跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡森村
研究生(外文):sen tsun chien
論文名稱:藍光可寫一次光碟雙層a-Si/Ni記錄薄膜之研究
論文名稱(外文):A Study of a-Si/Ni Bilayer Recording Film for the Write-once Blue-ray Disk
指導教授:何永鈞
指導教授(外文):Yung Chiun Her
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:74
中文關鍵詞:染料層訊雜比非晶矽相光碟片吸收率
外文關鍵詞:aftersystemdynamic
相關次數:
  • 被引用被引用:2
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一般的可寫一次光碟片(CD-R、DVD-R),多是以有機染料作為記錄層材料,但有機染料對藍光和藍紫光的吸收率偏低,且應用在高記錄密度媒體時,染料層容易塗佈不均,生產時還會造成環境問題。因此,必須發展無機記錄材料來取代傳統的有機染料。
本論文以雙離子束輔助沉積系統(IBAD)製備Si(20nm)/Ni(5nm)雙層記錄薄膜,作為無機可寫一次光碟之記錄材料。由熱分析的實驗結果可知,a-Si/Ni雙層記錄膜在200 oC~350 oC之間會有明顯的反射率變化,當溫度持續的升高至600oC,其反射率便維持一定值不再變化。從GIAD、TEM與AES的分析可得知,反射率發生變化是因為a-Si/Ni雙層記錄膜的Ni與Si原子彼此交互擴散反應,先反應形成NiSi的介穩態相,再由NiSi與Si反應而得到NiSi2,當溫度到達500℃左右便會有結晶矽產生。不過,反射率對溫度的變化關係在500℃附近並沒有反射率的變化,這可能是因為a-Si/Ni之間反應產生NiSi2時,鎳矽化物已將大部分之矽原子耗盡,僅剩下約8.5at%之非結晶矽原子,即使剩下的非晶矽相變化成結晶矽亦無法產生明顯的反射率變化。光學性質分析的結果顯示,初濺鍍a-Si/Ni雙層記錄膜對藍光波長400nm有足夠的吸收率(54.2%)和適當的反射率(38.2%);經600℃熱處理後,吸收率降低到42%,而反射率則增加到57.6%是由於a-Si/Ni雙層記錄膜會形成c- Si與NiSi2的結晶相,可與初濺鍍薄膜產生明顯的光學對比(21.6%),因此,a-Si/Ni雙層記錄膜具有符合藍光可寫一次光碟記錄材料的要求。經由動態測試結果顯示,a-Si/Ni雙層結構膜層在低功率雷射4mW照射下可得到37 dB的訊雜比(CNR),但是並未達到一般光記錄媒體要求的45dB,因此,我們必須進一步修正a-Si/Ni的膜層結構來改善其讀寫特性。
The organic dye has been widely used in write-once disks such as CD-R and DVD-R. However, for use in the write-once blue-ray disk, the absorptance of organic dye at blue wavelength is relatively low, and a uniform organic dye layer is difficult to obtain by spin coating. Besides, the environmental pollution during disk fabrication is another problem. Therefore, we should develop an inorganic recording material to replace the traditional organic recording materials.
In this study, a-Si(20nm)/Ni(5nm) bi-layer recording film for the write-once blue-ray disc was prepared by an ion beam assisted deposition system (IBAD). Form the results of thermal analysis, the reflectivity of Si/Ni bi-layer recording film showed an obvious increase at temperatures between 200℃ and 350℃, and then remained constant as the sample was heated form room temperature to 600℃. The results from GIAD, TEM, and AES analyses confirmed that the reflectivity increase corresponded to the formation of metastable NiSi through the diffusion of Ni into the amorphous Si layer, followed by the formation of NiSi2 crystalline phase
through the reaction of NiSi with Si. Although the crystallization of remaining amorphous Si was expected at a temperature around 500℃, substantial change of reflectivity was not detected. It is probably because that the formation of NiSi2 has consumed most of the Si atoms and only about 8.5at% of amorphous Si atoms is left to crystallize into crystalline Si that will not lead to an appreciable reflectivity change. At the blue wavelength of 400nm, the as-deposited a-Si/Ni recording film exhibited an absorptance of 54.2% and a reflectivity of 38.2%. After being annealed at 600℃, the absorptance was decreased to 42%, and reflectivity was increased to 57.6% due to the formation of c-Si and NiSi2, resulting in an optical contrast of 21.6%. From the consideration of optical properties,

a-Si/ Ni bi-layer is a promising recording material for write-once blue-ray disc. The dynamic test results also demonstrated that CNR of about 37dB can be achieved at laser power of 4mW. Unfortunately, it is still not high enough for practical use in the write-once blue-ray disc. Therefore, we must modify the layer structure of a-Si/Ni to improve the reading and writing ability.
目 錄
中文摘要..................................................................................................Ⅰ
英文摘要..................................................................................................Ⅲ
目錄..........................................................................................................Ⅴ
圖目錄......................................................................................................Ⅸ
表目錄......................................................................................................XI
第一章、 前言...........................................................................................1
1.1 研究動機...................................................................................1
1.2 研究目的...................................................................................3
第二章、 理論基礎與文獻回顧...............................................................4
2.1 光儲存媒體的發展....................................................................4
2.2 藍光光碟....................................................................................6
2.3 藍光可寫一次光碟...................................................................17
2.4 金屬誘發非晶矽結晶化...........................................................19
第三章、實驗方法與步驟......................................................................26
3.1 實驗概要與流程.......................................................................26
3.2 清洗基板...................................................................................28
3.3 薄膜濺鍍...................................................................................28
3.3.1 濺鍍原理......................................................................28
3.4 沈積速率檢測...........................................................................29
3.5 退火處理...................................................................................30
3.6 鍍膜性質分析...........................................................................30
3.6.1 表面形貌量測..............................................................30
3.6.2 熱性質分析..................................................................31
3.6.3 晶體結構分析..............................................................32
3.6.4 顯微組織觀察..............................................................33
3.6.5 光學性質分析..............................................................34
3.6.6 元素縱深分析..............................................................34
3.6.7 動態測試......................................................................35
第四章、實驗結果與討論
4.1 薄膜的表面形貌.......................................................................36
4.2 熱性質分析...............................................................................39
4.3 a-Si/Ni雙層記錄薄膜的相變化機制.......................................42
4.3.1 X光繞射晶體結構分析...............................................42
4.3.2 TEM結構分析.............................................................45
4.3.3 擴散縱深成分分析......................................................54
4.3.4 a-Si/Ni雙層記錄膜的相變化機制.............................58
4.4 薄膜光學性質分析 ..................................................................60
4.4.1 a-Si/Ni雙層記錄薄膜之吸收率光譜..........................60
4.4.2 a-Si/Ni雙層薄膜之反射率分析..................................61
4.5 a-Si/Ni雙層記錄薄膜經雷射脈衝照射後之相變化行為.......64
4.6 動態測試...................................................................................67
4.7 未來研究方向...........................................................................69
第五章、結論..........................................................................................70
參考文獻..................................................................................................72

圖目錄
圖2.1、光儲存發展趨勢圖.....................................................................5
圖2.2、CD、DVD、BD的規格及光點直徑大小之基本差異..............9
圖2.3、DVD、BD透光保護層的差異..................................................10
圖2.4、DVR的結構..............................................................................12
圖2.5、Sample A Sb 64at% 、Sample B Sb 68at%、Sample C Sb 74at%..........................................................................................12
圖2.6、Sample D Sb 74at% 第二保護Al2O3........................................12
圖2.7、快速冷卻結構SRC....................................................................14
圖2.8、線速度與DC Erasability之關係圖...........................................14
圖2.9、SRC結構在100Mbps下,重複讀寫次數與jitter值之關係........14
圖2.10、傳統的寫入策略.......................................................................16
圖2.11、新的寫入策略...........................................................................16
圖2.12、a-Si /Cu雙層記錄薄膜結構示意圖.........................................22
圖2.13、a-Si /Cu雙層記錄薄膜在不同的資料傳輸速率下,jitter值與寫入功率關係圖......................................................................23
圖2.14、a-Si /Cu雙層記錄薄膜在不同的資料傳輸速率下之Equalized eye-patterns...............................................................................23
圖2.15、不同軌距規格的碟片,jitter值與雷射功率關係圖(a)0.68um(b)0.45um..............................................................................24
圖3.1、實驗流程圖................................................................................27圖3.2、雙離子束濺鍍系統配置示意圖................................................29
圖3.3、掃描式原子探測顯微鏡示意圖................................................31
圖3.4、溫度-反射率量測系統...............................................................32
圖3.5、低掠角X光繞射法的示意圖....................................................33
圖3.6、U-3010紫外可見光譜儀裝置圖................................................34
圖3.7、歐傑電子產生原理示意圖.........................................................35
圖4.1、Si(20nm)/Ni(5nm)/Si薄膜初濺鍍表面形貌.............................37
圖4.2、Si(20nm)/Ni(5nm)/Si薄膜熱處理263oC表面形貌.................37
圖4.3、Si(20nm)/Ni(5nm)/Si薄膜熱處理400oC表面形貌..................38
圖4.4、Si(20nm)/Ni(5nm)/Si薄膜熱處理600oC表面形貌..................38
圖4.5、a-Si/Si單層記錄膜和a-Si/Ni/Si雙層記錄膜以不同升溫速率下的反射功率對溫度的關係圖......................................................41
圖4.6、a-Si/Ni雙層結構之ln ( A / Tx2 ) 對 ( 1 / Tx )所作的關係圖.42
圖4.7、初鍍膜a-Si單層記錄膜與初鍍膜a-Si/Ni雙層記錄膜之低掠角X光繞射圖.................................................................................44
圖4.8、初濺鍍a-Si/Ni雙層記錄膜經過263oC、400oC、600oC熱處理之低掠角X光繞射圖................................................................44
圖4.9、初鍍膜a-Si/Ni雙層記錄膜之TEM(a)明視野(b)擇區繞射圖............................................................................................48
圖4.10、263 oC熱處理後a-Si/Ni雙層記錄膜之TEM(a)明視野
(b)擇區繞射圖........................................................................48
圖4.11、400 oC熱處理後a-Si/Ni雙層記錄膜之TEM(a)明視野
(b)擇區繞射圖........................................................................49
圖4.12、600 oC熱處理後a-Si/Ni雙層記錄膜之TEM(a)明視野
(b)擇區繞射圖........................................................................49
圖4.13(a)400 oC熱處理後a-Si/Ni雙層記錄膜之兩萬倍TEM明視野..............................................................................................50
圖4.13(b)為(a)圖中顏色較深的晶粒之EDS元素分析圖.........50
圖4.13(c)為(a)圖中顏色較淺的晶粒之EDS元素分析圖..........51
圖4.14(a)600 oC熱處理後a-Si/Ni雙層記錄膜之兩萬倍TEM明視野..............................................................................................52
圖4.14(b)為(a)圖中深色碎片狀的晶粒之EDS元素分析圖.....52
圖4.14(c)為(a)圖中深色顆粒狀的晶粒之EDS元素分析圖......53
圖4.14(d)為(a)圖中淺色顆粒狀的晶粒之EDS元素分析圖......53
圖4.15(a)歐傑電子能譜儀縱深分析(初鍍膜).............................56
圖4.15(b)歐傑電子能譜儀縱深分析(263 oC熱處理).................56
圖4.15(c)歐傑電子能譜儀縱深分析(400oC熱處理)..................57
圖4.15(d)歐傑電子能譜儀縱深分析(600oC熱處理)..................57
圖4.16、a-Si/Ni雙層薄膜誘發機制示意圖..........................................59
圖4.17、為初鍍膜a-Si/Ni雙層記錄膜與不同退火處理溫度前後吸收率與波長光譜圖......................................................................61
圖4.18、為初鍍膜a-Si/Ni雙層記錄膜與不同退火處理溫度前後反射率與波長光譜圖......................................................................62
圖4.19、為a-Si/Ni雙層記錄膜之光學對比與波長的關係圖............63
圖4.20、a-Si/Ni雙層記錄薄膜經藍光雷射照射後之明視野圖.........65
圖4.21、9mW雷射照射350ns所形成的記錄形跡之TEM明視野與繞射圖............................................................................................65
圖4.22、9mW雷射照射400ns所形成的記錄形跡之TEM明視野與繞射圖............................................................................................66
圖4.23、圖4.23、(a)10mW(b)11mW雷射照射350ns下所形成的記錄形跡之TEM明視野.........................................................66
圖4.24、a-Si/Ni雙層記錄薄膜及Si單層薄膜為記錄膜的BD-R,其CNR值與寫入功率的關係曲線...............................................68













表目錄
表2.1、藍光光碟的規格...........................................................................8
參考文獻
【1】H. Inoue, K. Mishima, M. Aoshima, H. Hirata, T. Kato and H. Utsunomiya, Jpn. J. Appl. Phys. Vol.42, p.1059(2003).
【2】Y. Hosoda, T. Izumi, A. Mitsumori, F. Yokogawa, S. Jinno and H. Kudo, Jpn. J. Appl. Phys. Vol.42, p.1040(2003).
【3】Y. Hosoda, A. Mitsumori, M. Sato and M. Yamaguchi, Jpn. J. Appl. Phys. Vol.43, p.4997(2004).
【4】B. M. Chen, H. F. Chen, R. L. Yeh and J. M. Chung, Jpn. J. Appl. Phys. Vol.43, p.5018(2004).
【5】S. Ohkubo, T. Ide, and M. Okada, ODS 2001 Technical Digest p.34
【6】S. W. Lee, Y. C. Jeon, and S. K. Joo, Appl.Phys.Lett. Vol.66, p.1671(1995).
【7】M. S. Haque, H. A. Naseem, and W. D. Brown, J. Appl. Phys. Vol.75, p.3928(1994).
【8】L. Hultman, A Robertesson, and H. T. G. Hentzell, J. Appl. Phys. Vol. 62, p.3647(1987).
【9】S. W. Russell, J. Li and J. W. Mayer, J. Appl. Phys. Vol. 70, p.5153(1991).
【10】B. Bian, J. Yie, B. Li, and Z. Wu, J. Appl. Phys. Vol. 73, p.7402(1993).
【11】A. Yu. Kuznetsov and B. G. Svensson, Appl. Phys. Lett. Vol. 66, p.2229(1995).
【12】侯綉芳、盧棨彬、王澤豪、周立人,“高品質複晶矽薄膜電晶體--鎳金屬誘發複晶矽側向成長的機制探討”『科儀新知』,2003.10, p15.
【13】蔡松雨,“藍光光碟(Blue-ray Disc)的發展”,光電特刊, 2002.8,p.113.
【14】廖文毅,“超高容量記錄媒體—螢光多層記錄技術”,工業材料,2005.1,p131.
【15】Blu-ray Disc Associationhttp://www.bluraydisc.com/
【16】H. Inoue, H. Hirata, T. Kato, H. Shingai and H. Utsunomiya, Jpn. J. Appl. Phys. Vol.40, p.1641(2001).
【17】H. Inoue, H. Hirata, T. Komaki, T. Kato, H. Shingai, N. Hayashida and H. Utsunomiya, Jpn. J. Appl. Phys. Vol.41, p.810(2002).
【18】H. Inoue, H. Hirata, T. Komaki, T. Kato, H. Shingai, N. Hayashida and H. Utsunomiya, Optical Data Storage Topical Meeting , April(2001).
【19】T. Kato, H. Hirata, T. Komaki, H. Inoue, H. Shingai, N. Hayashida and H. Utsunomiya, Jpn. J. Appl. Phys. Vol.41, p.1664(2002).
【20】吳昌霖,“藍光可寫一次光碟雙層a-Si/Cu無機記錄薄膜之研究”,國立中興大學材料工程研究所碩士論文,92.6.
【21】陳志偉,“藍光可寫一次光碟雙層a-Si/Al無機記錄薄膜之研究”,國立中興大學材料工程研究所碩士論文,93.6.
【22】Y. J. Choi, W. K. Kwak, K. S. Cho, S. K. Kim, and J. Jang, IEEE Electron Device Lett. Vol.21, p.18(2000).
【23】N. Matsuo, Y. Aya, T. Kanamori, T. Nouda, H. Hamada and T. Miyoshi, Jpn. J. Appl. Phys. Vol.39, p.351(2000).
【24】M. Miyasaka and J. Stoemenos, J. Appl. Phys. Vol. 86, p.5556(1999).
【25】G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong and M. A. Hasan, J. Appl. Phys. Vol. 69, p.6394(1991).
【26】S. Y. Yoon, K. H. Kim and C. O. Kim, J. Appl. Phys. Vol. 82, p.5865(1997).
【27】S. Y. Yoon, S. K. Kim, J. Y. Oh, Y. J. Choi, W. S. Shon, C. O. Kim and J. Jang, Jpn. J. Appl. Phys. Vol.37, p.7193(1998).
【28】S. W. Lee, B. Lee, T. K. Kim and S. K. Joo, J. Appl. Phys. Vol. 85, p.7180(1999).
【29】S. W. Russell, J. Li and J. W. Mayer, J. Appl. Phys. Vol. 70, p.5153(1991).
【30】李正中,“薄膜光學與鍍膜技術”,p.284(1997).
【31】J. Stoemenos, J. Mclntosh, N. A. Economou, Y. K. Bhatnager, P. A. Coxon, A. J. Lowe and M. G. Clark, Appl. Phys. Lett. Vol. 58, p.1196(1991).
【32】E. A. Guliants and W. A. Anderson, J. Appl. Phys. Vol. 89, p.4648(2001).
【33】H. E. Kissinger, Anal. Chem., Vol.29, p.1702(1957).
【34】S. Y. Yoon J. Y. Oh, C. O. Kim and J. Jang, J. Appl. Phys. Vol. 84, p.6463(1998).
【35】S. Y. Yoon, S. J. Park, K. H. Kim and J. Jang, Thin Solid Films, Vol.383, p.34(2001).
【36】Q. Z. Hong, S. Q. Hong, F. M. E. Harper, Thin Solid Films. Vol. 253, p.479(1994).
【37】C. Hayzelden and F. J. Grunthaner, J. Appl. Phys. Vol. 73, p.8279(1993).
【38】Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok and M. Wong, J. Appl. Phys. Vol. 84, p.194(1998).
【39】R. Barton, C. R. Davis, K. Rubin and G. Lim, Appl. Phys. Lett. Vol. 48 , p.1255(1986).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top