum majus. EMBO J. 18, 5370–5379.
Favaro,R., Pinyopich,A., Battaglia,R., Kooiker,M., Borghi,L., Ditta,G., Yanofsky,M.F., Kater,M.M., Colombo,L.(2003).MADS-Box protein complexes control carpel and ovule development in Arabidopsis. The Plant Cell. 15, 2603–2611.
Ferrario,S. , Immink,R., Shchennikova, A., Busscher-Lange,J., Angenent,G.(2003). The MADS Box gene FBP2 is required for SEPALLATA function in petunia. The Plant Cell.15, 914–925.
Fischer, A., Baum, N., Saedler, H., Theisen, G., (1995a). Chromosomal mapping of the MADS-box multigene family in Zea mays reveals dispersed distribution of allelic genes as well as transposed copies. Nucleic Acids Res. 23, 1901–1911.
Fischer, A., Saedler, H., Theisen, G., (1995b). Restriction fragment length polymorphism-coupled domain-directed differential display: a highly efficient technique for expression analysis of multigene families. Proc. Natl. Acad. Sci. USA 92, 5331–5335.
Flanagan CA., Ma H., (1994). Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol Biol 26: 581–595
Goto, K., and Meyerowitz, E.M. (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 1548- 1560.
Hasebe, M., Banks, J.A., (1997). Evolution of MADS gene family in plants. In: Iwatsuki, K., Raven, R.H. (Eds.), Evolution and diversification of land plants. Springer-Verlag, Tokyo, Japan, pp. 179–197.
Henschel, K., Kofuji, R., Hasebe, M., Saedler, H., Muuunster, T., Theisen, G., 2002. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol. Biol. Evol. 19, 801–814.
Honma, T., Goto, K.,( 2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409, 525–529.
Huang, H., Mizukami, Y., Hu, Y., and Ma, H. (1993). Isolation and characterization of the binding sequence for the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucl. Acids Res. 21, 4769-4776.
Immink.G.H., Gadella T.W.J., Ferrario S., Busscher M., Angenent G.C.(2002).Analysis of MADS box protein-protein interaction in living plant cells. Proc.Natl.Acad.Sci.99, 2416-2412.
Jack, T., (2001). Plant development going MADS. Plant Mol Biol. 46, 515-520.
Jack, T., Brockman, L.L., and Meyerowitz, E.M.(1992). The homeotic gene APETAL3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68, 683-688.
Jofuku, K.D., den Boer, B.G., Montagn E.M., and Okamuro, J.K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETAL2. Plant cell 6, 1211-1225.
Kang, H.-G., An, G., (1997). Isolation and characterization of a rice MADS box gene belonging to the AGL2 gene family. Mol. Cells 7, 45–51.
Kyozuka, J., Harcourt, R., Peacock, W.J., and Dennis, E.S. (1997). Eucalyptus has functional equivalents of Arabidopsis AP1 gene.Plant Mol. Biol.35,573-584.
Ma, H., Yanofsky, M.F., Meyerowitz, E.M., (1991). AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5, 484–495.
Mandel, M.A., Gustafson-Brown, C., Savidge, B., Yanofsky, M.F., (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273–277.
Mandel, M.A., Yanofsky, M.F., (1995). A gene triggering flower formation in Arabidopsis. Nature 377,522-524.
Mandel, M.A., Yanofsky, M.F., (1998). The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sex Plant Reprod. 11, 22–28.
Muunster, T., Deleu, W., Wingen, L.U., Ouzunova, M., Cacharr on, J., Faigl, W., Werth, S., Kim, J.T.T., Saedler, H., Theisen, G., (2002a). Maize MADS-box genes galore. Maydica 47, 287–301.
Munster T., Pahnke J., Di Rosa A., Kim J.T., Martin W., Saedler H., theissen G. (1997). Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc Natl Acad Sci 94, 2415-2420.
Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., Yanofsky, M.F., (2000). B and C organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200–203.
Pelucchi, N., Fornara, F., Favalli, C., Masiero, S., Lago, C., P e, E., Colombo, L., Kater, M.M., (2002). Comparative analysis of rice MADS-box genes expressed during flower development. Sex Plant Reprod. 15, 113–122.
Pnueli, L., Abu-Abeid, M., Zamir, D., Nacken, W., Schwarz-Sommer, Z., Lifschitz, E., (1991). The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J. 1, 255–266.
Pnueli, L., Hareven, D., Broday, L., Hurwitz, C., Lifschitz, E., (1994). The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6, 175–186.
Pollock, R., and Treisman, R. (1991). Human SRF-related proteins: DNA-binding properties and potential regulatory targets Genes Dev. 5,2327-2341.
Riechmann, J.L., Meyerowitz, E.M., (1997). MADS domain proteins in plant development. Biol. Chem. 378, 1079–1101.
Rounsley, S.D., Ditta, G.S., Yanofsky, M.F., (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7, 1259–1269.
Savidge B, Rounsley SD, Yanofsky MF (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7: 721–733
Shore, P., and Sharrocks, A.D. (1995). The MADS-box family of transcription factors. Eur J Biochem. 229, 1-13
Sommer, H., Beltran, J.P., Huijser, P., Pape, H., Lonning, W.E., Saedler, H., and Schwarz-Sommer, Z. (1990). Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus:The protein shows homology to transcription factors. EMBO J. 9, 605-613
Theissen, G., (2001). Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75–85.
Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Muunster, T., Winter, K.-U., Saedler, H., (2000). A short history of MADS-box genes in plants. Plant Mol. Biol. 42, 115–149.
Theissen, G., Kim, J., Saedler, H., (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43, 484–516.
Theissen, G., Saedler, H., (2001). Floral quartets. Nature 409, 469–471.
Trobner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lonnig, W.E., Saedler, H., Sommer, H., and Schwarz-Sommer, Z. (1992). GLOBOSA:A homeotic gene which interacts with DEFICIENS in control of Antirrhinum floral organogenesis. EMBO J.11, 4693-4704.
Tzeng, T.Y., Hsiao,C.C., Chi,P.J., Yang,C.H.(2003). Two Lily SEPALLATA-Like genes cause different effects on floral formation and floral transition in Arabidopsis. Plant Physiology. 133, 1091–1101.
Uimari,A., Kotilainen,M., Elomaa, P., Yu, D.,Albert,V.A., Teeri,T.H.,(2004). Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. PNAS. 101,15817–15822. PLANT BIOLOGY Weigel, D., Meyerowitz, E.M., (1994). The ABCs of floral homeotic genes. Cell 78, 203–209.
Yanofsky, M.F., Ma, H., Bowman, J.L., Drews G.N., Feldmann, K.A., and Meyerowitz, E.M. (1990). The protein encoded by the Arabidopsis homeotic gene agamus resembles transcription factors. Nature 346, 35-39.
|