(3.235.139.152) 您好!臺灣時間:2021/05/08 18:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林家隆
研究生(外文):Jia Long Lin
論文名稱:氬氣/甲烷比對以電漿輔助化學氣相沉積法製備碳密封鍍層光纖性質的影響
論文名稱(外文):The effect of argon/methane ratios on the properties of hermetically carbon-coated optical fibers prepared by plasma enhanced chemical vapor deposition method
指導教授:薛顯宗
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:81
中文關鍵詞:光纖碳鍍層化學氣相沉積
相關次數:
  • 被引用被引用:1
  • 點閱點閱:118
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本文主要是以電漿輔助化學氣相沉積法製備碳密封鍍層光纖,研究不同的氬氣/甲烷混合比對於碳鍍層光纖性質的影響。在甲烷流量固定為 9sccm下,氬氣的流量分別為0、6、12、18、24、30、36、42與48sccm。並分別利用拉曼光譜儀、紫外/可見光光譜儀、奈米探針硬度測試儀、原子力顯微鏡與光學顯微鏡分析與觀察碳鍍層的微結構、光學性質、機械性質、表面粗度與表面形態,然後使用拉伸試驗機量測碳鍍層光纖的拉伸強度。最後將碳鍍層光纖浸泡於液態氮中進行低溫試驗,經由光學顯微鏡觀察碳鍍層光纖表面之微裂縫分佈情況。結果顯示,隨著氬氣流量的增加,當氬氣流量小於等於12 sccm時,拉曼的峰值強度比(ID/IG)是由0.726下降至0.686,而光學能隙值(Eg)則是由1.19 eV上升至1.23 eV,此時結構內的部分C-C sp3鍵結含量比會逐漸增多,其結構會較為混亂且薄膜的硬度會逐漸增加。然而,當氬氣流量大於等於18 sccm後,拉曼的峰值強度比會由0.715增加至0.782,而光學能隙值則會由1.20 eV增加至1.26 eV,其可發現到結構中的穩定鍵結比例會變多且結構之有序程度上升,此時結構的碳氫鍵結與微晶石墨的含量比會逐漸增多,其薄膜的硬度會逐漸變軟。此外,經由原子力顯微鏡的觀察得知,當氬氣流量為30 sccm時,有最小的表面粗度,其平均粗度值為0.10 nm。將碳鍍層光纖浸入液態氮一天後,經由光學顯微鏡觀察熱應力誘發的裂縫,發現氬氣流量介於18~36 sccm間,光纖表面上只有較少的熱應力誘發孔洞與剝離之現象。最後,碳鍍層光纖的拉伸強度我們可藉由拉伸試驗得知,當氬氣流量30 sccm時有最大的拉伸強度(369±29 MPa)。綜合實驗的結果發現,在氬氣/甲烷混合比為30/9,可得到最佳的碳密封鍍層光纖的表面形態,並達到保護玻璃光纖的效果。
The effect of argon/methane ratios on the properties of hermetically carbon-coated optical fibers prepared by plasma enhanced chemical vapor deposition method is investigated. The flow rate of methane gas is fixed at 9 sccm, and the flow rate of argon gas is set at 0, 6, 12, 18, 24, 30, 36, 42 and 48sccm, respectively. The microstructures, optical property, mechanical property, surface roughness and appearances of carbon coatings are observed and analyzed by Raman scattering spectrum, UV/Vis spectrophotometer, Nanoindentation, atomic force microscope and optical microscope, respectively. Then, the tensile strengths of carbon-coated optical fibers were measured by the tensile test. Finally, the carbon-coated optical fibers were immersed in the liquid nitrogen for one day and thermal stress induced cracks on the surface of carbon coatings were observed using optical microscope. The experimental results show that the peak intensity ratio (ID/IG) of the Raman decreases from 0.726 to 0.686 and the optical band gap increases from 1.19 to 1.23 eV, as the argon flow rate increases from 0 to 12 sccm. With increase in the C-C sp3 sites, the structure should approach to the disorder distribution and result in the film hardness harden. However, the peak intensity ratio of the Raman increases from 0.715 to 0.782 and the optical band gap increases from 1.20 to 1.26 eV, as the flow rate of argon exceeds 12 sccm. It is found that the carbon structure containing more stable bonds could result in the rising of the order degree of structure. Meanwhile, the quantities of C-H bonds and microcrystalline graphite gradually increase and result in the film hardness soften. In addition, the AFM measurement reveals that the surface roughness of carbon coating has the lowest value, about 0.1 nm, as the flow rate of argon is 30 sccm. After immersed the liquid nitrogen test for one day, the thermal stress induced voids on the surface of carbon coatings were observed using the optical microscope. It is found that the stress-induced voids and delamination are less observed in the outer surface of optical fiber with the flow rate of argon between 18~36 sccm. Finally, the tensile strength of carbon coating has the highest value (369±29 MPa) through the tensile test, when the flow rate of argon is 30 sccm. Based on the experimental results, the best hermetically carbon-coated optical fiber would be obtained, as argon/methane ratio is 30/9.
總目錄
中文摘要…………………………………………………………………………Ⅰ
英文摘要…………………………………………………………………………Ⅱ
總目錄……………………………………………………………………………Ⅲ
圖目錄……………………………………………………………………………Ⅴ
表目錄……………………………………………………………………………Ⅷ
第一章 緒論………………………………………………………………………1
第二章 實驗………………………………………………………………………9
2-1 試片準備與前處理…………………………………………………………10
2-2 碳密封鍍層光纖的製備……………………………………………………10
2-2(a)製備參數及情況…………………………………………………………10
2-2(b)射頻式電漿輔助化學氣相沉積系統之簡介……………………………13
2-3 碳鍍層的厚度量測…………………………………………………………16
2-4 碳鍍層的微結構特性分析…………………………………………………17
2-5 碳鍍層的光學性質量測……………………………………………………21
2-6 碳鍍層的硬度與楊氏模數量測……………………………………………23
2-7 碳鍍層的表面粗度量測……………………………………………………26
2-8 碳鍍層的拉伸強度量測……………………………………………………28
2-9 碳鍍層的表面形態觀察……………………………………………………29
2-10 低溫環境試驗……………………………………………………………30
第三章 結果與討論……………………………………………………………31
3-1氬氣對於基材自身偏壓的影響……………………………………………31
3-2氬氣對於碳鍍層厚度的影響………………………………………………34
3-3氬氣對於碳鍍層結構的影響………………………………………………38
3-4氬氣對於碳鍍層光學性質的影響…………………………………………45
3-5氬氣對於碳鍍層硬度與楊氏模數的影響…………………………………52
3-6氬氣對於碳鍍層表面形態的影響…………………………………………54
3-7氬氣對於碳鍍層光纖拉伸強度的影響……………………………………60
第四章 結論…………………………………………………………………62
參考文獻………………………………………………………………………64
誌謝……………………………………………………………………………71
作者簡介………………………………………………………………………72
參考文獻
[1]C. K. Kao, Optical Fiber System:Technology, Design, and Applications, McGraw-Hill, New York, 1982.
[2]W. A. Gambling, ”The Rise and Rise of Optical Fibers,” IEEE Journal on Selected Topics in Quantum Electronics, Vol. 6, No. 6, p. 1084, 2000.
[3]C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, “Strength and fatigue of silica optical fibers,” Journal of Lightwave Technology, Vol. 7, No.9, p. 1360, 1989.
[4]G. Keiser, Optical Fiber Communication, Second Edition, McGraw-Hill, New York, 1991.
[5]D. K. Mynbaev, L. L. Scheiner, Fiber-optic communications technology, Prentice Hall, New Jersey, 2001.
[6]吳曜東, 光纖原理與應用, 全華科技圖書公司, 1997.
[7]龔祖德, 光纖通訊技術, 全華科技圖書公司, 1997.
[8]A. H. Cherin, An Introduction to Optical Fibers, McGraw-Hill, New York, 1983.
[9]M. M. Bubnov, E. M. Dianov, S. L. Semjonov, “Maximum value of fatigue parameter n for hermetically coated silica glass fibers”, Tech. Dig. Optical Fiber Communication Conf., paper ThF2, 1992.
[10]K. E. Lu, G. S. Glaesemann, R. V. Vandewoestine, and G. Kar, “Recent Development in Hermetically Coated Optical Fiber”, Journal of Lightwave Technology Vol. 6, No. 2, p. 240, 1988.
[11]S. Aisenberg, “Properties and Application of Diamond-like Carbon Films”, Journal of Vacuum Science and Technology, Vol. 2, No. 2, p. 369, 1984.
[12]J. P. Powers, An Introduction to Fiber Optic Systems, Aksen Associates, Boston, 1993.
[13]C. R. Kurkjian, H. H. Yuce, and M. J. Matthewson, “Room temperature strength degradation of optical fibers,” in Optical network engineering and integrity, The International Society for Optical Engineering, Proc. SPIE 2611, p. 34, 1996.
[14]G. M. Camilo, “Polymer coating degradation and dry technique in fiber optics,” in Optical fiber reliability and testing, The International Society for Optical Engineering, Proc. SPIE 3848, p. 55, 1999.
[15]J. L. Armstrong, M. J. Matthewson, M. G. Juarez and C. Y. Chou, “The effect of the diffusion rates of optical fiber polymer coatings on aging,” Proc. SPIE, 3848, p. 62, 1999.
[16]S. T Shiue and H. Ouyang, “Effect of polymeric coatings on the static fatigue of double-coated optical fibers,” Journal of Applied Physics, Vol. 90, p. 5759, 2001.
[17]M. J. Matthewson, Fiber optics reliability and testing, Optical science and technology, Boston, 1993.
[18]C. A. Taylor, W. K.S. Chiu, “Characterization of CVD carbon films for hermetic optical fiber coatings”, Surface and Coatings Technology, Vol. 168, p. 1, 2003.
[19]D. P. Dowling, K. Donnelly, T. P. O'Brien, A. O'Leary, T. C. Kelly, and W. Neuberger, “Application of Diamond-like Carbon Films as Hermetic Coatings on Optical Fibers”, Diamond and Related Materials, Vol. 5, p. 492, 1996.
[20]Y. Katsuyama, N. Yoshizawa, and T. Yashiro, “Field Evaluation Result on Hermetically Coated Optical Fiber Cables for Practical Application”, Journal of Lightwave Technology, Vol. 9, p. 1041, 1991.
[21]C. R. Wüthrich, C. A. P. Muller, G. R. Fox, H. G. Limberger, “High modulation efficiency using optical fiber coated with ZnO piezoelectric actuator”, 1997 International Conference on Solid-State Sensors and Actuators, Chicago, June 16-19, 1997.
[22]K. Teii, “Structure changes in a-C:H films in inductive CH4/Ar plasma deposition”, Thin Solid Films, Vol. 333, p. 103, 1998.
[23]E. Nasser, Fundamentals of Gaseous Ionization and Plasma Electronics, Wiley, New York, 1971.
[24]A. Inspektor, U. Carmi, R. Avni, N. Nickel, Plasma Chemistry Plasma Process, Vol. 1, p. 377, 1981.
[25]G. Cicala, P. Bruno, A.M. Losacco, G. Mattei, “Plasma deposition of hydrogenated diamond-like carbon films from CH4-Ar mixtures”, Surface and Coatings Technology, Vol. 180-181, p. 222, 2004.
[26]Z. Sun, C. H. Lin, Y. L. Lee, J. R. Shi, B. K. Tay, X. Shi, “Effects on the deposition and mechanical properties of diamond-like carbon film using different inert gases in methane plasma”, Thin Solid Films, Vol. 377-378, p. 198, 2000.
[27]A. Raveh, J. E. Klemberg-Sapieha, L. Martinu, M. R. Wertheimer, Journal of Vacuum Science Technology, Vol. 10, p. 1723, 1992.
[28]C. Riccardi, R. Barni, M. Fontanesi, P. Tosi, “Gaseous precursors of diamond-like carbon films in CH4/Ar plasmas”, Chemical Physics Letters, Vol. 329, p. 66, 2000.
[29]N. Mutsukura, K. Miyatani, “Deposition of diamond-like carbon film in CH4-He r.f. plasma”, Diamond and Related Materials, Vol. 4, p. 342, 1995.
[30]A. Grill et al., Cold Plasma in Matericals Fabrication, New York: IEEE Press, p.56, 1994.
[31]L. G. Jacobsohn, G. Capote, N. C. Cruz, A. R. Zanatta, F. L. Freire Jr., “Plasma deposition of amorphous carbon films from CH4 atmospheres highly diluted in Ar”, Thin Solid Films, Vol. 419, p. 46, 2002.
[32]E. Tomasella, C. Meunier, S. Mikhailov, “a-C:H thin deposited by radio-frequency plasma: influence of gas composition on structure, optical properties and stress levels”, Surface and Coatings Technology, Vol. 141, p. 286, 2001.
[33]M. Lejeune, M. Benlahsen,R. Bouzerar, “Stress and structure relaxation in hydrogenated amorphous carbon films”, Applied Physics Letters, Vol. 84, p. 344, 2004.
[34]A. von Keudell, M. Meier, C. Hopf, “Growth mechanism of amorphous hydrogenated carbon”, Diamond and Related Materials, Vol. 11, p. 969, 2002.
[35]J. Robertson, “Improving the properties of diamond-like carbon”, Diamond and Related Materials, Vol. 12, p. 79, 2003.
[36]C. Hopf, A von Keudell, W, Jacob, “The influence of hydrogen ion bombardment on plasma-assisted hydrocarbon film growth”, Diamond and Related Materials, Vol. 12, p. 85, 2003.
[37]J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, “Raman spectroscopy on amorphous carbon films”, Journal of Applied Physics, Vol. 80, p. 440, 1996.
[38]A. C. Ferrari, J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous and diamond-like carbon”, Physical Review B, Vol. 64, p. 075414-1, 2001.
[39]A. C. Ferrari, J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, Physical Review B, Vol. 61, p. 14095, 2000.
[40]M. A. Tamor, W. C. Vassell, “Raman “fingerprinting” of amorphous varbon films”, Journal of Applied Physics, Vol. 76, p. 3823, 1994.
[41]R. O. Dillon, J. A. Woollam, V. Katkanant, “Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films”, Physical Review B, Vol. 29, p. 3482, 1984.
[42]T. G. McCauley, D. M. Gruen, and A. R. Krauss, “Temperture dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma”, Applied Physics Letters, Vol. 73, p. 1646, 1998.
[43]D. M. Gruen, C. D. Zuiker, and A. R. Krauss, “Carbon dimmer, C2 as a growth species for diamond films from methane/argon/hydrogen microwave plasmas”, Journal of Vacuum Science Technology A, Vol. 13, p. 1628, 1995.
[44]M. A. Tamor, J. A. Haire, C. H. Wu, K. C. Hass, “Correlation of the optical gaps and Raman spectra of hydrogenated amorphous carbon films”, Applied Physics Letters, Vol. 54, p. 123, 1989.
[45]M. Weiler, S. Sattel, T. Giessen, K. Jung, and H. Ehrhardt, V. S. Veerasamy and J. Robertson, “Preparation and properties of highly tetrahedral hydrogenated amorphous carbon”, Physical Review B, Vol. 53, p. 1594, 1996.
[46]P. Bruno, G. Cicala, A. M. Losacco, P. Decuzzi, “Mechanical properties of PECVD hydrogenated amorphous carbon coatings via nanoindentation and nanoscratching techniques”, Surface and Coatings Technology, Vol. 180-181, p. 259, 2004.
[47]M. Lejeune, R. Bouzerar, M. Benlahsen, O. Durand-Drouhin, A. Zeinert, “Instability of hydrogenated amorphous carbon films towards defect creation at high disorder”, Applied Physics Letters, Vol. 79, p. 3443, 2001.
[48]D. Beeman*, J. Silverman, R. Lynds, and M. R. Anderson, “Modeling studies of amorphous carbon”, Physical Review B, Vol. 30, p. 870, 1984.
[49]J. Robertson, E. P. O’Reilly, “Electronic and atomic structure of amorphous carbon”, Physical Review B, Vol. 35, p. 2946, 1987.
[50]J. Robertson, “Electronic processes in hydrogenated amorphous carbon”, Journal of Non-Crystalline Solids, Vol. 198-200, p. 615, 1996
[51]Rusli, J. Robertson, G. A. J. Amaratunga, “Photoluminescence behavior of hydrogenated amorphous carbon”, Journal of Applied Physics, Vol. 80, p. 2998, 1996.
[52]Y. Hayashi, K. Hagimoto, H. Ebisu, M. K. Kalaga, T. Soga, M. Umeno, T. Jimbo, “Effect of Radio Frequency Power on the Properties of Hydrogenated Amorphous Carbon Films Grown by Radio Frequency Plasma-Enhanced Chemical Vapor Deposition”, Japen Journal Applied Physics, Vol.39, p. 4088, 2000.
[53]J. Tauc, “Optical properties and electronic structure of amorphous germanium”, Physical Status Solid, Vol. 15, p. 627, 1966.
[54]C.W. Chen, J. Robertson, “Nature of disorder and localization in amorphous carbon”, Journal of Non-Crystalline Solids, Vol. 227-230, pp. 798, 1998
[55]J. Robertson, “Electronic and atomic structure of diamond-like carbon”, Semiconductor. Science Technology, Vol. 18, p. S12, 2003.
[56]林宏謙, 以電漿輔助化學氣相沈積法製備碳密封鍍層光纖:不同氫氣/甲烷混合比對碳薄膜光學性質的影響, 逢甲大學材料系碩士論文, 2004.
[57]N. M. J. Conway, A. llie, J. Robertson, W. L. Miline and A. Tagliaferro, “Reduction in defect density by annealing in hydrogenated tetrahedral amorphous carbon”, Applied Physics Letters, Vol. 73, p. 2456, 1998.
[58]B. Marchon, J. Gui, K. Grannen, G. C. Rauch, S. R. P. Silva, J. Robertson, “Photoluminescence and Raman spectroscopy in hydrogenated carbon films”, IEEE Transaction on Magnetics, Vol. 33, p. 3184, 1997.
[59]T. Yamamoto, T. Toyoguchi, F. Honda, “Ultrathin amorphous C:H overcoats by PCVD on thin film media”, IEEE Transaction on Magnetics, Vol. 36, p. 115, 2000.
[60]G. Adamopoulos, J. Robertson, N. A. Morrison, C. Godet, “Hydrogen content estimation of hydrogenated amorphous carbon by visible Raman cpectroscopy”, Journal of Applied Physics, Vol. 96, p. 6348, 2004.
[61]F. C. Marques, R.G. Lacerda, G.Y. Odo, C.M. Lepienski, “On the hardness of a-C:H films prepared by methane plasma decomposition”, Thin Solid Films, Vol. 332, p. 113, 1998.
[62]J. Robertson, “Mechanical properties and coordination of amorphous carbons”, Physical Review Letters, Vol. 68, p. 220, 1992.
[63]L. G. Jacobsohn, F. L. Freire, Jr., “Influence of the plasma pressure on the microstructure and on the optical and mechanical properties of amorphous carbon films deposited by direct current magnetron sputtering”, Journal of Vacuum Science Technology A, Vol. 17, p. 12841, 1999.
[64]H. Ryssel, I. Ruge, Ion Implantation, Wiley, New York, p. 16, 1976.
[65]S. T. Shiue, H. H. Hsiao, T. Y. Shen, H. C. Lin, K. M. Lin, “Mechanical strength and thermally induced stress voids of carbon-coated optical fibers prepared by plasma enhanced chemical vapor deposition method with different hydrogen/methane ratio”, Thin Solid Film, Vol. 483, p. 140, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔