跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 03:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉友珍
研究生(外文):Yu-Chen Liu
論文名稱:洋桔梗中E功能之MADSbox開花基因之選殖與特性分析
論文名稱(外文):Molecular Cloning and Characterization of E Functional MADS Box Genes from lisianthus (Eustoma grandiflorum)
指導教授:楊長賢楊長賢引用關係
指導教授(外文):Chang-Hsien Yang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:83
相關次數:
  • 被引用被引用:4
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
ABCDE model 說明了在植物中花器的形成是由model中的五群基因互相作用調控的,由於大部分的ABCDE功能性基因為包含了MADS box domain和K domain的MADS box 基因,因此MADS box 基因在開花的過程中必是扮演重要的角色。MADS box domain是靠近N端且保留性高的DNA-binding domain,而位在蛋白質中間的K domain則是putative protein dimerization domain。為了了解洋桔梗的開花發育的過程,本研究選殖出兩個和阿拉伯芥中E function的MADS box基因(SEPALLATA1/2/3)具有高度相似性的基因,分別命名為EgMADS5( Eustoma grandiflorum MADS box Gene5)和EgMADS6。EgMADS5基因可以轉譯出一個含244個胺基酸的蛋白質,其序列和阿拉伯芥中的SEP3基因具有68.5%的相同性。EgMADS6基因則可轉譯出一個含246個胺基酸的蛋白質並且和阿拉伯芥中的SEP1/2基因具有63%的相同性。EgMADS5和EgMADS6在不同花苞時期都有mRNA的表現。而在各個花器方面,EgMADS6基因不管是在花萼、花瓣、雄蕊、雌蕊等各部位均有表現,但EgMADS5則只有在花瓣、雄蕊及雌蕊表現,在花萼部位則不表現。這些結果顯示洋桔梗的EgMADS5和EgMADS6基因應是有調控花器形成的功能的。在轉基因植物方面,已成功將EgMADS5基因轉至阿拉伯芥中,結果發現轉殖基因的植物植株較小,開花時間明顯提早許多,並且出現終結花的現象。
ABCDE model predicts the formation of any flower organs by the interaction of five classes of homeotic genes in plants. Most "ABCDE" functional genes are MADS box proteins which contained a conserved DNA-binding domain (the MADS box domain) at the N-terminus and a putative protein dimerization domain (K domain) at the center, indicating the central role for MADS box genes in flower development. To investigate the flower development of lisianthus (Eustoma grandiflorum), two cDNAs showed high homology to the E functional MADS box genes of Arabidopsis SEPALLATA1/2/3 were isolated and characterized. EgMADS5, encodes a 244 amino acid protein that showed 68.5% identity to SEP3 of Arabidopsis. EgMADS6, encodes a 246 amino acid protein that showed 63% identity to SEP1/2 of Arabidopsis. EgMADS5 and EgMADS6 mRNA was detected in floral buds of different developmental stages. In flower, similar to SEP1/2, EgMADS6 was expressed in all four flower organs, sepal, petal, stamen and carpel. By contrast, similar to SEP3, EgMADS5 was expressed in petal, stamen and carpel and absent in sepal. These results indicate that EgMADS5 and EgMADS6 are the putative SEP3 and SEP1/2 homologues of lisianthus and functions in regulating the flower organ formation. Transgenic Arabidopsis, which ectopically expresses EgMADS5, showed novel phenotypes by significantly reducing plant size, flowering extremely early, and loss of floral determinacy.
中文摘要…………………………………………………………………1
英文摘要…………………………………………………………………2
壹、 前言………………………………………………………………..3
貳、 材料與方法………………………………………………………11
參、 結果………………………………………………………………31
一、 洋桔梗之EgMADS5基因的選殖…………………………..31
二、 洋桔梗之EgMADS6基因的選殖…………………………..32
三、 EgMADS5、6基因的序列比對與演化樹分析……………..33
四、 EgMADS5、6基因的表現………………………………….34
五、 EgMADS5、6 兩個MADS box蛋白交互作用的關係…....35
六、 異位大量表現EgMADS5、6基因之轉基因植物分析……...36
七、 去除MADS box之EgMADS5、6基因的轉基因植物分析38
肆、討論………………………………………………………………..41
伍、參考文獻…………………………………………………………..46
陸、圖表………………………………………………………………..53
曾才郁.2002. 百合中參與調控花朵發育基因及其機制之研究. 國立中興大學農業生物科技學研究所論文.

陳星宇.2000. 洋桔梗中與胚珠發育及花器形成相關MADS box基因之分子選殖與特性分析. 國立中興大學農業生物科技學研究所論文.

Angenent G.C., Busscher M., Franken J., Mol JNM., van Tunen AJ., (1992). Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4: 983–993.

Angenent, G.C., Franken, J., Busscher, M., Weiss, D., van Tunen, A.J., (1994). Co-suppression of the petunia homeotic gene fbp2 aflects the identity of the generative meristem. Plant J. 5, 33–44.

Alvarez-Buylla, E.R., pelaz, S., Liljegren, S.j., Gold, S.E., Burgr., C., Ditta, G.S., Ribas, D.P., Martinez-Castilla, L., Yanofsky, M.F. (2000b).An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. 97, 5328-5333.

Bowman, J.L.,Alvarez, Meyerowitz, E.M., and Smyth, D.R. (1993).
Control of flower development in Arabidopsis thaliana by APETALA1 and interacting gene. Development 119, 721-743.

Bradley, D., Carpenter, R., Sommer H., Hartley, N., and Coen, E. (1993).
Complementary floral homeotic phenotypes results from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72,85-95.

Cho, S., Jang, S., Chae, S., Chung, K.M., Moon, Y., An, G., Jang, S.K., (1999). Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol. Biol. 40, 419–429.

Chung, Y.-Y., Kim, S.-R., Finkel, D., Yanofsky, M.F., An, G., (1994). Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene. Plant. Mol. Biol. 26, 657–665.

Coen,E.S., and Meyerowitz, E.M.(1991).The war of the whorls: genetic
interactions controlling flower development. Nature 353, 31-37.

Colombo, L., Franken, J., Koetje, E., van Went, J., Dones, H.J.M.,
Angenent, G.C., and van Tunen , A.J.(1995). The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7, 1859-1868.

Colombo, L., Franken, J.,Alexander, R., van der Krol, R., Wittch, P.E., Dons, H.J.M., and Angenent, G.C.,(1997a). Down regulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development, Plant Cell 9, 703-715.

Colombo, L., van Tunen , A.J.,Dons ,H.J.M.,, and Angenent,G.C. (1997b).
Molecular control of flower development in Petunia hybrida. Adv.Bot. res. 26, 229-250

Davies B., Motte P., Keck E., Saedler H., Sommer H., Schwarz-Sommer Z. (1999). PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling. flower development .EMBO J 18, 4023-4034.

Drews, G.N., Bowman J.L., and Meyerowitz, E.M. (1991). Negative regulation of the Arabidopsis thaliana gene Agamous by the Apetal2
Product. Cell 65, 991-1002.

Egea-Cortines, M., Saedler, H., Sommer, H., (1999). Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Anthirrinum majus. EMBO J. 18, 5370–5379.

Favaro,R., Pinyopich,A., Battaglia,R., Kooiker,M., Borghi,L., Ditta,G., Yanofsky,M.F., Kater,M.M., Colombo,L.(2003).MADS-Box protein complexes control carpel and ovule development in Arabidopsis.
The Plant Cell. 15, 2603–2611.

Ferrario,S. , Immink,R., Shchennikova, A., Busscher-Lange,J., Angenent,G.(2003). The MADS Box gene FBP2 is required for SEPALLATA function in petunia. The Plant Cell.15, 914–925.

Fischer, A., Baum, N., Saedler, H., Theisen, G., (1995a). Chromosomal mapping of the MADS-box multigene family in Zea mays reveals dispersed distribution of allelic genes as well as transposed copies. Nucleic Acids Res. 23, 1901–1911.

Fischer, A., Saedler, H., Theisen, G., (1995b). Restriction fragment length polymorphism-coupled domain-directed differential display: a highly efficient technique for expression analysis of multigene families. Proc. Natl. Acad. Sci. USA 92, 5331–5335.

Flanagan CA., Ma H., (1994). Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol Biol 26: 581–595

Goto, K., and Meyerowitz, E.M. (1994). Function and regulation of the
Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 1548-
1560.

Hasebe, M., Banks, J.A., (1997). Evolution of MADS gene family in plants. In: Iwatsuki, K., Raven, R.H. (Eds.), Evolution and diversification of land plants. Springer-Verlag, Tokyo, Japan, pp. 179–197.

Henschel, K., Kofuji, R., Hasebe, M., Saedler, H., Muuunster, T., Theisen, G., 2002. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol. Biol. Evol. 19, 801–814.

Honma, T., Goto, K.,( 2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409, 525–529.

Huang, H., Mizukami, Y., Hu, Y., and Ma, H. (1993). Isolation and characterization of the binding sequence for the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucl. Acids Res. 21, 4769-4776.

Immink.G.H., Gadella T.W.J., Ferrario S., Busscher M., Angenent G.C.(2002).Analysis of MADS box protein-protein interaction in living plant cells. Proc.Natl.Acad.Sci.99, 2416-2412.

Jack, T., (2001). Plant development going MADS. Plant Mol Biol. 46,
515-520.

Jack, T., Brockman, L.L., and Meyerowitz, E.M.(1992). The homeotic gene APETAL3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68, 683-688.

Jofuku, K.D., den Boer, B.G., Montagn E.M., and Okamuro, J.K. (1994).
Control of Arabidopsis flower and seed development by the homeotic gene APETAL2. Plant cell 6, 1211-1225.

Kang, H.-G., An, G., (1997). Isolation and characterization of a rice MADS box gene belonging to the AGL2 gene family. Mol. Cells 7, 45–51.

Kyozuka, J., Harcourt, R., Peacock, W.J., and Dennis, E.S. (1997). Eucalyptus has functional equivalents of Arabidopsis AP1 gene.Plant Mol. Biol.35,573-584.

Ma, H., Yanofsky, M.F., Meyerowitz, E.M., (1991). AGL1-AGL6, an
Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5, 484–495.

Mandel, M.A., Gustafson-Brown, C., Savidge, B., Yanofsky, M.F., (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273–277.

Mandel, M.A., Yanofsky, M.F., (1995). A gene triggering flower formation in Arabidopsis. Nature 377,522-524.

Mandel, M.A., Yanofsky, M.F., (1998). The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sex Plant Reprod. 11, 22–28.

Muunster, T., Deleu, W., Wingen, L.U., Ouzunova, M., Cacharr on, J., Faigl, W., Werth, S., Kim, J.T.T., Saedler, H., Theisen, G., (2002a). Maize MADS-box genes galore. Maydica 47, 287–301.

Munster T., Pahnke J., Di Rosa A., Kim J.T., Martin W., Saedler H., theissen G. (1997). Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor
of ferns and seed plants. Proc Natl Acad Sci 94, 2415-2420.

Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., Yanofsky, M.F., (2000). B and C organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200–203.

Pelucchi, N., Fornara, F., Favalli, C., Masiero, S., Lago, C., P e, E., Colombo, L., Kater, M.M., (2002). Comparative analysis of rice MADS-box genes expressed during flower development. Sex Plant Reprod. 15, 113–122.

Pnueli, L., Abu-Abeid, M., Zamir, D., Nacken, W., Schwarz-Sommer, Z., Lifschitz, E., (1991). The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J. 1, 255–266.

Pnueli, L., Hareven, D., Broday, L., Hurwitz, C., Lifschitz, E., (1994). The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6, 175–186.

Pollock, R., and Treisman, R. (1991). Human SRF-related proteins:
DNA-binding properties and potential regulatory targets Genes Dev. 5,2327-2341.

Riechmann, J.L., Meyerowitz, E.M., (1997). MADS domain proteins in plant development. Biol. Chem. 378, 1079–1101.

Rounsley, S.D., Ditta, G.S., Yanofsky, M.F., (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7, 1259–1269.

Savidge B, Rounsley SD, Yanofsky MF (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7: 721–733

Shore, P., and Sharrocks, A.D. (1995). The MADS-box family of transcription factors. Eur J Biochem. 229, 1-13

Sommer, H., Beltran, J.P., Huijser, P., Pape, H., Lonning, W.E., Saedler,
H., and Schwarz-Sommer, Z. (1990). Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus:The protein shows homology to transcription factors. EMBO J. 9, 605-613

Theissen, G., (2001). Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75–85.

Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Muunster, T., Winter, K.-U., Saedler, H., (2000). A short history of MADS-box genes in plants. Plant Mol. Biol. 42, 115–149.

Theissen, G., Kim, J., Saedler, H., (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43, 484–516.

Theissen, G., Saedler, H., (2001). Floral quartets. Nature 409, 469–471.

Trobner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lonnig, W.E.,
Saedler, H., Sommer, H., and Schwarz-Sommer, Z. (1992). GLOBOSA:A homeotic gene which interacts with DEFICIENS in control of Antirrhinum floral organogenesis. EMBO J.11, 4693-4704.

Tzeng, T.Y., Hsiao,C.C., Chi,P.J., Yang,C.H.(2003). Two Lily SEPALLATA-Like genes cause different effects on floral formation and floral transition in Arabidopsis. Plant Physiology. 133, 1091–1101.

Uimari,A., Kotilainen,M., Elomaa, P., Yu, D.,Albert,V.A., Teeri,T.H.,(2004). Integration of reproductive meristem fates by a
SEPALLATA-like MADS-box gene. PNAS. 101,15817–15822.
PLANT BIOLOGY
Weigel, D., Meyerowitz, E.M., (1994). The ABCs of floral homeotic genes. Cell 78, 203–209.

Yanofsky, M.F., Ma, H., Bowman, J.L., Drews G.N., Feldmann, K.A.,
and Meyerowitz, E.M. (1990). The protein encoded by the Arabidopsis homeotic gene agamus resembles transcription factors. Nature 346, 35-39.


曾才郁.2002. 百合中參與調控花朵發育基因及其機制之研究. 國立中興大學農業生物科技學研究所論文.

陳星宇.2000. 洋桔梗中與胚珠發育及花器形成相關MADS box基因之分子選殖與特性分析. 國立中興大學農業生物科技學研究所論文.

Angenent G.C., Busscher M., Franken J., Mol JNM., van Tunen AJ., (1992). Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4: 983–993.

Angenent, G.C., Franken, J., Busscher, M., Weiss, D., van Tunen, A.J., (1994). Co-suppression of the petunia homeotic gene fbp2 aflects the identity of the generative meristem. Plant J. 5, 33–44.

Alvarez-Buylla, E.R., pelaz, S., Liljegren, S.j., Gold, S.E., Burgr., C., Ditta, G.S., Ribas, D.P., Martinez-Castilla, L., Yanofsky, M.F. (2000b).An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. 97, 5328-5333.

Bowman, J.L.,Alvarez, Meyerowitz, E.M., and Smyth, D.R. (1993).
Control of flower development in Arabidopsis thaliana by APETALA1 and interacting gene. Development 119, 721-743.

Bradley, D., Carpenter, R., Sommer H., Hartley, N., and Coen, E. (1993).
Complementary floral homeotic phenotypes results from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72,85-95.

Cho, S., Jang, S., Chae, S., Chung, K.M., Moon, Y., An, G., Jang, S.K., (1999). Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol. Biol. 40, 419–429.

Chung, Y.-Y., Kim, S.-R., Finkel, D., Yanofsky, M.F., An, G., (1994). Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene. Plant. Mol. Biol. 26, 657–665.

Coen,E.S., and Meyerowitz, E.M.(1991).The war of the whorls: genetic
interactions controlling flower development. Nature 353, 31-37.

Colombo, L., Franken, J., Koetje, E., van Went, J., Dones, H.J.M.,
Angenent, G.C., and van Tunen , A.J.(1995). The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7, 1859-1868.

Colombo, L., Franken, J.,Alexander, R., van der Krol, R., Wittch, P.E., Dons, H.J.M., and Angenent, G.C.,(1997a). Down regulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development, Plant Cell 9, 703-715.

Colombo, L., van Tunen , A.J.,Dons ,H.J.M.,, and Angenent,G.C. (1997b).
Molecular control of flower development in Petunia hybrida. Adv.Bot. res. 26, 229-250

Davies B., Motte P., Keck E., Saedler H., Sommer H., Schwarz-Sommer Z. (1999). PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling. flower development .EMBO J 18, 4023-4034.

Drews, G.N., Bowman J.L., and Meyerowitz, E.M. (1991). Negative regulation of the Arabidopsis thaliana gene Agamous by the Apetal2
Product. Cell 65, 991-1002.

Egea-Cortines, M., Saedler, H., Sommer, H., (1999). Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Anthirrinum majus. EMBO J. 18, 5370–5379.

Favaro,R., Pinyopich,A., Battaglia,R., Kooiker,M., Borghi,L., Ditta,G., Yanofsky,M.F., Kater,M.M., Colombo,L.(2003).MADS-Box protein complexes control carpel and ovule development in Arabidopsis.
The Plant Cell. 15, 2603–2611.

Ferrario,S. , Immink,R., Shchennikova, A., Busscher-Lange,J., Angenent,G.(2003). The MADS Box gene FBP2 is required for SEPALLATA function in petunia. The Plant Cell.15, 914–925.

Fischer, A., Baum, N., Saedler, H., Theisen, G., (1995a). Chromosomal mapping of the MADS-box multigene family in Zea mays reveals dispersed distribution of allelic genes as well as transposed copies. Nucleic Acids Res. 23, 1901–1911.

Fischer, A., Saedler, H., Theisen, G., (1995b). Restriction fragment length polymorphism-coupled domain-directed differential display: a highly efficient technique for expression analysis of multigene families. Proc. Natl. Acad. Sci. USA 92, 5331–5335.

Flanagan CA., Ma H., (1994). Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol Biol 26: 581–595

Goto, K., and Meyerowitz, E.M. (1994). Function and regulation of the
Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 1548-
1560.

Hasebe, M., Banks, J.A., (1997). Evolution of MADS gene family in plants. In: Iwatsuki, K., Raven, R.H. (Eds.), Evolution and diversification of land plants. Springer-Verlag, Tokyo, Japan, pp. 179–197.

Henschel, K., Kofuji, R., Hasebe, M., Saedler, H., Muuunster, T., Theisen, G., 2002. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol. Biol. Evol. 19, 801–814.

Honma, T., Goto, K.,( 2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409, 525–529.

Huang, H., Mizukami, Y., Hu, Y., and Ma, H. (1993). Isolation and characterization of the binding sequence for the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucl. Acids Res. 21, 4769-4776.

Immink.G.H., Gadella T.W.J., Ferrario S., Busscher M., Angenent G.C.(2002).Analysis of MADS box protein-protein interaction in living plant cells. Proc.Natl.Acad.Sci.99, 2416-2412.

Jack, T., (2001). Plant development going MADS. Plant Mol Biol. 46,
515-520.

Jack, T., Brockman, L.L., and Meyerowitz, E.M.(1992). The homeotic gene APETAL3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68, 683-688.

Jofuku, K.D., den Boer, B.G., Montagn E.M., and Okamuro, J.K. (1994).
Control of Arabidopsis flower and seed development by the homeotic gene APETAL2. Plant cell 6, 1211-1225.

Kang, H.-G., An, G., (1997). Isolation and characterization of a rice MADS box gene belonging to the AGL2 gene family. Mol. Cells 7, 45–51.

Kyozuka, J., Harcourt, R., Peacock, W.J., and Dennis, E.S. (1997). Eucalyptus has functional equivalents of Arabidopsis AP1 gene.Plant Mol. Biol.35,573-584.

Ma, H., Yanofsky, M.F., Meyerowitz, E.M., (1991). AGL1-AGL6, an
Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5, 484–495.

Mandel, M.A., Gustafson-Brown, C., Savidge, B., Yanofsky, M.F., (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273–277.

Mandel, M.A., Yanofsky, M.F., (1995). A gene triggering flower formation in Arabidopsis. Nature 377,522-524.

Mandel, M.A., Yanofsky, M.F., (1998). The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sex Plant Reprod. 11, 22–28.

Muunster, T., Deleu, W., Wingen, L.U., Ouzunova, M., Cacharr on, J., Faigl, W., Werth, S., Kim, J.T.T., Saedler, H., Theisen, G., (2002a). Maize MADS-box genes galore. Maydica 47, 287–301.

Munster T., Pahnke J., Di Rosa A., Kim J.T., Martin W., Saedler H., theissen G. (1997). Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor
of ferns and seed plants. Proc Natl Acad Sci 94, 2415-2420.

Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., Yanofsky, M.F., (2000). B and C organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200–203.

Pelucchi, N., Fornara, F., Favalli, C., Masiero, S., Lago, C., P e, E., Colombo, L., Kater, M.M., (2002). Comparative analysis of rice MADS-box genes expressed during flower development. Sex Plant Reprod. 15, 113–122.

Pnueli, L., Abu-Abeid, M., Zamir, D., Nacken, W., Schwarz-Sommer, Z., Lifschitz, E., (1991). The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J. 1, 255–266.

Pnueli, L., Hareven, D., Broday, L., Hurwitz, C., Lifschitz, E., (1994). The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6, 175–186.

Pollock, R., and Treisman, R. (1991). Human SRF-related proteins:
DNA-binding properties and potential regulatory targets Genes Dev. 5,2327-2341.

Riechmann, J.L., Meyerowitz, E.M., (1997). MADS domain proteins in plant development. Biol. Chem. 378, 1079–1101.

Rounsley, S.D., Ditta, G.S., Yanofsky, M.F., (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7, 1259–1269.

Savidge B, Rounsley SD, Yanofsky MF (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7: 721–733

Shore, P., and Sharrocks, A.D. (1995). The MADS-box family of transcription factors. Eur J Biochem. 229, 1-13

Sommer, H., Beltran, J.P., Huijser, P., Pape, H., Lonning, W.E., Saedler,
H., and Schwarz-Sommer, Z. (1990). Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus:The protein shows homology to transcription factors. EMBO J. 9, 605-613

Theissen, G., (2001). Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75–85.

Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Muunster, T., Winter, K.-U., Saedler, H., (2000). A short history of MADS-box genes in plants. Plant Mol. Biol. 42, 115–149.

Theissen, G., Kim, J., Saedler, H., (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43, 484–516.

Theissen, G., Saedler, H., (2001). Floral quartets. Nature 409, 469–471.

Trobner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lonnig, W.E.,
Saedler, H., Sommer, H., and Schwarz-Sommer, Z. (1992). GLOBOSA:A homeotic gene which interacts with DEFICIENS in control of Antirrhinum floral organogenesis. EMBO J.11, 4693-4704.

Tzeng, T.Y., Hsiao,C.C., Chi,P.J., Yang,C.H.(2003). Two Lily SEPALLATA-Like genes cause different effects on floral formation and floral transition in Arabidopsis. Plant Physiology. 133, 1091–1101.

Uimari,A., Kotilainen,M., Elomaa, P., Yu, D.,Albert,V.A., Teeri,T.H.,(2004). Integration of reproductive meristem fates by a
SEPALLATA-like MADS-box gene. PNAS. 101,15817–15822.
PLANT BIOLOGY
Weigel, D., Meyerowitz, E.M., (1994). The ABCs of floral homeotic genes. Cell 78, 203–209.

Yanofsky, M.F., Ma, H., Bowman, J.L., Drews G.N., Feldmann, K.A.,
and Meyerowitz, E.M. (1990). The protein encoded by the Arabidopsis homeotic gene agamus resembles transcription factors. Nature 346, 35-39.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top