(3.235.108.188) 您好!臺灣時間:2021/02/28 00:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃鵲容
研究生(外文):Chueh-Jung Huang
論文名稱:銀-聚醋酸乙烯酯奈米金屬螯合物之合成與特性分析
論文名稱(外文):Synthesis and Characterization of Silver-Poly(vinyl acetate) Metal Chelate Nanocomposites
指導教授:薛富盛薛富盛引用關係
指導教授(外文):Fuh-Sheng Shieu
學位類別:博士
校院名稱:國立中興大學
系所名稱:材料工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:120
中文關鍵詞:聚醋酸乙烯酯銀金屬螯合物無機/有機奈米複合物銀微胞導電薄膜
外文關鍵詞:poly(vinyl acetate)silver nitrate (AgNO3)metal chelate polymersilver micelleelectrical conductivitynanocomposites
相關次數:
  • 被引用被引用:2
  • 點閱點閱:313
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
無機/有機奈米複合物因同時擁有有機材料和無機材料的優點,所以近年來引起廣泛的研究興趣。無機/有機奈米複合物的合成,目前已有眾多的技術和方法被研究和開發,其中的化學法因可方便的利用化學反應增加有機相和無機相之間的化學鍵結、有效改善兩相之間不相容的現象,故而逐漸受到重視。本研究利用商業化聚醋酸乙烯酯(PVAc)為基材和硝酸銀(AgNO3)金屬前駆塩進行螯合反應,以化學法合成金屬銀/聚醋酸乙烯酯奈米複合物。
本研究首先探討聚醋酸乙烯酯-硝酸銀(PVAc-AgNO3)混成系統中的反應機構,包括聚合体基材和硝酸銀金屬前駆塩之間的螯合反應以及銀前駆塩的還原反應,並且探討生成的金屬銀對聚醋酸乙烯酯結構的影響。本研究由X光繞射(XRD)、霍式轉換紅外光譜(FTIR)、核磁共振(NMR)、場發射掃瞄式電子顯微鏡(FESEM)和光電子能譜(XPS)等儀器分析的實驗結果發現,硝酸銀金屬前駆塩的銀離子可以和聚合体鏈上官能基的氧(例如酯基氧C-O-C=O,醇基氧C-OH和羰基氧O-C=O等)進行配位反應而生成聚醋酸乙烯酯-硝酸銀金屬螯合物(MCP),並且這些與聚合体鏈的官能基形成螯合鍵的銀離子(Ag(I)),在無任何額外還原劑的添加之下,可經由甲酸溶劑的作用而緩慢的進行原位(in-situ)還原反應,而於系統中被還原成金屬銀(Ag(0))奈米顆粒。實驗結果亦顯示聚醋酸乙烯酯基材的結構會因這些金屬銀的生成而發生變化,生成的金屬銀可以催化聚醋酸乙烯酯分子鏈上部份的酯基發生水解反應,因而使得聚合体結構由原來的PVAc結構轉變成PVOH/PVAc結構。
本研究為了進一步探討金屬螯合物系統中金屬銀與聚合体分子之間的作用關係,本研究利用溶解度減少的原理,以混合的溶劑/非溶劑溶液配製金屬螯合物的微胞溶液,並且利用穿透式電子顯微鏡(TEM)觀察所形成微胞的形貌。實驗結果顯示聚醋酸乙烯酯-硝酸銀金屬螯合物的微胞是一種含銀微胞,並且微胞的形貌隨系統中硝酸銀的濃度變化而改變。當硝酸銀濃度小於0.5 wt%,則銀微胞呈現一種外部為銀殼(Ag-corona)的形貌,而當硝酸銀濃度介於1.0至2.0 wt%之間,則微胞除了呈現外銀殼(Ag-corona)的形貌之外,另出現一種中央為銀核(Ag-core)的微胞。這些結果可以說明聚醋酸乙烯酯-硝酸銀金屬螯合物系統中被還原的金屬銀奈米顆粒與聚合体分子鏈之間存在著強的作用力,以至於聚合鏈在混合溶液中依自我排列(self-assembly)能力形成微胞的同時,金屬銀奈米粒子亦能依附於聚合体鏈上隨著聚合体鏈共同形成銀微胞。
本研究亦利用聚醋酸乙烯酯-硝酸銀金屬螯合物製備金屬化的導電性複合薄膜。本研究以聚對苯二甲酸乙二酯(PET)為基板,將聚醋酸乙烯酯-硝酸銀金屬螯合物溶液塗佈上方後,於80oC烘箱中乾燥之,製得MCP/PET複合薄膜。然後將此MCP/PET複合薄膜浸入硼氫化鈉(NaBH4)水溶液中進行還原反應而得到金屬化的 RMCP/PET複合薄膜。實驗結果顯示,MCP/PET和RMCP/PET複合薄膜的導電度正比於系統中硝酸銀的濃度。對相同硝酸銀濃度的MCP/PET和RMCP/PET薄膜而言,RMCP/PET薄膜的片電阻(Rs)大約低於MCP/PET薄膜104左右。並且經由電磁波遮蔽試驗的結果顯示,硝酸銀濃度為10 wt%的RMCP/PET複合薄膜其電磁波遮蔽效能可達10 dB以上,若硝酸銀濃度增加至30 wt%,則其RMCP/PET複合薄膜的電磁波遮蔽效能更可高達30 dB。
A new chemical route for the synthesis of metal-polymer nanocomposite has been developed. Commercial poly(vinylacetate) (PVAc) was used as polymer matrix, silver nanoparticles were generated by reduction of silver nitrate (AgNO3) in PVAc matrix, and a PVAc-AgNO3 metal chelate polymer (MCP) containing both the Ag(0) crystal and Ag(I) complex ions was obtained. The reaction mechanism of the MCP system, including the coordination of polymer-Ag(I) complexes, the reduction of Ag(I) ions and the hydrolysis of PVAc chains were investigated. The results showed that the Ag(I) cations of AgNO3 were coordinated with polymer functional groups to form polymer-Ag(I) complexes, subsequently, some of the complexed Ag(I) ions were in-situ reduced to generate Ag(0) metal in MCP system, and the structure of PVAc chains was partially hydrolyzed to form an amphiphilic PVOH/PVAc structure under the catalytic effect of reduced Ag(0) metal.
To evaluate the interaction of the PVOH/PVAc chains with the reduced Ag(0), an inducing method for preparing MCP micelle solution with the use of mixed solvent/non-solvent and the morphological characterization of the generated Ag-micelles were investigated. The studies showed that a long-lasting MCP solution with stable Ag-micelles might be prepared by using a H2O/HCOOH solvent with the right composition. The TEM results showed that when the AgNO3 concentration of MCP was below 0.5 wt%, the Ag-micelles displayed a variety of Ag-corona structure, but as the AgNO3 concentration was increased to 1.0-2.0 wt%, micelles that had Ag-solid embedded in the micellar core were observed.
The MCP materials that with nanosized Ag(0) and complexed Ag(I) contained in the PVAc matrix may be chemically modified by reducing agents to improve their surface metallization and electric conductivity. To evaluate the influence of such metallization upon the electric conductivity of these MCP materials, the polyethylene terephthalate (PET) was used as substrates to prepare the MCP/PET films. The studies showed that the sheet resistance (Rs) of the RMCP/PET films, which were treated with a sodium borohydride (NaBH4) aqueous solution, was at least 4 orders of magnitude lower than that of the MCP/PET films. It was also found that the electric conductivity of both MCP/PET and RMCP/PET films increased with increasing AgNO3 content. These metallized RMCP/PET films also exhibited high electromagnetic interference shielding effectiveness (EMI/SE) that is proportional to the electric conductivity.
摘要………………………………………………………………I
ABSTRACT…………………………………………………….II
TABLE OF CONTENTS……………………………………...VI
FIGURE CAPTION……………………………………………X
LIST OF TABLES…………………………………………...XIV

Chapter 1…………………………………………………..……1
Introduction………………………………………………….....1
1.1 Research object and approach……………………………………….…1
1.2 References...…………………………………………………….….…..6
Chapter 2……………………………………………………….12
Theoretical basis and background……………………………12
2.1 Introduction and classification of metal-polymer
nanocomposite synthesis techniques………………………….……..12
2.2 Chemical reactivity and characterization of metal
chelate polymer (MCP) system……………………………..……….15
2.3 The fabrication of metal containing assembles
with polymer…………………………………………………...…….18
2.4 References...……………………………………………………..……21
Chapter 3………………………………………………..……..35
Synthesis and Characterization of PVAc-AgNO3
Metal Chelate Polymer………………………………..………35
3.1 Introduction…………………………………………………………...35
3.2 Experimental………………………………………………………….36
3.2.1 Synthesis of metal chelate polymer (MCP) of
PVAc-AgNO3 system………………………………………………….…...36
3.2.2 Instruments……………………………………………………….…………36
3.3 Discussion…………………………………………………………….38
3.3.1 Mechanism of Ag(0) metal generation………………………………….….38
3.3.2 Hydrolysis of PVAc chains…………………………………………….…....41
3.3.3 NMR analyses of pure PVAc and MCP samples………………….….…….43
3.3.4 XPS analysis and reaction mechanism of MCP system………….…...51
3.3.5 Viscosity measurements…………………………………………….….…..62
3.3.6 Microstructure analysis…………………………………………….……....64
3.4 Conclusions……………………………………………………..…….66
3.5 References……………………………………………………….……68
Chapter 4………………………………………….………..….69
Micellization and Morphological Characterization
of Ag-micelles Prepared by PVAc-AgNO3 MCP……….…….70
4.1 Introduction………………………………………………………...…70
4.2 Experimental………………………………………………………….71
4.2.1 Preparation of MCP raw solution with variant AgNO3
concentration for MCP micelle solutions…………………………….…….71
4.2.2 Preparation of dilute PVAc/HCOOH and MCP/HCOOH
solutions for CWC measurement……………………………………….….72
4.2.3 Preparation of the MCP micelle solutions…………………73
4.2.4 Micellization of formic acid solution of the MCP0.5
in p-xylene solvent………………………………………………………….74
4.3 Discussion…………………………………………………….………75
4.3.1 The critical water concentration (CWC) and the
water concentration range (WCR)………………………………………….75
4.3.2 The morphological features of Ag-micelles……………….…81
4.3.3 Model for micelle formation………………………………………………..89
4.3.4 Interaction of polymer-Ag particles in the MCP micelle…….…91
4.3.5 Preparation of Ag-micelles by micellization of formic acid
solution of Ag(0)-polymer using p-xylene solvent………………..….……93
4.4 Conclusions……………………………………………………..…….95
4.5 References…………………………………………………….………96
Chapter 5……………………………………………………….98
Preparation and Electrical Properties of Metallized MCP/PET films………………………………………….…….98
5.1 Introduction………………………………………………...…………98
5.2 Experimental…………………………………...…………………….99
5.2.1 Preparation of the MCP/PET and RMCP/PET films……...99
5.2.2 Instruments………………………………………………………..….……100
5.3 Results and Discussion………………………………………..….….102
5.3.1 UV/VIS spectrometry……………………………………………………..102
5.3.2 Surface morphology……………………………………………………….107
5.3.3 X-ray diffraction analysis………………………………………………….108
5.3.4 Electric properties………………………………………………………….110
5.4 Conclusions…………………………………………………….……115
5.5 References…………………………………………….……………..116
Chapter 6………………...……………………………………118
Summary and Conclusions…………………...……………...118



















FIGURE CAPTION

Figure 1.1 Schematic representation of research plan…………………………………..5

Figure 3.1 XRD spectra of (a) PVAc polymer, (b) MCP0.3, (c) MCP0.5,
(d) MCP1.0, and (e) MCP2.0 films………………………………………...40

Figure 3.2 XRD spectra of PVA/2.0 wt% AgNO3 MCP films: (a) without
HCOOH solvent, (b) with HCOOH solvent added………………………...41

Figure 3.3 FTIR spectra of (a) PVAc polymer, (b) MCP0.5, (c) MCP1.0,
and (d)MCP2.0 films………………………………………………….……42

Figure 3.4 13C-NMR spectra of (a) pure PVAc, and (b) MCP0.5 samples
in DMSO………………………………………………………………..…..44

Figure 3.5 1H-NMR spectra of (a) pure PVAc, and (b) MCP0.5 samples
in DMSO……………………………………………………………...…….47

Figure 3.6 The PVOH content of MCP system with various AgNO3
concentration calculated from 1H-NMR spectra...………………..…..……48

Figure 3.7 PVAc-AgNO3/THF system : (a) 13C- and (b) 1H-NMR
spectra………………………………………………………………………49

Figure 3.8 PVA product : (a) 13C- and (b) 1H-NMR spectra……………………………52

Figure 3.9 XPS survey spectra of (a) PVAc polymer, (b) MCP0.5, and
(c) MCP2.0 films……………………………………………………...……53

Figure 3.10 C1s core-level spectra of (a) PVAc polymer, (b) MCP 0.5,
(c) MCP 1.0 and (d) MCP2.0 films with fitted peaks……………...……...55

Figure 3.11 O1s core-level spectra of (a) PVAc polymer, (b) MCP 0.5,
(c) MCP 1.0 and (d) MCP2.0 films with fitted peaks………….…………58

Figure 3.12 The PVOH content of MCP system with various AgNO3
concentration calculated from O1s core-level peaks………………………59

Figure 3.13 Change in intrinsic viscosity of MCP sample with increasing
AgNO3 concentration in benzene at 30℃…………………….……….….63

Figure 3.14 FESEM images of film surfaces: (a) PVAc polymer, (b) MCP 0.3,
(c) MCP 1.0, and (d) MCP2.0…………………………………………..…65

Figure 3.15 TEM images of dried specimen of (a) MCP0.3 sample added
with HCOOH/H2O mixed solvent, cast on a formval/carbon-
coated copper grid, (b) agnified image of (a) and SAD pattern,
and (c) illustrated of (b)………………………………………….….…….66

Figure 4.1 Effect of water content (ml) on the transmittance of the dilute
PVAc/HCOOH solution: ▲for 1.0 wt% PVAc/99.0 wt% HCOOH,
● for 2.0 wt% PVAc/98.0 wt% HCOOH, and ■ for 3.0 wt%
PVAc/97.0 wt% HCOOH………………………………………………....76

Figure 4.2 Effect of water content (ml) on the transmittance of the dilute
MCP/HCOOH solution: ▲ for 1.0 wt% MCP0.5/99.0 wt% HCOOH,
● for 2.0 wt% MCP0.5/98.0 wt% HCOOH, and ■ for 3.0 wt% MCP0.5/97.0 wt% HCOOH………………………………………………77

Figure 4.3 A plot of water concentration range (WCR) vs polymer composition:
--- for PVAc/HCOOH and — for MCP0.5/HCOOH………………………79

Figure 4.4 TEM images of dried specimens of homo-PVAc raw solution
added with HCOOH/H2O mixed solvent, cast on a formval/
carbon-coated copper grid. (a) 3.0 wt% PVAc/75 wt% HCOOH/
22 wt% H2O with water content below the CWC range; (b)
3.0 wt% PVAc/50 wt% HCOOH/47 wt% H2O with water content
exceeded the WCR; (c) Magnified image of (b); and (d) the particle
size distribution of (b)…………………………………………………..…84

Figure 4.5 TEM images of dried specimens of MCP micelle solutions, cast on a
formval/carbon-coated copper grid, and the paticle size distribution.
(a) MCP0.1; (b) MCP0.5; and (c) MCP2.0……………………………….85

Figure 4.6 TEM images of dried specimens of MCP micelle solutions,
cast on a formval/carbon-coated copper grid. MCP0.1: (a)
vesicle micelle; MCP0.3: (b) vesicle micelle and (c) ring-like micelle; MCP0.5: (d) ring-like micelles, (e) ring-like micelle, (f) star-like micelle
and (g) the SAD pattern of the polycrystalline Ag (0) in (f); MCP1.0: (h) sphere micelle, and (i) spherical micelle deformation; MCP2.0: (j)
sphere micelle and (k) solid-core micelle………………………………….86

Figure 4.7 TEM images of dried specimens of AgNO3/HCOOH/H2O systems,
cast on a formval/carbon-coated copper grid. (a) 0.1 wt%AgNO3;
(b) 0.5 wt% AgNO3; and (c) 1.0 wt% AgNO3……………………..……….88

Figure 4.8 Schematic illustration for the model of the MCP micelle formation……….90

Figure 4.9 TEM images of dried specimens of Ag (0)-polymer/HCOOH solution
added with 10 ml of p-xylene, cast on a formval/carbon-coated copper
grid; (a) in the p-xylene phase; (b) magnified image of (a); (c) in the HCOOH phase; and (d) magnified image of (c)……………………..……..94

Figure 5.1 A schematic diagram of the setup for electromagnetic shielding
effectiveness measurement……………………………………………….102

Figure 5.2 UV/VIS absorption spectra of the various PVAc and
AgNO3-containing solutions: (a) PVAc-AgNO3/HCOOH, (b)
AgNO3/H2O, (c) AgNO3/HCOOH, (d) PVAc/HCOOH……………………104

Figure 5.3 UV/VIS absorption spectra of the MCP films: (a) MCP3.0 /PET
and (b) MCP5.0/PET……………………………………………………..105

Figure 5.4 Cross-sectional SEM micrographs of the RMCP5.0/PET films: (a)
SEI mode and (b) BEI mode…………………………………….…….….108

Figure 5.5 XRD spectra of the (a) PET, (b) PVAc/PET, (c) MCP5.0/PET, and
(d) RMCP5.0/PET films…………………………………………….….….110
Figure 5.6 Variation of the sheet resistance (Rs) of the MCP/PET films as a
function of the AgNO3 content…………………………………………...111

Figure 5.7 Variation of the sheet resistance (Rs) of the RMCP/PET films as a
function of the AgNO3 content…………………………………….……...113

Figure 5.8 Variation of the electromagnetic interference shielding effectiveness
(EMI/SE) of the RMCP/PET films as a function of frequency………...…114















LIST OF TABLES

Table 3.1 The AgNO3 composition and measured intrinsic viscosities of
pure PVAc and MCP product………………………………………………..37
Table 3.2 13C-NMR spectra for pure PVAc and Ag(0)-polymer……………………….45
Table 3.3 1H-NMR spectra for pure PVAc and Ag(0)-polymer………………………..50
Table 3.4 C1s binding energy (ev)a and relative peak area (%) of the fitted
peaks of PVAc and MCP films………………………………………………54
Table 3.5 O1s binding energy (eV)a and relative peak area (%) of the fitted
peaks of PVAc and MCP films………………………………………………61
Table 4.1 Composition of MCP raw solution and MCP micelle solution………...……72
Table 4.2 The water concentration range (WCR) and the composition of
the dilute PVAc /HCOOH and MCP0.5/HCOOH solutions…………………80
Table 4.3 The mean diameter of Ag-corona micelle and Ag-core micelle
prepared from MCP micelle solution…………………………………...……92
Table 5.1 UV/VIS spectroscopic data of various AgNO3-containing solutions
And PVAc-AgNO3 samples………………………………………………..106
1. J. Ramos, A. Millán and F. Palacio, Production of magnetic nanoparticles in a polyvinylpyridine matrix. Polymer 41 (2000) 8461.
2. Z.-K. Zhu, J. Yin, F. Cao, X. Shang and Q. Lu, Photosensitive Polyimide/Silica Hybrids. Adv. Mater. 12(14) (2000) 1055.
3. M. Mukherjee, A. Datta and D. Chakravorty, Electrical resistivity of nanocrystalline PbS grown in a polymer matrix. Appl. Phys. Lett. 64 (1994) 1159.
4. D. W. Hatchett, M. Josowicz, J. Janata and D. R. Baer, Electrochemical Formation of Au Clusters in Polyaniline. Chem. Mater. 11(10) (1999) 2989.
5. M. Johansson and L. G. Ekedahl, The water formation rate on platinum and palladium as a function of the surface hydrogen pressure from three-dimensional hydrogen pressure distributions. Appl. Surf. Sci. 180 (2001) 27.
6. Y. Wang and N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95(2) (1991) 525.
7. M. Okamoto, S. Morita, H. Taguchi, Y. H. Kim, T. Kotaka and H. Tateyama, Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization. Polymer 41 (2000) 3887.
8. T. -K. Chen, Y. -I. Tien and K. -H. Wei, Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer 41 (2000) 1345.
9. H. Behar-Levy, G. E. Shter, G. S. Grader and D. Avnir, Entrapment of Organic Molecules within Metals. 2. Polymers in Silver. Chem. Mater. 16(16) ( 2004) 3197.
10. H. Behar-Levy and D. Avnir, Entrapment of Organic Molecules within Metals: Dyes in Silver. Chem. Mater. 14(4) (2002) 1736.
11. V. Zaporojtchenko, K. Behnke, A. Thran, T. Strunskus and F. Faupel, Condensation coefficients and initial stages of growth for noble metals deposited onto chemically different polymer surfaces. Appl. Surf. Sci. 355 (1999) 144.
12. G. Xu, M. Tazawa, P. Jin, S. Nakao and K. Yoshimura, Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films. Appl. Phys. Lett. 82 (2003) 3811.
13. U. Kreibig and L. Genzel, Optical absorption of small metallic particles. Surf. Sci. 156 (1985) 678.
14. M. Xu and M. J. Dignam, A new approach to the surface plasma resonance of small metal particles. J. Chem. Phys. 95 (1991) 525.
15. A. Biswas, D. K. Avasthi, D. Fink, J. Kanzow, U. Schürmann, S. J. Ding, O. C. Aktas and U. Saeed, Nanoparticle architecture in carbonaceous matrix upon swift heavy ion irradiation of polymer–metal nanocomposites. Nucl. Instr. And Meth. B 217 (2004) 39.
16. E. Snoeks, A. Blaaderen, T. Dillen, C. M. Kats, K. Velikov, M. L. Brongersma, Colloidal assemblies modified by ion irradiation. Nucl. Instr. And Meth. B 178 (2001) 62.
17. T. Teranishi, A. Sugawara, T. Shimizu and M. Miyake, Planar Array of 1D Gold Nanoparticles on Ridge-and-Valley Structured Carbon. J. Am. Chem. Soc. 124(16) (2002) 4210.
18. K. Akamatsu, S. Takei, M. Mizuhata, A. Kajinami, S. Deki, S. Takeoka, M. Fujii, S. Hayashi and K. Yamamoto, Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles. Thin Solid Films 369 (2000) 55.
19. L. Martin , H. Biederman and J. Zemek, Metal doped polymer films prepared by simultaneous plasma polymerization of tetrafluoromethane and evaporation of gold. Vacuum 35 (1985) 171.
20. K. Esumi, T. Tano and K. Meguro, Preparation of organo palladium particles from thermal decomposition of its organic complex in organic solvents. Langmuir 5(1) (1989) 268.
21. R. Lamber, S. Wetjen, G. Schulz-Ekloff, A. Baalmann, Metal Clusters in Plasma Polymer Matrixes: Gold Clusters. J. Phys. Chem. 99(38) (1995) 13834.
22. M. Moffitt, L. McMahon, V. Pessel, A. Eisenberg, Size Control of Nanoparticles in Semiconductor-Polymer Composites. 2. Control via Sizes of Spherical Ionic Microdomains in Styrene-Based Diblock Ionomers. Chem. Mater. 7(6) (1995) 1185.
23. A. Biswas, O. C. Aktas, J. Kanzow, U. Saeed, T. Strunskus, V. Zaporojtchenko and F. Faupel, Polymer–metal optical nanocomposites with tunable particle plasmon resonance prepared by vapor phase co-deposition. Mater. Lett. 58 (2004) 1530.
24. S. Shukla, S. Seal, Z. Rahaman and K. Scammon, Electroless copper coating of cenospheres using silver nitrate activator. Mater. Lett. 57 (2002) 151.
25. M. C. Zhang, E. T. Kang, K. G. Neoh and K. L. Tan, Electroless plating of copper and nickel on surface-modified poly(terafluoro ethylene ) films. J. Electrochem. Soc. 148(2) (2001) c71.
26. M. Krasnowski, V.I. Fadeeva and H. Matyja, Nanocomposites produced by mechanical alloying of the Al50-Fe25-Ti25 powders mixture. Nanostruct. Mater. 12 (1999) 455.
27. J. J. Jean and C. S. Yen, Studies of silver nanoparticles by laser ablation method. J. Chinese Soc. 45 (1998) 721.
28. A. M. Morales and C. M. Lieber, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science 279 (1998) 208.
29. G. Cardenas-Trivino, K. J. Klabunde and E. B. Dale, Living colloidal palladium in nonaqueous solvents. Formation, stability, and film-forming properties. Clustering of metal atoms in organic media. Langmuir 3(6) (1987) 986.
30. M. S. Sibbald, G. Chumanov and T. M. Cotton, Reduction of Cytochrome c by Halide-Modified, Laser-Ablated Silver Colloids. J. Phys. Chem. 100(11) (1996) 4672.
31. F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow and H. Sawabe, Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant. J. Phys. Chem. B. 105(22) (2001) 5114.
32. P. Saurel, On the Demonstration of the Phase Rule. J. Phys. Chem. 3(2) (1999) 69.
33. K. Akamatsu and S. Deki, Characterization and optical properties of gold nanoparticles dispersed in nylon 11 thin films. J. Mater. Chem. 7(9) (1997) 1773.
34. L. L. Beecroft and C. K. Ober, Nanocomposite Materials for Optical Applications. Chem. Mater. 9(6) (1997) 1302.
35. Y. Matsuo, K. Tahara and Y. Sugie, Structure and thermal properties of poly(ethylene oxide)-intercalated graphite oxide. Carbon 35 (1997) 113.
36. Y. Matsuo, K. Hatase and Y. Sugie, Preparation and Characterization of Poly(vinyl alcohol)- and Cu(OH)2-Poly(vinyl alcohol)-Intercalated Graphite Oxides. Chem. Mater. 10(8) (1998) 2266.
37. P. Liu, K. Gong, P. Xiao and M. Xiao, Preparation and characterization of poly(vinyl acetate)-intercalated graphite oxide nanocomposite. J. Mater. Chem. 10(4) (2000) 933.
38. L. B. Ebert, The interrelationship of hydrogen-containing carbon and lithium. Carbon 34 (1996) 671.
39. L. Huang, H. Yuan, D. Zhang, Z. Zhang, J. Guo and J. MA, Controlled microphase separated morphology of block polymer thin film and an approach to prepare inorganic nanoparticles. Appl. Surf. Sci. 225 (2004) 39.
40. P. Liu and K. Gong, Synthesis of polyaniline-intercalated graphite oxide by an in situ oxidative polymerization reaction. Carbon 37 (1999) 706.
41. T. A. Kerr, H. Wu and L. F. Nazar, Concurrent Polymerization and Insertion of Aniline in Molybdenum Trioxide: Formation and Properties of a [Poly(aniline)]0.24MoO3 Nanocomposite. Chem. Mater. 8(8) (1996) 2005.
42. L. Wang, J. Schindler, J. A. Thomas, C. R. Kannewurf and M. G. Kanatzidis, Entrapment of Polypyrrole Chains between MoS2 Layers via an in Situ Oxidative Polymerization Encapsulation Reaction. Chem. Mater. 7(10) (1995) 1753.
43. T. Challier and R. C. T. Slade, Nanocomposite materials: polyaniline-intercalated layered double hydroxides. J. Mater. Chem. 4(3) (1994) 367.
44. R. Backov, B. Bonnet, D. J. Jones and J. Roziere, Assembly of Partially Oxidized Tetrathiafulvalene in Layered Phosphates. Formation of Conducting Organic-Inorganic Hybrids by Intercalation. Chem. Mater.9(8) (1997) 1812.
45. Y. J. Liu and M. G. Kanatzidis, Postintercalative Polymerization of Aniline and Its Derivatives in Layered Metal Phosphates. Chem. Mater. 7(8) (1995) 1525.
46. G. Suyal, Bimetallic colloids of silver and copper in thin films: sol–gel synthesis and characterization. Thin Solid Films 426 (2003) 53.
47. C. J. T. Landry, B. K. Coltrain and B. K. Brady, In situ polymerization of tetraethoxysilane in poly(methyl methacrylate): morphology and dynamic mechanical properties. Polymer 33 (1992) 1486.
48. H. C. Lay, M. J. S. Spencer, E. J. Evans and I. Yarovsky, Molecular Simulation Study of Polymer Interactions with Silica Particles in Aqueous Solution. J. Phys. Chem. B. 107(36) (2003) 9681.
49. B. Lantelme, M. Dumon, C. Mai and J. P. Pascault, In-situ polymerization of titanium alkoxides in polyvinyl acetate. J. Non-crystall. Solid 194 (1996) 63.
50. J. J. Fitzgerald, C. J. T. Landry and J. M. Pochan, Dynamic studies of the molecular relaxations and interactions in microcomposites prepared by in-situ polymerization of silicon alkoxides. Macromolecules 25(14) ( 1992) 3715.
51. E. Girard-Reydet, T. M. Lam and J. P. Pascault, In situ polymerization of tetraethoxysilane in poly(vinyl acetate). Macromol. Chem. Phys. 195 (1994) 149.
52. I. Yarovsky, M. I. Aguilar and M. T. W. Hearn, Influence of the Chain Length and Surface Density on the Conformation and Mobility of n-Alkyl Ligands Chemically Immobilized onto a Silica Surface. Anal. Chem. 67(13) (1995) 2145.
53. T. Ogoshi, H. Itoh, K. M. Kim and Y. Chujo, Synthesis of Organic-Inorganic Polymer Hybrids Having Interpenetrating Polymer Network Structure by Formation of Ruthenium-Bipyridyl Complex. Macromolecules 35(2) ( 2002) 334.
54. R. Boukherroub, S. Morin, D. D. M. Wayner, F. Bensebaa, G. I. Sproule, J. M. Baribeau and D. J. Lockwood, Ideal Passivation of Luminescent Porous Silicon by Thermal, Noncatalytic Reaction with Alkenes and Aldehydes. Chem. Mater. 13(6) ( 2001) 2002.
55. “Host-guest chemistry”, Wikipedia, free encyclopedia.
56. Y. Gao, N. R. Choudhury, N. Dutta, J. Matisons and L. Delmotte, Organic-inorganic hybrid from ionomer via sol-gel reaction. Chem. Mater. 13 (2001) 3644.
57. C. B. Murray, D. J. Norris and M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115(19) (1993) 8706.
58. C. Gong and J. Brinker, Continuous self-assembly of organic–inorganic nanocomposite coatings that mimic nacre. Nature 394 (1998) 256.
59. A. Blaaderen, R. Ruel and P. Wiltzius, Template-directed colloidal crystallization. Nature 385 (1997) 321.
60. M. Antonietti, E. Wenz, L. Bronstein and M. Seregina, Synthesis and characterization of noble metal colloids in block copolymer micelles. Adv. Mater. 7 (1995) 1000.
61. M. Moffitt, L. McMahon, V. Pessel and A. Eisenberg, Size Control of Nanoparticles in Semiconductor-Polymer Composites. 2. Control via Sizes of Spherical Ionic Microdomains in Styrene-Based Diblock Ionomers. Chem. Mater. 7(6) (1995) 1185.
62. Z. Qiao, Y. Xie, M. Chen and J. Xu, Synthesis of lead sufide/(polyvinyl acetate) nanocomposites with controllable morphology. Chem. Phys. Lett. 321 (2000) 504.
63. L. M. Bronstein, M. Kostylev, I. Tsvetkova, J. Tomaszewski, B. Stein, E. E. Makhaeva, I. Okhapkin and A. R. Khokhlov, Core-Shell Nanostructures from Single Poly(N-vinylcaprolactam) Macromolecules: Stabilization and Visualization. Langmuir 21(7) (2005) 2652.
64. B. Jose, J. H. Ryu, Y. J. Kim, H. Kim, Y. S. Kang, S. D. Lee and H. S. Kim, Effect of Plasticizers on the Formation of Silver Nanoparticles in Polymer Electrolyte Membranes for Olefin/Paraffin Separation. Chem. Mater. 14(5) ( 2002) 2134.
65. D. W. Hatchett, M. Josowicz, J. Janata and D. R. Baer, Electrochemical Formation of Au Clusters in Polyaniline. Chem. Mater. 11(10) ( 1999) 2989.
66. L. B. Luo, S. H. Yu, H. S. Qian and T. Zhou, Large-Scale Fabrication of Flexible Silver/Cross-Linked Poly(vinyl alcohol) Coaxial Nanocables by a Facile Solution Approach. J. Am. Chem. Soc. 127(9) ( 2005) 2822.
67. Y. Gotoh, R. Igarashi, Y. Ohkoshi, M. Nagura, K. Akamatsu and S. Deki, Preparation and structure of copper nanoparticle/poly(acrylic acid) composite films. J. Mater. Chem. 10(11) ( 2000) 2548
68. W. Fritzsche, H. Porwol, A. Wiegand, S. Bornmann and J. M. Köhler, In-situ formation of Ag-containing nanoparticles in thin polymer films. Nanostruct. Mater. 10 (1998) 89.
69. Y. Shiraishi and N. Toshima, Oxidation of ethylene catalyzed by colloidal dispersions of poly(sodium acrylate)-protected silver nanoclusters. Colloid. Surf. A 169 (2000) 59.
70. Z. Zhang, L. Zhang, S. Wang, W. Chen and Y. Lei, A convenient route to polyacrylonitrile/silver nanoparticle composite by simultaneous polymerization–reduction approach. Polymer 42 (2001) 8315.
71. X. F. Qian, J. Yin, J. C. Huang, Y. F. Yang, X. X. Guo and Z. K. Zhu, The preparation and characterization of PVA/Ag2S nanocomposite. Mater. Chem. Phys. 68 (2001) 95.
72. W. Fritzsche, H. Porwol, A. Wiegand, B. Bornmann and J. M. Köhler, In-situ formation of Ag-containing nanoparticles in thin polymer films. Nanostruct. Mater. 10(1) (1998) 89.
73. S. Porel, S. Singh, S. S. Harsha, D. N. Rao and T. P. Radhakrishnan, Nanoparticle-Embedded Polymer: In Situ Synthesis, Free-Standing Films with Highly Monodisperse Silver Nanoparticles and Optical Limiting. Chem. Mater. 17(1) ( 2005) 9.
74. J. Ramos, A. Millán and F. Palacio, Production of magnetic nanoparticles in a polyvinylpyridine matrix. Polymer 41 (2000) 8461.
75. X. D. Ma, X. F. Qian, J. Yin and Z. K. Zhu, Preparation and characterization of polyvinyl alcohol–selenide nanocomposites at room temperature. J. Mater. Chem. 12(3) (2002) 663.
76. C. Huang, L. Chen and C. Yang, Study of Cu2+-poly(itaconic acid-co-acrylic acid) complex and copper-polymer nanocomposites. Polym. Bull. 41 (1998) 585.
77. E. B. Barmatov, D. A. Pebalk and M. V. Barmatova, Influence of Silver Nanoparticles on the Phase Behavior of Side-Chain Liquid Crystalline Polymers. Langmuir 20(25) (2004) 10868.
78. H. S. Kim, J. H. Ryu, B. Jose, B. G. Lee, B. S. Ahn and Y. S. Kang, Formation of Silver Nanoparticles Induced by Poly(2,6-dimethyl-1,4-phenylene oxide). Langmuir 17(19) (2001) 5817.
79. M. Liu, G. Xu, Y. Liu and Q. Chen, In Situ Complex Formation of Long-Chain Schiff Bases with Silver(I) Ion in Monolayers and Their Langmuir-Blodgett Films. Langmuir 17(2) (2001) 427.
80. P. L. Kuo and W. F. Chen, Formation of Silver Nanoparticles under Structured Amino Groups in Pseudo-dendritic Poly(allylamine) Derivatives. J. Phys. Chem. B. 107(41) (2003) 11267.
81. T. Shoeib, A. C. Hopkinson and K. W. M. Siu, Collision-Induced Dissociation of the Ag+-Proline Complex: Fragmentation Pathways and Reaction Mechanisms-A Synergy between Experiment and Theory. J. Phys. Chem. B. 105(49) ( 2001) 12399.
82. J. Gao, J. Fu, C. Lin, J. Lin, Y. Han, X. Yu and C. Pan, Formation and Photoluminescence of Silver Nanoparticles Stabilized by a Two-Armed Polymer with a Crown Ether Core. Langmuir 20(22) (2004) 9775.
83. G. J. Lee, S. I. Shin, Y. C. Kim and S. G. Oh, Preparation of silver nanorods through the control of temperature and pH of reaction medium. Mater. Chem. Phys. 84 (2004) 197.
84. Y. Tan, L. Jiang, Y. Li and D. Zhu, One Dimensional Aggregates of Silver Nanoparticles Induced by the Stabilizer 2-Mercaptobenzimidazole. J. Phys. Chem. B. 106(12) ( 2002) 3131.
85. D. V. Leff, L. Brandt and J. R. Heath, Synthesis and Characterization of Hydrophobic, Organically-Soluble Gold Nanocrystals Functionalized with Primary Amines. Langmuir 12(20) ( 1996) 4723.
86. J. Zhu, Z. Konya, V. F. Puntes, I. Kiricsi, C. X. Miao, J. W. Ager, A. P. Alivisatos and G. A. Somorjai, Encapsulation of Metal (Au, Ag, Pt) Nanoparticles into the Mesoporous SBA-15 Structure. Langmuir 19(10) ( 2003) 4396.
87. G. Riss, Micellization of block copolymers. Prog. Polym. Sci. 28 (2003) 1107.
88. T. Liu, C. Burger, B. Chu, Nanofabrication in polymer matrices. Prog. Polym. Sci. 28 (2003) 5.
89. S. Mössmer, J.P. Spatz, M. Möller, Solution behavior of poly(styrene)-block-poly(2-vinylpyridine) micelles containing gold nanoparticles. Macromolecules 33 (2000) 4791.
90. A. Mayer, M. Antonietti, Investigation of polymer-protected noble metal nanoparticles by transmission electron microscopy: control of particle morphology and shape. Colloid Polym. Sci. 276 (1998) 769.
91. L.M. Bronstein, S.N. Sidorov, A.Y. Gourkova, P.M. Valetsky, J. Hartmann, M. Breulmann, H. Cölfen, M. Antonietti, Interaction of metal compounds with ‘double-hyrophilic’ block copolymers in aqueous medium and metal colloid formation. Inorganica Chimica Acta 280 (1998) 348.
92. J. Zhang, B. Han, M. Liu, Z. Dong, J. Liu, D. Li, J. Wang, B. Dong and L. Rong, Ultrasonication-induced formation of silver nanofibers in reverse micelles and small-angle X-ray scattering studies. J. Phys. Chem. B 107 (2003) 3679.
93. S.P. Naik, J.C. Chen, A.S.T. Chiang, Synthesis of silicate nanocrystals via the steaming of surfactant protected precursors. Microp. Mesop. Mater. 54 (2002) 293.
94. M. Ocaña, Uniform particles of manganese compounds obtained by forced hydrolysis of manganese(II) acetate. Colloid Polym. Sci. 278 (2000) 443.
95. S.R. Hall, S.A. Davis and S. Mann, Cocondensation of organosilica hybrid shells on nanoparticle templates: a direct synthetic route to functionalized core-shell colloids. Langmuir 16 (2000) 1454.
96. M. Ji, X. Chen, C.M. Wai and J.L. Fulton, Synthesizing and dispersing silver nanoparticles in a water-in-supercritical carbon dioxide microemulsion. J. Am. Chem. Soc. 121 (1999) 2631.
97. M. Wu, J. Long, A. Huang and Y. Luo, Microemulsion-mediated hydrothermal synthesis and characterization of nanosize rutile and anatase particles. Langmuir 15 (1999) 8822.
98. Y. Shiraishi and N. Toshima, Colloidal silver catalysts for oxidation of ethylene. J. Mol. Catalys. A: Chem. 141 (1999) 187.
99. S. Kapoor and C. Gopinathan, Reduction and aggregation of silver, copper and cadmium ions in aqueous solutions of gelatin and carboxymethyl cellulose. Rad. Phys. Chem. 53 (1998) 165.
100. F.C. Meldrum, N.A. Kotov and J.H. Fendler, Mono-and multiparticulate Langmuir-Blodgett films prepared from surfactant-stabilized silver particles. Mater. Sci. Engin.: C3 (1995) 149.
101. A. B. R. Mayer, Formation of noble metal nanoparticles within a polymeric matrix: nanoparticle features and overall morphologies. Mater. Sci. Eng. C6 (1998) 155.
102. C.W. Chen, T. Serizawa and M. Akashi, In situ formation of Au/Pt bimetallic colloids on polystyrene microspheres: control of particle growth and morphology. Cem. Mater. 14 (2002) 2232.
103. S. Mössmer, J.P. Spatz, M. Möller, T. Aberle, J. Schmidt and W. Burchard, Solution behavior of poly(styrene)-block-poly(2-vinylpyridine) micelles containing gold nanoparticles. Macromolecules 33 (2000) 4791.
104. M. Monzen, T. Kawakatsu, M. Doi and R. Hasegawa, Micelle formation in triblock copolymer solutions. Comput. Theor. Polym. Sci. 10 (2000) 275.
105. K. Schillen, K. Bryskhe and Y.S. Mel’nikova, Vesicles formed from a poly(ethylene oxde)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in dilute aqueous solution. Macromolecules 32 (1999) 6885.
106. A. Choucair and A. Eisenberg, Control of amphiphilic block copolymer morphologies using solution conditions. Eur. Phys. J. E10 (2003) 37.
107. P. Alexandridis, U. Olsson and B. Lindman, A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir 14 (1998) 2627.
108. Z. Qiao, Y. Xie, M. Chen, J. Xu, Y. Zhu and Y. Qian, Synthesis of lead sulfide/(polyvinyl acetate) nanocomposites with controllable morphology. Chem. Phys. Lett. 321 (2000) 504.
109. T. Aoki, M. Muramatsu, T. Torii, K. Sanui and N. Ogata, Thermosensitive phase transition of an optically active polymer in aqueous milieu. Macromolecules 34 (2001) 3118.
110. J.E. Chung, M. Yokoyama and T. Okano, Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J. Controll. Rel. 65 (2000) 93.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 1.丁文郁(2001),「農業發展條例修正後對農會經營衝擊之分析--兼論其對農民權益、農業、農村發展之影響」,農業金融論叢,第46期,頁1-45。
2. 2.丁文郁(2002),「臺灣農民非營利組織策略規劃之研究--以臺灣農會為例」,農民組織學刊,第4期,頁1-52。
3. 4.王文宇(2000),「資產管理公司政策與法制問題研究」,臺灣金融財務季刊,第1卷第2期,頁13-33。
4. 5.王進祥(2000),「農發條例正面目全非-修正實務解讀(一),現代地政,第224期,頁6-7。
5. 6.王進祥(2000),「農發條例正面目全非-修正實務解讀(三),現代地政,第227期,頁6-9。
6. 7.王慈徽、黃坤省(2001),「AMC之功能與潛在問題探討」,人與地,第212期,第213期,頁51-56。
7. 8.王鶴松(2001),「資產管理公司的角色及功能」,中國商銀月刊,第20卷第3期,頁1-5。
8. 9.王心儀(2001),「穩定農業金融系統--全國農業銀行」,農訓雜誌,第18卷第11期,頁60-63。
9. 10.王心儀(2001),「金融重建機制對農漁會信用部的影響」,農民組織學刊,第3期,頁177-196。
10. 11.王心儀(2004),「保障國土完整,穩定農業金融--成立農業資產管理公司之探討」,農訓雜誌,第21卷第10期,頁56-59。
11. 15.李光輝、黃秋光、吳昌德、高超陽、張明寬,(2002),「日本政府處理金融機構不良資產之運作機制」,國際金融參考資料,第47輯,頁84-108。
12. 19.林培州(2002),韓國金融重整與不良金融資產處理機制之經驗,經濟前瞻,第74期,頁41-46。
13. 20.林繼恆(2002),資產管理公司(AMC)與資產再生公司(RTC),全國律師,第6卷第12期,頁83-88。
14. 21.林國慶(2002),「農業金融改革」,農業經濟叢刊,第7卷第2期,頁189-205。
15. 22.林享能(2003),「論農漁會信用部之改革」,國家政策論壇季利,春季號,頁176-190。
 
系統版面圖檔 系統版面圖檔