(54.236.58.220) 您好!臺灣時間:2021/03/05 00:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林立
研究生(外文):Li Lin
論文名稱:番茄病毒感染及夜蛾取食後對番茄夜蛾生長表現的影響
論文名稱(外文):Effect on Helicoverpa armigera performance by ToMV infection and corn earworm's injury
指導教授:黃紹毅黃紹毅引用關係
指導教授(外文):Shaw-Yhi Hwang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:昆蟲學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:60
中文關鍵詞:番茄番茄嵌紋病毒番茄夜蛾
外文關鍵詞:tomatotomato mosaic virusaftercorn earworm
相關次數:
  • 被引用被引用:4
  • 點閱點閱:328
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:1
本實驗以番茄(Lycopersicon esculentum)做為研究的對象,探討植物和病原菌及植食昆蟲三者之間的交互作用。而所選用的植物病原菌和植食昆蟲分別為番茄嵌紋病毒(tomato mosaic virus, ToMV)與番茄夜蛾(Helicoverpa armigera)。實驗則主要偏重於探討番茄夜蛾的行為和生長表現(performance),是否受到先前已感染病毒或是被蟲啃食的植物所影響,以及其影響的程度。在對植株進行病毒接種及蟲咬處理之後,分別藉由番茄夜蛾的取食偏好、產卵偏好、長期餵食分析以及短期餵食分析實驗,來探討各處理間的差異。結果顯示,接種病毒的植株會降低番茄夜蛾成蟲體重、四齡幼蟲消化食物轉換率(ECD),以及消耗食物轉換率(ECI),但在行為方面並無選擇偏好上的差異;而已先被昆蟲啃食過的植物則是會對於番茄夜蛾的取食和產卵行為具有忌避效果,並且也降低四齡幼蟲的消化效率(AD)、總消耗量(TC)、相對生長速率(RGR)、相對消耗速率(RCR),以及延長發育天數(DUR)。此外,更進一步對被施予病毒接種處理及蟲咬處理的番茄在不同時間點進行化學成分分析,以證明病毒和昆蟲是否會改變及誘發植物體內的化學成分。結果顯示病毒與昆蟲之處理分別提高植物體內過氧化酵素(Peroxidase)和多酚氧化酵素(Polyphenol oxidase)的活性,且改變非結構性碳水化合物(nonstructural carbohydrates)的含量。佐以這些化學分析的證據可得知,夜蛾取食植株後能明顯影響植物體內化學成分改變以及後續取食該植物的番茄夜蛾生長表現。
The objective of this study is to investigate interactions between plants, phytopathogens, and herbivores. Tomato (Lycopersicon esculentum) was used as the test plant, and tomato mosaic virus (ToMV) and corn earworm (Helicoverpa armigera) were used as phytopathogen and herbivore, respectively. This study focused primarily on the performance of corn earworm which was reared on the tomato leaf that had been infected with ToMV or attacked by corn earworms. The performance parameters, such as feeding preference, oviposition preference, growth rates, consumption rates, and food processing efficiencies, were compared between treatments. The result shows that corn earworm had decreased adult weight, efficiency of conversion of ingested food (ECI), and efficiency of conversion of digest food (ECD) reared on tomato plants inoculated with ToMV. However, no difference was found in the feeding and oviposition preference trial. In contrast, tomato plants which damaged by corn earworm would deter the later corn earworms’ feeding and oviposition. Corn earworm’s approximate digestibility (AD), total consumption (TC), relative growth rate (RGR), and relative consumption rate (RCR) were decreased. In addition, the development duration (DUR) was prolonged in this assay. Furthermore, after attacked by ToMV and corn earworm, plant chemistry was analyzed at different time intervals. Results revealed that ToMV infection and corn earworm injury can increase host plant’s peroxidase and polyphenol oxidase activity, respectively. Besides, both ToMV and corn earworm would alter host plants’ soluble and non-soluble carbohydrate concentrations. Based on the chemical analysis results, we found that corn earworm’s performance may be affected by host plant chemistry. Overall, insect injury has stronger effect on plant chemistry and corn earworm’s performance than virus infection.
目錄
壹、中文摘要-----------------------------------------------1
貳、前言---------------------------------------------------2
參、前人研究-----------------------------------------------4
肆、材料與方法--------------------------------------------14
一、番茄栽培--------------------------------------------14
二、供試昆蟲飼養----------------------------------------14
三、植物病原--------------------------------------------14
四、試驗方式--------------------------------------------14
A.接種病毒--------------------------------------------15
B.蟲咬處理--------------------------------------------15
(一)、取食偏好試驗------------------------------------15
(二)、產卵偏好試驗------------------------------------16
(三)、長期餵食分析------------------------------------16
(四)、短期餵食分析------------------------------------17
(五)、植物化學成分分析--------------------------------19
(六)、統計分析----------------------------------------22
伍、結果--------------------------------------------------23
陸、討論--------------------------------------------------27
柒、參考文獻----------------------------------------------35
捌、英文摘要----------------------------------------------46
玖、圖表--------------------------------------------------48
王久興。2002。圖解蔬菜病蟲害防治。天津科學技術出版社。167頁。

王海廷。2001。中國番茄。黑龍江科學技術出版社。261頁。

林政行。1984。植物與昆蟲的共同演化。台灣省立博物館。205頁。

陳一心。1999。中國動物志(昆蟲綱第十六卷鱗翅目夜蛾科)。科學出版社。1596頁。

莊榮輝。2000。酵素化學實驗。國立台灣大學農業化學系。265頁。

楊遠波、劉和義、彭鏡毅、施炳霖、呂勝由。2000。台灣維管束植物簡誌(第肆卷)。行政院農業委員會。432頁。

費雯綺、王喻其。2004。植物保護手冊。行政院農業委員會農業藥物毒物試驗所。835頁。

廖玲秀。2003。由大葉楠造瘿木蝨Trioza shuiliensis (Yang)探討造瘿昆蟲的營養適應。國立中興大學昆蟲學系碩士論文。150頁。

Al-Hamdani, S., and G. W. Todd. 1990. Effect of temperature regimes on photosynthesis, respiration, and growth in alfalfa. Proc. Okla. Acad. Sci. 70: 1-4.

Antoniw, J. F., and R. F. White. 1980. The effects of aspirin and polyacrylic acid on soluble leaf proteins and resistance to virus infection in five cultivars of tobacco. Phytopath. Z. 98:331–341.

Baldwin, I. T. 2001. An ecologically motivated analysis of plant-herbivore interactions in native tobacco. Plant Physiol. 127: 1449-1458.

Bostock, R. M., R. Karban, J. S. Thaler, P. D. Weyman, and D. Gilchrist. 2001. Signal interactions in induced resistance to pathogens and insect herbivores. Eur. J. Plant Pathol. 107: 103-111.

Bradford, M. M. 1976. A rapid and sensitive method for the quantitaties of microgram quantities of protein utilizing the principle of protein- dye binding. Anal. Biochem. 72: 284-285.

Cipollini Jr., D. F., and A. M. Redman. 1999. Age-dependent effects of jasmonic acid treatment and wind exposure on foliar oxidase activity and insect resistance in tomato. J. Chem. Ecol. 25: 271-281.

Coley, P. D., and J. A. Barone. 1996. Herbivory and plant defenses in tropical forests. Ann. rev. ecolog. syst. 27: 305-335.

Copper, W. R., and F. L. Goggin. 2005. Effects of jasmonate-induced defenses in tomato on the potato aphid, Macrosiphum euphorbiae. Entomol. Exp. Appl. 115: 107-115.

de Bruxelles, G. L., and M. R. Roberts. 2001. Signal regulating multiple responses to wounding and herbivores. Crit. Rev. Plant Sci. 20: 487-521.

de Laat, A. M. M., and L. C. van Loon. 1982. Regulation of ethylene biosynthesis in virus-infected tobacco leaves. II. Time course of levels of intermediates and in vivo conversion rates. Plant Physiol. 69: 240-245.

Denno, R. F., M. A. Peterson, C. Gratton, J. Cheng, G. A. Langellotto, A. F. Huberty, and D. L. Finke. 2000. Feeding-induced changes in plant quality mediate interspecific competition between sap-feeding herbivores. Ecology 81: 1814-1827.

Ditt, R. F., E. W. Nester, and L. Comai. 2001. Plant gene expression response to Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. U. S. A. 98: 10954-10959.

Doherty, H. M., R. R. Selvendran, and D. J. Bowles. 1988. The wound response of tomato plants can be inhibited by aspirin and related hydroxyl-benzoic acids. Physiol. Mol. Plant Pathol. 33: 377-384.

Dowd, P. F. and R. A. Norton. 1995. Browning-associated mechanisms of resistance to insects in corn callus tissue. J. Chem. Ecol. 21: 583-600.

Duffey, S. S., and Stout M. J. 1996. Antinutritive and toxic components of plant defense against insects. Arch. Insect Biochem. Phys. 32: 3-37.

Elliger, C. A., Y. Wong, B. G. Chan, and A. C. Waiss Jr. 1981. Growth inhibitors in tomato (Lycopersicon) to tomato fruitworm (Heliothis zea). J. Chem. Ecol. 7: 753-758.

Enyedi, A. J., N. Yalpani, P. Silverman, and I. Raskin. 1992. Signal molecules in systemic plant resistance to pathogens and pests. Cell 70: 879-886.

Falco, M. C., P. A. S. Marbach, P. Pompermayer, F. C. C. Lopes, and M. C. Silva-Filho. 2001. Mechanisms of sugarcane response to herbivory. Genet. Mol. Biol. 24: 113-122.

Farrar Jr., R. R., J. D. Barbour, and G. G. Kennedy. 1989. Quantifying food consumption and growth in insects. Ann. Entomol. Soc. Am. 82: 593-598.

Felton, G. W., K. K. Donato, R. M. Broadway, and S. S. Duffey. 1992. Impact of oxidized plant phenolics on the nutritional quality of dietary protein to a noctuid herbivore, Spotoptera exigua. J. Insect Physiol. 38: 277-285.

Felton, G. W., K. Donato, R. J. del Vecchio, and S. S. Duffey. 1989. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J. Chem. Ecol. 15: 2667-2694.

Felton, G. W., and K. L. Korth. 2000. Trade-offs between pathogen and herbivore resistance. Curr. Opin. Plant Biol. 3: 309-314.

Fidantsef, A. L., M. J. Stout, J. S. Thaler, and S. S. Duffey. 1999. Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor Ⅱ, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54: 97-114.

Fischer, K., and K. Fiedler. 2000. Response of the copper butterfly Lycaena tityrus to increased leaf nitrogen in natural food plants: evidence against the nitrogen limitation hypothesis. Oecologia 124: 235-241.

Gotthard, K., S. Nylin, and C. Wiklund. 1999. Seasonal plasticity in two satyrine butterflies: state-dependent decision making in relation to day length. Oikos 84: 453-462.

Green, S. K., L. L. Hwang, and Y. J. You. 1987. Epidemiology of tomato mosaic virus in Taiwan and identification of strains. J. Plant Dis. Prot. 94: 386-387.

Halitschke, R., A. Kessler, J. Kahl, and I. T. Baldwin. 2000. Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuate. Oecologia 124: 408-417.

Hanks, L. M., and R. F. Denno. 1993. Natural enemies and plant water relations influence the distribution of an armored scale insect. Ecology 74:1081–1091.

Hatcher, P. E. 1995. Three-way interactions between plant pathogenic fungi, herbivorous insects and their host plants. Biol. Rev. 70: 639-694.

Haukioja, E. 1980. On the role of plant defenses in the fluctuation of herbivore populations. Oikos 35: 202–213.

Heil, M. 1999. Systemic acquired resistance: available information and open ecological questions. J. Ecol. 87: 341-346.

Huang, X., and J. A. A. Renwick. 1993. Differential selection of host plants by two Pieris species: the role of oviposition stimulants and deterrents. Entomol. Exp. Appl. 68: 59-69.

Hunt, M. D., and J. A. Ryals. 1996. Systemic acquired resistance signal transduction. Crit. Rev. Plant Sci. 15: 583-606.

Hunter, M. D. 2000. Mixed signals and cross-talk: Interactions between plants, insect herbivores and plant pathogens. Agri. Forest Entomol. 2: 155-160.

Jauset, A. M., M. J. Sarasua, J. Avilla, and R. Albajes. 1998. The impact of nitrogen fertilization of tomato on feeding site selection and oviposition by Trialeurodes vaporariorum. Entomol. Exp. Appl. 86:175–182.

Kessler A., and I. T. Baldwin. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 2141-2144.

Kessler, A., and I. T. Baldwin. 2002. Manduca quinquemaculata’s optimization of intra-plant oviposition to predation, food quality, and thermal constraints. Ecology 83: 2346-2354.

Koch, K. E. 1996. Carbohydrate-Modulated gene expression in plants. Annu. Rev. plant Physiol. plant Mol. Biol. 47: 509-540.

Koricheva, J., S. Larsson, and E. Haukioja. 1998. Insect performance on experimentally stressed woody plants: a meta-analysis. Annu. Rev. Entomol. 43:195–216.

Krokos, F. D., M. A. Konstantopoulou, and B. E. Mazomenos. 2002. Chemical characterisation of corn plant compounds by different extraction techniques and the role of potent chemicals in the reproductive behaviour of the corn stalk borer Sesamia nonagrioides. IOBC/WPRS Bull. 25: 287-294.

Kruess, A. 2002. Indirect interaction between a fungal plant pathogen and a herbivorous beetle of the weed Cirsium arvense. Oecologia 130: 563-569.

Laine, A. -L. 2004. A powdery mildew infection on a shared host plant affects the dynamics of the Glanville fritillary butterfly populations. Oikos 107: 329-337.

Lower, S. S., S. Kirshenbaum, and C. M. Orian. 2003. Preference and performance of a willow-feeding leaf beetle: soil nutrient and flooding effects on host quality. Oecologia 136: 402-411.

Lund, S. T., R. E. Stall, and H. J. Klee. 1998. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10: 371–382.

Ma, W. C. 1969. Some properties of gustation in the larva of Pieris brassicae. Entomol. Exp. Appl. 12: 584-590.

Malamy, J., J. P. Carr, D. F. Klessig, and I. Raskin. 1990. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250: 1002–1004.

Mattson, W. J. Jr. 1980. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11:119–161.

Mayer, R. T., M. Inbar, C. L. Mckenzie, R. Shatters, V. Borowicz, U. Albrecht, C. A. Powell, and H. Doostdar. 2002. Multitrophic interactions of the silverleaf whitefly, host plants, competing herbivores, and phytopathogens. Arch. Insect Biochem. Physiol. 51: 151-169.

Mckenzie, C. L., R. G. Shatters, Jr., H. Doostdar, S. D. Lee, M. Inbar, and R. T. Mayer. 2002. Effect of geminivirus infection and Bemisia infection on accumulation of pathogenesis-related proteins in tomato. Arch. Insect Biochem. Physiol. 49: 203-214.

Mensah, R. K., and J. L. Madden. 1992. Factors affecting Ctenarytaina thysanura oviposition on Boronia megastigma terminal shoots. Entomol. Exp. Appl. 62:261–268.

Miller, A. R., and T. J. Kelley. 1989. Mechanical stress induces peroxidase activity in cucumber fruit. Hort. Sci. 24: 650-652.

Moran, P. J. 1998. Plant-mediated interactions between insects and a fungal plant pathogen and the role of plant chemical responses to infection. Oecologia 115: 523-530.

Mutikainen, P., M. Walls, J. Ovaska, M. Keinanen, R. Julkunen-Tiitto, and E. Vapaavuori. 2000. Herbivore resistance in Betula pendula: Effect of fertilization, defoliation, and plant genotype. Ecology 81:49–65.

Nicholson, R. L., and R. E. Hammerschmidt. 1992. Phenolic compounds and their role in disease resistance. Annu. Rev. Phytopathol. 30: 369-389.

Nieminen, M. J., S. V. N. Suomi, P. Sauri, and M. –L. Riekkola. 2003. Effect of iridoid glycoside content on oviposition host plant choice and parasitism in a specialist herbivore. J. Chem. Ecol. 29: 823-844.

Nykänen, H., and J. Koricheva. 2004. Damage-induced changes in woody plants and their effects on insect herbivore performance: a meta-analysis. Oikos 104: 247-268.

Paul, N. D., P. E. Hatcher, and J. E. Taylor. 2000. Coping with multiple enemies: an integration of molecular and ecological perspectives. Trends Plant Sci. 5: 220-225.

Pena-Cortes, H., T. Albrecht, S. Prat, E. W. Weiler, and L. Willmitzer. 1993. Aspirin prevents wound-induced gene expression on tomato leaves by blocking jasmonic acid biosynthesis. Planta 191: 123-128.

Pimm, S. L., G. J. Russell, J. L. Gittleman, and T. M. Brooks. 1995. The future of biodiversity. Science 269: 347-350.

Ratzka, A., H. Vogel, D. J. Kliebenstein, T. Mitchell-Olds, and J. Kroymann. 2002. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. U. S. A. 99: 11223-11228.

Raubenheimer, D., and S. J. Simpson. 1997. Integrative models of nutrient balancing: application to insects and vertebrates. Nutr. Res. Rev. 10: 151–171.

Redman, A. M., and D. F. Cipollini Jr. 2001. Fitness costs of jasmonic acid-induced defense in tomato, Lycopersicon esculentum. Oecologia 126: 380-385.

Renwick, J. A. A., and F. S. Chew. 1994. Oviposition behavior in Lepidoptera. Annu. Rev. Entomol. 39: 377-400.

Rhoades, D. F. 1985. Offensive-defensive interactions between herbivores and plants: their relevance in herbivore population dynamics and ecological theory. Am. Nat. 125: 205–238.

Rostás, M., and M. Hilker. 2002. Asymmetric plant-mediated cross-effects between a herbivorous insect and a phytopathogenic fungus. Agri. Forest Entomol. 4: 223-231.

Ryals, J. A., S. Uknes, and E. Ward. 1994. Systemic acquired resistance. Plant Physiol. 104: 1109-1112.

Ryals, J. A., U. H. Neuenschwander, M. G. Willits, A. Molina, H. -Y. Steiner, and M. P. Hunt. 1996. Systemic acquired resistance. Plant Cell 8: 1809-1819.

Ryan, C. A., P. Gregory, and W. Tingey. 1982. Phynolic oxidase activities in glandular trichomes of Solanum berthaultii. Phytochemistry 21: 1885-1887.

Ryan, C. A., and D. S. Moura. 2002. Systemic wound signaling in plants: A new perception. Proc. Natl. Acad. Sci. U. S. A. 99: 6519-6520.

Scheel, D., and C. Wasternack. 2002. Plant signal transduction. Oxford University Press, New York. 324 pp.

Schoonhoven, L. M. 1968. Chemosensory bases of host plant selection. Annu. Rev. Entomol. 13: 115-136.

Schoonhoven, L. M., T. Jermy, and J. J. A. van Loon. 1998. Insect-plant biology. Chapman & Hall, New York. 409 pp.

Scriber, J. M., and P. Feeny. 1979. Growth of herbivorous caterpillars in relation to feeding specialization and to the growth form of their food plants. Ecology 60: 829-850.

Silva, H. S. A., R. S. Romeiro, D. Macagnan, B. A. Halfeid-Vieira, M. C. B. Pereira, and A. Mounteer. 2004. Rhizobacterial induction of systemic resistance in tomato plants: non-specific protection and increase in enzyme activities. Biol. Control 29: 288-295.

Smith, J. A., and R. Hammerschmidt. 1988. Comparative study of acidic peroxidases associated with induced resistance in cucumber, muskmelon, and watermelon. Physiol. Mol. Plant Pathol. 33: 255-261.

Son, W. -K., D. -Y. Lee, S. -H. Lee, W. -A. Joo, and C. -W. Kim. 2003. Analysis of proteins expressed in rat plasma exposed to dioxin using 2-dimensional gel electrophoresis. Proteomics 3: 2393-2401.

Stamp, N. E., and M. D. Bowers. 1990. Phynology of nutritional differences between new and mature leaves and its effect on caterpillar growth. Ecol. Entomol. 15: 447-454.

Stotz, H. U., T. Koch, A. Biedermann, K. Weniger, W. Boland, and T. Mitchell-Olds. 2002. Evidence for regulation of resistance in Arabidopsis to Egyptian cotton worm by salicylic and jasmonic acid signaling pathways. Planta 214: 648-652.

Stout, M. J., and S. S. Duffey. 1996. Characterization of induced resistance in tomato plants. Entomol. Exp. Appl. 79: 273-283.

Stout, M. J., A. L. Fidantsef, and R. M. Bostock. 1999. Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54: 115-130.

Stout, M. J., K. V. Workman, J. S. Workman, and S. S. Duffey. 1996. Temporal and ontogenetic aspects of protein introduction in foliage of the tomato, Lycopersicon esculentum. Biochem. Syst. Ecol. 24: 611-625.

Svalheim, O., and B. Robertsen. 1990. Induction of cucumber hypocotyls by wounding and fungal infection. Physiol. Plant 78: 261-267.

Thaler, J. S., A. L. Fidantsef, S. S. Duffey, and R. M. Bostock. 1999. Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. J. Chem. Ecol. 25: 1597-1608.

Tisdale, R. A., and M. R. Wagner. 1991. Host stress influences oviposition preference and performance of a pine sawfly. Ecol. Entomol. 16:371–376.

Tuomi, J., P. Niemelä, and M. Rousi. 1988. Induced accumulation of foliage phenols in mountain birch: branch response to defoliation? Am. Nat. 132: 602–608.

van Dam, N. M., M. Horn, M. Mares, and I. T. Baldwin. 2001. Ontogeny constrains the systemic proteinase inhibitor response in Nicotiana attenuate. J. Chem. Ecol. 27: 547-568.

van Loon, L. C. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55: 85-97.

Wagner, M. R., and P. D. Evans. 1985. Defoliation increases nutritional quality and allelochemics of pine seedlings. Oecologia 67: 235–237.

Waldbauer, G. P. 1968. The consumption and utilization of food by insect. Adv. Insect Physiol. 5: 229-288.

Whittaker, R. H., and P. P. Feeny. 1971. Allelochemics: chemical interactions between species. Science 171: 757-770.

Winz, R., and I. T. Baldwin. 2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuate. IV. Insect-induced ethylene reduces jasmonate-induced nicotine accumulation by regulating putrescine N-methyltransferase transcripts. Plant Physiol. 125: 2189-2202.

Wittstock, U., and J. Gershenzon. 2002. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol. 5: 300-307.

Wright, G. A., S. J. Simpson, D. Raubenheimer, P.C. Stevenson. 2003. The feeding behavior of the weevil, Exophthalmus jekelianus, with respect to the nutrients and allelochemicals in host plant leaves. Oikos 100: 172-184.

Ye, X. S., S. Q. Pan, and J. Kuc. 1990. Activity, isozyme pattern, and cellular localization of peroxidase as related to systemic resistance of tobacco to blue mold (Peronospora tabacina) and to tobacco mosaic virus. Phytopathology 80: 1295-1299.

Zalucki, M. P., A. R. Clarke, and S. B. Malcolm. 2002. Ecology and behavior of first instar larval Lepidoptera. Annu. Rev. Entomol. 47: 361-393.

Zangerl, A. R., and M. R. Berenbaum. 1998. Damage-inducibility of primary and secondary metabolites in the wild parsnip (Pastinaca sativa). Chemoecology 8: 187-193.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔