跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 10:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃仕政
研究生(外文):Huang, Shih-Jeng
論文名稱:蛹蟲草之培養和其呈味性質及經γ-照射之巴西蘑菇子實體和樟芝菌絲體之抗氧化性質
論文名稱(外文):Cultivation of Cordyceps militaris and its taste quality and antioxidant properties of γ-irradiated Agaricus blazei fruit bodies and Antrodia camphorata mycelia
指導教授:毛正倫毛正倫引用關係
指導教授(外文):Mau, Jeng-Leun
學位類別:博士
校院名稱:國立中興大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:200
中文關鍵詞:蛹蟲草巴西蘑菇樟芝培養呈味品質γ-照射抗氧化性質
外文關鍵詞:Cordyceps militarisAgaricus blazeiAntrodia camphorataincubationtaste qualityγ-irradiationantioxidant property
相關次數:
  • 被引用被引用:29
  • 點閱點閱:3745
  • 評分評分:
  • 下載下載:2096
  • 收藏至我的研究室書目清單書目收藏:2
本研究為了解蛹蟲草培養的可行性和一般食用上的應用性,而探討其培養條件和呈味性質;另外,因γ-射線經常應用於食藥用菇相關產品的滅菌,為了解γ-照射過的食藥用菇品質,本研究也針對γ-照射過的巴西蘑菇子實體和樟芝菌絲體之抗氧化性質加以研究。
蛹蟲草 [Cordyceps militaris (L.) Link] 又稱北方蟲草,在台灣目前已經當做營養食品和機能性食品的配方使用。本研究則針對其菌種篩選、培養條件和生理活性成分加以探討。結果發現,經篩選發現蛹蟲草CM2因具有快速形成子實體的能力,而適合做為菌絲體液態培養和子實體固態培養時使用的菌株。根據培養皿培養的初步探討,CM2的較適培養基和條件為使用葡萄糖或蔗糖為碳源、酵母粉或酵母抽出物為氮源以及將其pH值調至5.5-6.0。而使用三角瓶震盪培養14天時,發現使用碳源和氮源分別為2%葡萄糖和1%胰蛋白腖時,並將酸鹼值調成pH 6.0且於20ºC的環境培養,可得到較高的產量。此外,子實體固態培養時,以蔗糖和酵母粉分別當作碳源和氮源,並在起始pH值為6.0和25ºC的培養溫度下,是較適且較合乎成本的培養條件。菌種保存方面,水是所使用的保護劑中最經濟且繼代培養步驟較簡單的。當培養完成時,所採收的子實體中腺苷、蟲草酸和多醣體的含量分別為0.88、117.66和23.21 mg/g,而在菌絲體中則為1.41、112.55和21.01 mg/g。整體而言,蛹蟲草CM2易於培養且具有生理活性物質,是值得開發的食藥用菇。
本研究進一步地針對蛹蟲草子實體和菌絲體之非揮發性呈味成分加以探討。結果發現,子實體和菌絲體兩者都含有多量的碳水化合物、粗纖維和粗蛋白。而子實體和菌絲體之總可溶性糖和糖醇含量分別為260.64和189.82 mg/g。其中甘露糖醇在子實體和菌絲體中的含量都是最多,分別為117.66和112.55 mg/g。子實體和菌絲體中總游離胺基酸的含量分別為48.15和67.63 mg/g。另外,類味精 (MSG-like) 成分的含量在子實體中為10.60 mg/g,多於菌絲體所含有的2.70 mg/g;但是,總5'-核苷酸和呈味5'-核苷酸的含量則是菌絲體中較多,分別為26.27和9.34 mg/g。以等價鮮味值來看,子實體和菌絲體的含量很接近,其相等的鮮味強度則分別為6.08和6.22 g的MSG。整體而言,蛹蟲草子實體和菌絲體擁有非常強的鮮味。
在γ-照射和抗氧化性質的關係方面,本研究將巴西蘑菇 (Agaricus blazei Murrill) 分別以劑量為2.5、5、10、15和20 kGy的 γ-射線照射後,針對其甲醇萃取物之抗氧化活性加以探討。當濃度為7.5和10 mg/mL時,巴西蘑菇經2.5-20 kGy之γ-照射後,其甲醇萃取物之抗氧化力顯著高於未照射組的甲醇萃取物。當濃度為0.5-7.5 mg/mL時,巴西蘑菇之2.5、10、15和20 kGy γ-照射組與未照射組,其甲醇萃取物間之還原力則相當。所有甲醇萃取物於濃度為0.5 mg/mL時都表現出極佳的清除1,1-二苯基-2-苦味肼基 (DPPH) 之能力 (95.2-100.7%)。關於清除羥自由基的能力方面,未照射組和照射組之甲醇萃取物間的能力無顯著差異。而巴西蘑菇甲醇萃取物中之總酚是最主要的天然抗氧化物,其含量範圍為18.77-21.48 mg/mL。此外,所有甲醇萃取物的EC50都低於10 mg/mL,而其中之還原力、清除DPPH能力和螯合亞鐵離子能力方面,其值都低於1 mg/mL。結果指出,未照射與照射的巴西蘑菇都具有良好的抗氧化性質,而且經20 kGy以下γ-照射的巴西蘑菇中總抗氧化物質的含量並無顯著之影響。
此外,樟芝 [Antrodia camphorata (Chang & Chou) Wu, Ryvvarden & Chang] 菌絲體亦分別以劑量為2.5、5、10、15 和20 kGy的γ-射線照射後,同時也針對其甲醇萃取物之抗氧化性質加以探討。當濃度為2.5 mg/mL 時,菌絲體經10-20 kGy γ-照射後,其甲醇萃取物之抗氧化力顯著高於未照射者。其中除了經20 kGy γ-照射的菌絲體之外,未照射者及經0.5和7.5 kGy照射者之甲醇萃取物間之還原力相當。而當濃度為2.5 mg/mL時,所有甲醇萃取物表現出極佳之清除DPPH自由基能力為92.3-103%。此外,菌絲體經2.5-20 kGy γ-照射者,其甲醇萃取物於濃度為10 mg/mL時之清除羥自由基能力都比未照射者顯著為高;而經5-20 kGy 照射之菌絲體,其螯合亞鐵離子之能力也比未照射者顯著為高。再者,除了未照射組之清除羥自由基之能力外,所有組別之抗氧化性質之EC50值都小於 15 mg/mL。另一方面,所測得的天然抗氧化物質中,總酚類是最主要的成分,其含量範圍為12.97-15.47 mg/mL。研究結果顯示,γ-照射的處理不僅保有菌絲原本之抗氧化性質,而且能提升其部份抗氧化性質至較高的程度。
In order to know the feasibility of cultivation of Cordyceps militaris on and its application in edibility, the object of this research was to study its culture conditions and taste quality. In addition, because γ-ray is often applied to the sterilization of the products of edible and medicinal mushrooms, in the cause of understanding the quality of γ-irradiated mushrooms, this study also focused on the antioxidant properties of γ-irradiated Agaricus blazei fruit bodies and Antrodia camphorata mycelia.
Cordyceps militaris (L.) Link (Clavicipitaceae), northern Cordyceps, is currently available in Taiwan for use in the formulation of nutraceuticals and functional foods. The research reported herein was designed to study the screening of C. militaris, conditions of cultivation and physiologically active components. Cordyceps militaris CM2 is a optimal strain for submerged culture and solid culture, because it can fruit quickly on solid medium. Incubation on Petri dish with potato dextrose agar, the more ideal medium and conditions for CM2 were glucose or sucrose as the carbon source and yeast powder or yeast extract as the nitrogen source at pH 5.5-6.0. Using shaken flask incubation for 14 days, CM2 mycelia grew well on the liquid medium with 2% glucose as the carbon source and 1% trypton as the nitrogen source at pH 6.0 and 20ºC. In addition, for the production of fruit bodies, using sucrose as the carbon source and yeast powder as the nitrogen source at pH 6.0 and 25ºC is a suitable and economical incubation condition. For maintaining CM2 culture, water is the most economical preservation reagent and the easiest method for continuous subculture. After incubation, harvesting and assaying, the contents of adenosine, polysaccharide and cordycepic acid of fruit bodies were 0.88, 117.66 and 23.21 mg/g and those of mycelia were 1.41, 112.55 and 21.01 mg/g. Overall, C. militaris CM2 is worth developing, because it is easy to incubate and possesses physiologically active components.
Furthermore, the non-volatile components in the form of C. militaris fruit bodies and mycelia were studied. Both fruit bodies and mycelia were high in contents of carbohydrate, crude fiber and crude protein. Content of total sugars and polyols were 260.64 and 189.82 mg/g for fruit bodies and mycelia, respectively. Mannitol content was the highest in both fruit bodies and mycelia (117.66 and 112.55 mg/g, respectively). Contents of total free amino acids in fruit bodies and mycelia were 48.15 and 67.63 mg/g, respectively. The content of monosodium glutamate (MSG)-like components in fruit bodies (10.60 mg/g) was higher than that in mycelia (2.70 mg/g). The contents of total and flavor 5'-nucleotides were high in mycelia (26.27 and 9.34 mg/g, respectively). Equivalent umami concentrations of fruit bodies and mycelia were similar, and equivalent to the umami intensity given by 6.08 and 6.22 g of MSG, respectively. Overall, both fruit bodies and mycelia of northern Cordyceps possessed highly intense umami taste.
In addition, Agaricus blazei Murrill (Agariaceae) was irradiated with gamma rays at doses of 2.5, 5, 10, 15 and 20 kGy and the antioxidant properties of its methanolic extracts were studied. At 7.5 and 10.0 mg/mL, antioxidant activities of methanolic extracts from 2.5-20 kGy γ-irradiated A. blazei were significantly higher than those of methanolic extract from the non-irradiated control. At 0.5-7.5 mg/mL, reducing powers of methanolic extracts from A. blazei with 2.5, 10, 15 and 20 kGy of irradiation and without irradiation were comparable. All methanolic extracts showed excellent scavenging abilities of 95.2-100.7% against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals at 0.5 mg/mL. With regard to the scavenging ability against hydroxyl radicals, unirradiated and γ-irradiated A. blazei were comparable. Total phenols were the major naturally occurring antioxidant components found in the range of 18.77-21.48 mg/g. All EC50 values were below 10 mg/mL, except values in reducing power, scavenging ability against DPPH radicals and chelating ability against ferrous ions were below 1 mg/mL. That indicates the unirradiated and irradiated A. blazei were good in antioxidant properties. Summarily, up to 20 kGy of irradiation did not remarkably affect the amounts of total antioxidant components in A. blazei.
Besides, the mycelia of Antrodia camphorata (Chang & Chou) Wu, Ryvarden & Chang were irradiated with gamma rays at doses of 2.5, 5, 10, 15 and 20 kGy and the antioxidant properties of its methanolic extracts were also studied. At 2.5 mg/mL, antioxidant activities of methanolic extracts from 10-20 kGy irradiated mycelia were significantly higher than the non-irradiated control. Reducing powers of methanolic extracts from unirradiated and 0.5 to 7.5 kGy irradiated mycelia were comparable except 20 kGy irradiated mycelia. At 2.5 mg/mL, all methanolic extracts showed excellent scavenging abilities of 92.3-103% on DPPH radicals. Scavenging abilities of methanolic extracts from 2.5-20 kGy irradiated mycelia on hydroxyl radical were better than that of the unirradiated control at 10 mg/mL. With irradiation at 5-20 kGy, mycelia possessed higher chelating ability on ferrous ions than the unirradiated control. The EC50 values were below 15 mg/mL, except values in scavenging ability of the unirradiated control on hydroxyl radicals. Total phenols were the major naturally occurring antioxidant components found in the range of 12.97-15.47 mg/g. Summarily, γ-irradiation not only maintained the antioxidant properties of mycelia but also enhanced some of its antioxidant properties to higher extent.
目 錄
第一章 文獻整理 1
壹、食藥用菇之機能性 2
一、一次機能 2
二、二次機能 3
三、三次機能 4
四、四次機能 4
貳、自由基與氧化 5
一、自由基之種類與生成 5
二、脂質過氧化物的產生 5
(一) 起始期 6
(二) 連鎖反應期 6
(三) 終止反應期 7
三、氧化與食品和疾病之關係 7
四、氧化的抑制 8
參、食藥用菇之呈味性質 9
一、游離胺基酸 9
二、核苷酸 10
三、可溶性糖及糖醇 14
肆、食藥用菇之培養 14
一、菇類子實體之栽培 18
(一) 木生菌 18
(二) 土生菌 18
(三) 蟲生菌 18
二、菇類菌絲體之培養 19
(一) 液態發酵技術 19
(二) 固態發酵技術 20
伍、加馬射線於食品上之應用 20
一、食品輻射照射技術的源由 20
二、食品輻射照射技術 21
三、食品照射之效應 22
(一) 生物學效應 22
(二) 生理學效應 22
(三) 化學效應 22
四、影響照射效果之因素 22
五、照射技術在食品上之應用 23
(一) 提高葡萄渣中花青素的回收率 23
(二) 降解碳水化合物,增加生物資源的回收 23
(三) 促進米酒的熟成 27
(四) 促進菇類培養基質的利用 27
(五) 促進類黃酮的生合成 27
(六) 減少食物過敏症 27
(七) 減少食物中抗營養因子的含量 27
(八) 化學單體的接枝 28
(九) 脫色 28
陸、蛹蟲草之簡介 28
一、蛹蟲草之現況 28
二、分布情形 28
三、安全性和毒性研究 30
四、化學組成 30
(一) 硒 30
(二) 脂肪酸 30
(三) 胺基酸 30
(四) 蟲草素 30
(五) 甘露糖醇 30
(六) 超氧歧化酶 31
(七) 麥角固醇 31
(八) 腺苷 31
(九) 多醣體 31
五、生物活性研究 31
(一) 抑制腫瘤作用 31
(二) 抗氧化作用 32
(三) 抗疲勞作用 32
(四) 保肝作用 32
(五) 抑菌作用 32
(六) 抗發炎作用 32
(七) 降血糖作用 32
六、一般食用方法 33
七、發展蛹蟲草之優點 33
柒、巴西蘑菇之簡介 34
一、巴西蘑菇的近況 34
二、巴西蘑菇的組成 34
三、巴西蘑菇的生理活性 36
(一) 抗腫瘤作用 36
(二) 抗癌作用 37
(三) 降血糖作用 37
(四) 抗血栓作用 37
(五) 降血壓和降膽固醇作用 38
(六) 免疫調節作用 38
(七) 抗病毒作用 38
(八) 抗致突變作用 38
(九) 保肝作用 39
四、巴西蘑菇的儲藏性 39
捌、樟芝之簡介 40
一、樟芝之分類及分佈 40
二、樟芝的近況 42
三、樟芝的化學組成 42
四、生物活性研究 45
(一) 抗氧化作用 45
(二) 保肝作用 46
(三) 抗腫瘤作用 47
(四) 抗發炎作用 48
(五) 抗血小板凝集作用 48
(六) 降血糖作用 48
玖、研究目的 49
拾、實驗架構 50
第二章 蛹蟲草子實體之栽培及其菌絲體之液態培養 51
摘要 52
Abstract 53
壹、前言 54
貳、材料與方法 55
一、蛹蟲草 55
二、藥品與培養基 55
三、較適培養條件探討 56
(一) 固態培養基中碳、氮源和 pH 值對菌絲體生長之影響 56
(二) 液態培養基中碳、氮源、pH 值和溫度對菌絲體生長之影響 56
(三) 子實體固態培養 57
四、菌種保存 57
五、生理活性物質之分析 58
(一) 多醣體 58
(二) 蟲草素和腺苷 58
(三) 甘露糖醇 59
六、生菌數測定 59
七、統計分析 60
參、結果與討論 61
一、菌種篩選 62
二、較適培養條件之培養皿試驗 62
三、菌絲體之液態培養 68
四、子實體之固態培養 70
五、菌種保存 72
六、生理活性物質和生菌數 74
肆、結論 77
第三章 蛹蟲草子實體及菌絲體之非揮發性呈味性質 78
摘要 79
Abstract 80
壹、前言 81
貳、材料與方法 82
一、子實體與菌絲體 82
(一) 菌種來源與活化 82
(二) 子實體之培養 82
(三) 菌絲體之培養 82
(四) 子實體與菌絲體樣品粉末 83
二、藥品及培養基 83
三、一般組成分析 84
(一) 水分之測定 84
(二) 脂質之測定 84
(三) 蛋白質之測定 84
(四) 灰分之測定 85
(五) 粗纖維之測定 85
(六) 還原糖之測定 85
四、可溶性糖與糖醇之測定 86
(一) 可溶性糖類與糖醇之萃取 86
(二) 可溶性糖類與糖醇之分析 86
五、游離胺基酸之測定 87
(一) 游離胺基酸之萃取 87
(二) 游離胺基酸之分析 87
六、5'-核苷酸之測定 87
(一) 核苷酸之萃取 87
(二) 核苷酸之分析 88
七、等價鮮味值之換算 88
八、統計分析 89
參、結果與討論 90
一、一般組成 91
二、可溶性糖與糖醇 93
三、游離胺基酸 95
四、5'-核苷酸 98
五、等價鮮味值 98
肆、結論 100
第四章 巴西蘑菇子實體經γ-射線照射後之甲醇萃取物的抗氧化性質 103
摘要 104
Abstract 105
壹、前言 106
貳、材料與方法 108
一、巴西蘑菇樣品製備與萃取 108
二、藥品 108
三、抗氧化力 109
四、還原力分析 110
五、清除 1,1-二苯基-2-苦味肼基能力分析 110
六、清除羥自由基能力分析 111
七、螯合亞鐵離子能力分析 111
八、抗氧化物質分析 112
(一) 抗壞血酸含量測定 112
(二) β-胡蘿蔔素測定 112
(三) 生育酚測定 113
(四) 總酚類化合物測定 113
九、統計分析 114
參、結果與討論 115
一、萃取率 115
二、抗氧化力 117
三、還原力 120
四、清除 1,1-二苯基-2-苦味肼基能力 123
五、清除羥自由基能力 126
六、螯合亞鐵離子能力 128
七、抗氧化性質之EC50 128
八、抗氧化物質 132
肆、結論 135
第五章 樟芝菌絲體經γ-射線照射後之甲醇萃取物的抗氧化性質 136
摘要 137
Abstract 138
壹、前言 139
貳、材料與方法 141
一、樟芝菌絲體 141
二、藥品 141
三、抗氧化力分析 142
四、還原力分析 143
五、清除 1,1-二苯基-2-苦味肼基能力分析 143
六、清除羥自由基能力分析 144
七、螯合亞鐵離子能力分析 144
八、抗氧化物質分析 145
(一) 抗壞血酸含量測定分析 145
(二) β-胡蘿蔔素測定 145
(三) 生育酚測定 146
(四) 總酚類化合物測定 146
九、統計分析 147
參、結果與討論 148
一、萃取率 148
二、抗氧化力 150
三、還原力 154
四、清除 1,1-二苯基-2-苦味肼基能力 157
五、清除羥自由基能力 160
六、螯合亞鐵離子能力 162
七、抗氧化性質之EC50 165
八、抗氧化物質 167
肆、結論 170
參考文獻 171

表 次
附表 1、L-胺基酸之呈味特性 11
附表 2、胺基酸之相對甜度 12
附表 3、鮮味胺基酸及鮮味核苷酸之個別相對鮮味強度 13
附表 4、菇類子實體的等價鮮味值 15
附表 5、菇類菌絲體之等價鮮味值 17
附表 6、食品輻射照射處理標準 24
表 2-1、蛹蟲草培養於不同三角瓶液態培養條件下之菌絲體產量 69
表 2-2、蛹蟲草培養於不同的固態培養條件下之子實體產量 71
表 2-3、蛹蟲草菌絲體經覆蓋不同保護劑後於-20ºC的環境下存放一段時間之存活力 73
表 2-4、蛹蟲草子實體和菌絲體之生理活性物質和總生菌數含量 75
表 3-1、蛹蟲草子實體和菌絲體之ㄧ般組成 92
表 3-2、蛹蟲草子實體和菌絲體中可溶性糖和糖醇之含量 94
表 3-3、蛹蟲草子實體和菌絲體中游離胺基酸之含量 96
表 3-4、蛹蟲草子實體和菌絲體中游離胺基酸之呈味特性 97
表 3-5、蛹蟲草子實體和菌絲體中5'-核甘酸之含量 99
表 3-6、蛹蟲草子實體和菌絲體之等價鮮味值 101
表 4-1、巴西蘑菇子實體經不同劑量γ-照射後之甲醇萃取率 116
表 4-2、巴西蘑菇子實體經不同劑量之γ-照射後,其甲醇萃取物之抗氧化力 118
表 4-3、巴西蘑菇子實體經不同劑量之γ-照射後,其甲醇萃取物之還原力 121
表 4-4、巴西磨菇子實體經不同劑量之γ-照射後,其甲醇萃取物之清除 1,1-二苯基-2-苦味肼基能力 124
表 4-5、巴西蘑菇子實體經不同劑量之γ-照射後,其甲醇萃取物之清除羥自由基能力 127
表 4-6、巴西蘑菇子實體經不同劑量之γ-照射後,其甲醇萃取物之螯合亞鐵離子能力 129
表 4-7、巴西蘑菇子實體經不同劑量之γ-照射後,其甲醇萃取物中抗氧化性質之EC50 131
表 4-8、巴西蘑菇子實體經不同劑量之γ-照射後,其甲醇萃取物中抗壞血酸、β-胡蘿蔔素、生育酚和總酚類之含量 133
表 5-1、樟芝菌絲體經不同劑量之γ-照射後其甲醇萃取率 149
表 5-2、樟芝菌絲體經不同劑量γ-照射後,其甲醇萃取物之抗氧化力 151
表 5-3、樟芝菌絲體經不同劑量γ-照射後,其甲醇萃取物之還原力 155
表 5-4、樟芝菌絲體經不同劑量照射後,其甲醇萃取物之清除1,1-二苯基-2-苦味肼基能力 158
表 5-5、樟芝菌絲體經不同劑量之γ-照射後,其清除羥自由基之能力 161
表 5-6、樟芝菌絲體經不同劑量之γ-照射後,其甲醇萃取物之螯合亞鐵離子能力 163
表 5-7、樟芝菌絲體經不同劑量之γ-照射後,其甲醇萃取物中抗氧化性質之 EC50 值 166
表 5-8、樟芝菌絲體經不同劑量照射後,其甲醇萃取物中β-胡蘿蔔素、生育酚和總酚類之含量 168

圖 次
附圖1、輻射照射食品標章 26
附圖2、蛹蟲草子實體 29
附圖3、巴西蘑菇子實體 35
附圖4、樟芝子實體 41
圖 2-1、不同來源的蛹蟲草於 PDA 培養基培養期間之菌絲體絕對生長半徑 63
圖 2-2、蛹蟲草 (CM2) 於含不同碳源培養基之培養皿中培養時的菌絲體絕對生長半徑 (20ºC) 64
圖 2-3、蛹蟲草 (CM2) 於含不同氮源培養基之培養皿中培養時的菌絲體絕對生長半徑 (20ºC) 66
圖 2-4、蛹蟲草 (CM2) 於調至不同酸鹼值培養基之培養皿中培養時的菌絲體絕對生長半徑 (20ºC) 67
圖 4-1、巴西蘑菇子實體經不同劑量之γ-照射後,其甲醇萃取物之抗氧化力 119
圖 4-2、巴西蘑菇子實體經不同劑量之γ-照射後,其甲醇萃取物之還原力 122
圖 4-3、巴西蘑菇子實體經不同劑量之γ-照射後,其甲醇萃取物之清除 1,1-二苯基-2-苦味肼基能力 125
圖 4-4、巴西蘑菇子實體經不同劑量之γ-照射後,其甲醇萃取物之螯合亞鐵離子能力 130
圖 5-1、樟芝菌絲體經不同劑量γ-照射後,其甲醇萃取物之抗氧化力 152
圖 5-2. 樟芝菌絲體經不同劑量γ-照射後,其甲醇萃取物之還原力 156
圖 5-3、樟芝菌絲體經不同劑量照射後,其甲醇萃取物之清除1,1-二苯基-2-苦味肼基能力 159
圖 5-4、樟芝菌絲體經不同劑量之γ-照射後,其甲醇萃取物之螯合亞鐵離子能力 164
于淼、王賀祥、康凱。2005。蛹蟲草菌絲生長條件的試驗。中國食用菌,24: 11-12。
水野卓、川合正允 (著)。賴慶亮 (譯)。1997。菇類的化學、生化學。國立編譯館,台北,台灣。
王心怡。2004c。樟芝深層醱酵液之成份分析。實踐大學碩士論文,台北,台灣。
王伯徹,陳啟楨,華傑。1998b。食藥用菇類的培養與應用。食品工業發展研究所,新竹,台灣。
王伯徹、林錦堂、華傑。1990。靈芝菌種之長期保存。中國農業化學會誌,28: 86-93。
王伯徹、邱世浩、黃仁彰。1998a。食用菇保健食品專輯。食品工業,30:1-36。
王伯徹。2004a。綜論菇類大型真菌的利用與開發。食品工業,36: 1-3。
王伯徹。2004b。菇類菌種之長期保存。食品工業,36: 16-24。
王宏生。1998。我省蟲草資源的合理利用與保護。青海畜牧獸醫雜誌,28: 33-34。
王學理、馬宏志、高俊崇、孫家棟、陳也、李湘林、太洪義、于銫萍、劉永強、李紹武、趙金平、李寧。1995。以森林害蟲為寄主人工培育北冬蟲夏草技術研究報告。吉林林業科技,3: 6-10, 56。
江曉路、孫月。1999。蛹蟲草活性成分的測定。食用菌學報,6: 47-50。
吳云鶴、朱世瑛、丁彥懷、婁紅。1996。北冬蟲夏草的人工培養條件及其子實體的成分分析。食用菌學報,3: 59-61。
吳畏、高新華、崔明星、錢國琛、陳偉。2000。北冬蟲夏草(Cordyceps militaris) 的研究應用概況 (綜述)。上海農業學報,16: 99-104。
吳德鵬。1995。樟芝微量元素的研究。國立師範大學碩士論文,台北,台灣。
吳聲華、余知和、戴玉成、陳成桃、蘇慶華、陳隆鐘、徐維哲、黃光裕。2004。多孔菌新屬,台芝屬 (Taiwanofungus)。中華真菌學會會刊,19: 109-116。
宋祖瑩。2003。樟芝深層培養液抗氧化及抗腫瘤特性之研究。國立中興大學博士論文,台中,台灣。
宋新華。2000。斜面傳代法保藏食用菌菌種的方法改進。淄博學院學報,2: 86-88。
李一宏。2003b。樟芝菌絲體之培養及其多醣體抗乙型肝炎病毒活性評估)。中國醫藥學院碩士論文,台中,台灣。
李春斌、佟曉冬、白靜、范巠第。2004。蛹蟲草子實體的人工培養研究。大連民族學院學報,6: 29-31。
李炫璋。2003a。牛樟芝菌絲體之體內保肝功能評估及其熱水萃物在體外對基質金屬蛋白水解酶活性之影響。國立中興大學碩士論文,台中,台灣。
李美娜、吳謝軍、李春燕、馮伯森、李慶偉。2003。人工培養蛹蟲草退化現象的分子分析。菌物系統,22: 277-282。
汪洪。1999。蟲草研究開發中幾個問題的探討。農牧產品開發,6: 24-25。
車振明。2003。人工培育的蛹蟲草純子實體食用安全性研究。食用菌,3: 45-46。
周廣麒、萬曉星、侯友松、張長鎧。2004。蛹蟲草液態深層發酵的研究,30: 39-43。
周廣麟。2000。蛹蟲草的液體培養(發酵)技術。中國食物與營養,2: 26-27。
林苡芬。2004b。不同發酵碳源之牛樟芝菌絲體發酵過濾液對人類肝癌細胞株之影響。國立臺灣大學碩士論文,台北,台灣。
林素民、白純櫻、林靜晞、張基煌、陳勁初、喬長誠。2001。樟芝菌絲體和子實體脂肪酸及麥角固醇分析。中華保健食品學會第二屆第一次會員大會。台北,台灣。
林婉茹、劉黃碧圓、林芳存、李堂察、洪進雄。2004。溫度對巴西蘑菇儲藏壽命及品質之影響。中華真菌學會會刊,19: 169-179。
林淑瑗、王聯輝。2004a。食品加工理論基礎篇,第五章:食品加工保藏及其方法,pp. 273-397。華格納企業有限公司。台中,台灣。
范真綺。2004。樟芝固態栽培與液態發酵菌絲體之成分及其生物活性之研究。南台科技大學碩士論文,台南,台灣。
食品分析方法手冊。1990。食品工業發展研究所,新竹,台灣。
香川芳子 (監修)。2004。五訂食品成分表。女子榮養大學出版部 p. 122-127。東京,日本。
孫月、卜寧、劉建華。1999。蛹蟲草蟲草酸蟲草素含量測定與分析。中國食用菌,18: 19。
柴建萍、白興榮、謝道燕。2003。蛹蟲草主要有效成分及其藥理功效。雲南農業科技,4: 22-23。
柴建萍、白興榮、謝道燕。2004。蛹蟲草菌深層培養基正交試驗。雲南農業科技,3: 26-28。
貢成良、徐承智、楊昆、陳國剛、潘中華、吳衛東。2003。家蚕蛹蟲草的毒性研究。中國食用菌,22: 54-56。
貢成良、徐承智、楊昆、陳國剛、潘中華、吳衛東。2004。家蚕蛹蟲草的毒性研究 (續)。中國食用菌,23: 46-48。
高新華、吳畏、錢國琛、崔明星、陳偉。2000。非生物因子對北冬蟲夏草主要菌株子實體分化的影響。上海農業學報,16: 93-98。
高曉薇。1992。樟芝對倉鼠體內脂質代謝與抗氧化狀態之影響。輔仁大學碩士論文,台北,台灣。
張怡婷。2004a。樟芝抗腫瘤活性之研究。國立成功大學碩士論文,台南,台灣。
張紹欣。2004b。天然食材的樟芝發酵產物對抑制腫瘤細胞之評估。南台科技大學碩士論文,台南,台灣。
張緒璋。2003。北冬蟲夏草的人工培植及其營養成分分析。中國食用菌,22: 19-21。
畢培曦、馬平。1995。香港市售冬蟲夏草偽品之生藥鑒定。中醫藥雜誌,6: 259-264。
莊曉莉、李祥麟、黃檀溪。2003。蠶蛹蟲草具有顯著之抗氧化性與自由基清除能力。師大學報,48: 13-24。
許勝傑、陳清農、陳勁初。2000。樟芝宿主專一性之探討。台灣農業化學與食品科學,38: 533-539。
郭成金、夏茜、姚紅。1994。保藏食用菌幾種母種培養基的研究。天津師大學報,14: 60-64。
郭淑卿。2002。樟芝發酵液對大鼠肝臟纖維化及胃腸功能之改善作用。中國醫藥學院碩士論文,台中,台灣。
陳心慧。2004b。牛樟芝不同極性區分保肝機能性之研究。中山醫學大學碩士論文,台中,台灣。
陳弘坤。1986。洋菇濃縮物呈味特性及粉末化之研究。國立中興大學食品科學系碩士論文,台中,台灣。
陳伯珠。2004c。一、高通量篩選出牛樟芝菌絲體抗肝癌先導藥物化合物二、以p53、bax、bcl-2 之m-RNA層次進行抗肝癌先導藥物化合物對人類肝癌細胞株HepG2凋亡途徑之探討。國立中正大學碩士論文,嘉義,台灣。
陳怡欣。2002a。牛樟芝發酵過濾液對大白鼠肝臟生理機能之影響。中國醫藥學院碩士論文,台中,台灣。
陳勁初、林文鑫、陳清農、許勝傑、黃仕政、陳炎鍊。2001a。台灣特有真菌--樟芝菌絲體之開發。中華真菌學會會刊,16: 7-22。
陳勁初、黃仕政。2000。菇菌類機能性食品之開發。生物產業,11: 164-172。
陳美瑩。2003a。照射技術及其在食品中之應用。食品工業,35: 47-60。
陳晉安、黃浩、鄭忠輝、黃耀堅、蘇文金。2001b。蛹蟲草液體發酵條件的研究。集美大學學報,6: 219-223。
陳啟楨。1999。菇類二次代謝物質及其利用。食品工業,31: 1-11。
陳啟禎、劉景文。1998。食藥用菇類的培養與應用:3.食藥用菇類的栽培技術。pp. 36-52。食品工業發展研究所。新竹,台灣。
陳清農、高炳煌、楊梅春、陳勁初。1999。台灣森林中的紅寶石─樟芝。鄉間小路,1: 22。
陳順志、王晨光、劉玉梅、高淑賢。1996。蟲草及蛹蟲草對大鼠離體肝細胞能荷的影響。食用菌學報,3: 41-44。
陳曉娟。2004a。針葉樹之牛樟芝菌絲體生長促進因子及牛樟芝菌絲體成分之研究。台北醫學大學碩士論文,台北,台灣。
陳燕伊。2002b。蛹蟲草發酵液及其區分物對肝細胞之影響。國立台灣大學碩士論文,台北,台灣。
陳藝文。2003b。培養條件對樟芝菌絲體生長與抗氧化成分生成之影響。東海大學碩士論文,台中,台灣。
喬長誠、陳清農、許勝傑、陳勁初。1999。樟芝揮發性成分之研究。中華民國食品科技學會第二十九屆年會,台中,台灣。
焦淑萍、岳朝陽、張新平。1997。森林病原真菌菌種長期保藏方法的研究。西北林學院學報,12: 90-92。
程一華。1994。樟芝之成份研究。國立台灣師範大學碩士論文,台北,台灣。
黃仕政、陳勁初。2000。發酵生物技術在菇類食品的應用,中華食品工業雜誌,40: 62-67。
黃惟敏。1990。樟芝微量成分的研究(II)。靜宜大學碩士論文,台中,台灣。
黃惠君。2004。食藥用菇的營養與藥用價值。食品工業,36: 25-32。
黃鈴娟。2000。樟芝與姬松茸之抗氧化性及其多醣組成分析。國立中興大學食品科學系碩士論文,台中,台灣。
楊國卿、賴俊雄、王建民、劉紹興、林春蓮、楊燦、許昭純、趙秀琳、劉淑芬、吳聰能。1996。鉛污染中藥冬蟲夏草造成的鉛危害:四個案例分析。中華職業醫學雜誌,3: 73-77。
溫魯、夏敏、宋虎衛、袁丞墅、周昊、蔣潔、張樂。蛹蟲草的兩株蟲草素高產菌株。2005。食用菌,1: 12-14。
葉怡真。2002。樟芝對血管內皮細胞之影響及保心血管疾病之機制探討。中國醫藥學院碩士論文,台中,台灣。
葉淑幸。2003。培養基中碳氮源與培養方式對蛹蟲草菌 (Cordyceps)醱酵產程中生質、菌絲球及生物活性成分之影響。大葉大學碩士論文,彰化,台灣。
葛蓓蕾、江曉路。1999。北蟲草的研究現況。中國食用菌,18: 26-27。
廖仁宏。2003。固態培養生產靈芝菌絲體之研究。東海大學碩士論文,台中,台灣。
廖英明。1998。菇類中的許不了:樟芝。農業世界雜誌,176: 76-79。
蓋新杰、張翼伸。1992。蛹蟲草胞外多醣的研究 I. 半乳甘露聚糖 (CM-I) 的純化和結構研究。真菌學報,11: 300-307。
劉俊仁。2003。中草藥抗癌機制研究:(壹):黃芩素及黃芩苷對血管新生作用之影響及其機制探討;(貳):樟芝活性多醣體之生物活性分析及其經由免疫調節抑制腫瘤生長之研究。國立臺灣大學博士論文,台北,台灣。
劉勝貴、劉衛今。1996。食用菌菌種保藏方法的研究。懷化師專學報,15: 68-70。
劉景文。1997。農業及環境微生物菌種之收存與應用:食藥用菇類之栽培與應用。食品工業發展研究所三十週年紀念叢書。No. S-86-013, pp. 16-25。
劉翠玲。2002。樟芝對倉鼠體內脂質代謝與抗氧化狀態之影響。輔仁大學碩士論文,台北,台灣。
潘致良。2004。利用蛋白質體探討樟芝萃取物處理在人類肺癌細胞株(A549)。南台科技大學碩士論文,台南,台灣。
潘新法。1995。蛹蟲草子實體的人工培育及超氧化物歧化酶的活性測定。食用菌學報,2: 25-28。
蔡惠利。巴西蘑菇、茶樹菇、牛肝菌和雞腿菇之呈味與抗氧化性質。國立中興大學碩士論文,台中,台灣。
蔡雁暉。2002。樟芝深層培養液及其多醣體之抗氧化特性。國立中興大學碩士論文,台中,台灣。
蔡銘璡。2004。以液態及固態發酵進行蛹蟲草機能性成分之研究。大葉大學碩士論文,彰化,台灣。
盧祉彤。2004。牛樟芝菌絲體對腫瘤細胞的影響。南台科技大學碩士論文,台南,台灣。
蕭麗華。1997。冬蟲夏草真偽品與發酵培養製備物之結構特徵與成分分析比較。大葉大學,彰化,台灣。
賴鈺菁。2004。樟芝發酵液之抗發炎及其誘導癌細胞凋亡機制之探討。中國醫藥大學碩士論文,台中,台灣。
戴宇昀。2001。樟芝菌絲體與子實體對四氯化碳及酒精誘導之慢性及急性肝損傷之保肝功能評估。國立中興大學碩士論文,台中,台灣。
魏佳瑜。2003。固體栽培樟芝甲醇萃取物抗變異自由基功效與抗血小板凝集作用。臺北醫學大學碩士論文,台北,台灣。
嚴貴榮。2002。樟芝對STZ誘發高血糖鼠血糖調節與抗氧化之影響。輔仁大學碩士論文,台北,台灣。
Abu-Tarboush, H.M. 1998. Irradiation inactivation of some antinutritional factors in plant seeds. Journal Agricultural and Food Chemistry, 46: 2698-2702.
Adamo, M., Capitani, D., Mannina, L., Cristinzio, M., Ragni, P., Tata, A., & Coppola, R. 2004. Truffles decontamination treatment by ionizing radiation. Radiation Physics and Chemistry, 71: 165-168.
Ahn, D.U., & Nam, K.C. 2004. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef. Radiation Physics and Chemistry, 71: 149-154.
Ahn, H.J., Kim, J.H., Jo, C., Kim, M.J., & Byun, M.W. 2004a. Comparision of irradiated phytic acid and other antioxidants for antioxidant activity. Food Chemistry, 88: 173-178.
Ahn, H.J., Kim, J.H., Kim, J.K., Kim, D.H., Yook, H.S., & Byun, M.W. 2005. Combined effects of irradiation and modified atmosphere packaging on minimally processed Chinese cabbage (Brassica rapa L.) Food Chemistry, 89: 589-597.
Ahn, W.S., Kim, D.J., Chae, G.T., Lee, J.M., Bae, S.M., Sin, J.I., Kim, Y.W., Namkoong, S.E., & Lee, I.P. 2004b. Natural killer cell activity and quality of life were improved by consumption of a mushroom extract, Agaricus blazei Murill Kyowa, in gynecological cancer patients undergoing chemotherapy. International Journal of Gynecological Cancer, 14: 589-594.
Ahn,Y.J., Park, S.J., Lee, S.G., Shin, S.C., & Choi, D.H. 2000. Cordycepin: selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp. Journal of Agricultural and Food Chemistry, 48: 2744-2748.
Ajlouni, S.O., Beelman, R.B., Thompson, D.B., & Mau, J.L. 1995. Changes in soluble sugars in various tissues of cultivated mushrooms, Agaricus bisporus, during postharvest storage. In G. Charalambous (Ed.), Food flavors (pp. 1865–1880). Amsterdam, Netherlands: Elsevier Sci. Publ.
Al-Kaisey, M.T., Alwan, A.-K.-H., Mohammad, M.H., & Saeed, A.H. 2003. Effect of gamma irradiation on antinutritional factors in broad bean. Radiation Physics and Chemistry, 67: 493-496.
Ayed, N., Yu, H.-L., & and Lacroix, M. 1999. Improvement of anthocyanin yield and shelf-life extension of grape pomace by gamma irradiation. Food Research International, 32: 539-543.
Ayed, N., Yu, H.-L., & Lacroix, M. 2000. Using gamma irradiation for the recoveryof anthocyanin yield from grape pomace. Radiation Physics and Chemistry, 57: 277-279.
Bano, Z., & Rajarathnam, S. 1988. Pleurotus mushrooms. Part II. Chemical composition, nutritional value, post-harvest physiology, preservation, and role as human food. CRC Critical Reviews in Food Science and Nutrition, 27: 87-158.
Barbisan, L.F., Miyamoto, M., Scolastici, C., Salvadori, D.M., Ribeiro, L.R., Eira, A.F., & de Camargo, J.L. 2002. Influence of aqueous extract of Agaricus blazei on rat liver toxicity induced by different doses of diethylnitrosamine. Journal of Ethnopharmacology, 83: 25-32.
Barbisan, L.F., Spinardi-Barbisan, A.L., Moreira, E.L., Salvadori, D.M., Ribeiro, L.R., da Eira, A.F., & de Camargo, J.L. 2003. Agaricus blazei (Himematsutake) does not alter the development of rat diethylnitrosamine-initiated hepatic preneoplastic foci. Cancer Science, 94: 188-192.
Barrios-Gonzalez, J., & Mejia, A. 1996. Production of secondary metabolites by solid-state fermentation. Biotechnology Annual Review, 2: 85-121.
Bartnicki-Garcia. S. 1968. Cell wall chemistry, morphogenesis and taxonomy of fungi. Annual Review of Microbiology, 22: 87-108.
Bellini, M.F., Giacomini, N.L., Eira, A.F., Ribeiro, L.R., & Mantovani, M.S. 2003. Anticlastogenic effect of aqueous extracts of Agaricus blazei on CHO-k1 cells, studying different developmental phases of the mushroom. Toxicology In Vitro, 17: 465-469.
Bertolini, A.C., Mestres, C., Colonna, P., & Raffi, J. 2001. Free radical formation in UV- and gamma-irradiated cassava starch. Carbohydrate Polymers, 44: 269-271.
Byun, M.W., Lee, J.W., Yook, H.S., Jo, C., & Kim, H.Y. 2002a. Application of gamma irradiation for inhibition of food allergy. Radiation Physics and Chemistry, 63: 369-370.
Byun, M.W., Son, J.H., Yook, H.S., Lo, C., & Kim, D.H. 2002b. Effect of gamma irradiation on the physiological activity of Korean soybean fermented foods, Chungkookjang and Doenjang. Radiation Physics and Chemistry, 64: 245-248.
Byun, M.W., Yook, H.S., Kim, K.S., & Chung, C.K. 1999. Effects of gamma irradiation on physiological effectiveness of Korean medicinal herbs. Radiation Physics and Chemistry, 54: 291-300.
Byun, M.W., Yook, H.S., Kwon, O.J., & Kang, I.J. 1997. Effects of gamma irradiation on physicochemical properties of Korean red ginseng powder. Radiation Physics and Chemistry, 49: 483-489.
Calucci, L., Pinzino, C., Zandomeneghi, M., Capocchi, A.,Ghiringhelli, S., Saviozzi, F., Tozzi, S., & Galleschi, L. 2003. Effects of γ-irradiation on the free radical and antioxidant contents in nine aromatic herbs and spices. Journal of Agricultural and Food Chemistry, 51: 927-934.
Carpenter, A.P. 1979. Determination of tocopherols in vegetable oils. Journal of the American Oil Chemists’ Society, 56: 668-672.
Casimiro, M.H., Botelho, M.L., Leal, J.P., & Gil, M.H. 2005. Study on chemical, UV and gamma radiation-induced grafting of 2-hydroxyethyl methacrylate onto chitosan. Radiation Physics and Chemistry, 72: 731-735.
Chang, A.-C. 2003. The effects of gamma irradiation on rice wine maturation. Food Chemistry, 83: 323-327.
Chang, H.-L., Chao, G.-R., Chen, C.-C., & Mau, J.-L. 2001. Non-volatile taste components of Agaricus blazei, Antrodia camphorata and Cordyceps militaris mycelia. Food Chemistry, 74: 203-207.
Chang, S.T., & Miles, P.G. 1989. Edible mushroom and their cultivation. CRC Press, Boca Raton, Florida.
Chang, T.-T., & Chou, W.-N. 1995. Antrodia camphorata sp. nov. on Cinnamomum kanehirai in Taiwan. Mycological Research, 99: 756-758.
Chatterjee, S., Desai, S.R.P., & Thomas, P. 1999. Effect of γ-irradiation on the antioxidant activity of turmeric (Curcuma longa L.) extracts. Food Research International, 32: 487-490.
Chen, L., Shao, H.J., & Su, Y.B. 2004. Coimmunization of Agaricus blazei Murill extract with hepatitis B virus core protein through DNA vaccine enhances cellular and humoral immune responses. International Immunopharmacology, 4: 403-409.
Cheung, P.C.K. 1996. Dietary fiber content and composition of some cultivated edible mushroom fruiting bodies and mycelia. Journal of Agricultural and Food Chemistry, 44: 468-471.
Choi, S.B., Park, C.H., Choi, M.K., Jun, D.W., & Park, S. 2004. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats. Bioscience, Biotechnology, and Biochemistry, 68: 2257-2264.
Choi, W.-S., Ahn, K.-J., Lee, D.-W., Byun, M.-W., & Park, H.-J. 2002. Preparation of chitosan oligomers by irradiation. Polymer Degradation and Stability, 78: 533-538.
Ciesla, K., Zoltowski, T., & Mogilevsky, L.Y., 1991. Detection of starch transformation under gamma irradiation by small-angle X-ray scattering. Starch/Staerke, 43: 11-12.
Crawford, L.M., & Ruff, E.H. 1996. A review of the safety of cold pasteurization through irradiation. Food Control, 7: 87-97.
Crisan, E.V., & Sands, A. 1978. Edible mushrooms: Nutritional value. In S. T. Chang & W. A. Hayes (Eds.), The biology and cultivation of edible mushrooms (pp. 137-165). New York: Academic Press.
DaSilva, E.J. 2005. Mushrooms in medicine and culture. International Journal of Medicinal Mushrooms, 7: 75-78.
Delmanto, R.D., de Lima, P.L., Sugui, M.M., da Eira, A.F., Salvadori, D.M., Speit, G., & Ribeiro, L.R. 2001. Antimutagenic effect of Agaricus blazei Murrill mushroom on the genotoxicity induced by cyclophosphamide. Mutation Research, 496: 15-21.
Deschreider, A.R. 1959. Systematic study of flour treated with gamma rays, 1 Action on polysaccharides. Fermentation, 1: 31.
Durand, A. 2003. Bioreactor designs for solid state fermentation. Biochemical Engineering Journal, 13: 113–125.
Fennema, O.R. 1996. Lipids in “Food Chemistry” 3rd ed. New York.
Frankel, E.N. 1984. Chemistry of free radical and singlet oxidation of lipids. Progress in Lipid Research, 23: 197-221.
Frederiksen, S., Malling, H., & Klenow, H. 1965. Isolation of 3'-deoxyadenosine (cordycepin) from the liquid medium of Cordyceps militaris (L. ex. Fr.) Link. Biochimica et Biophysica Acta, 95: 189-193.
Fujimaki, M. 1998. Food functions (in Japanese). Gakkai Shyupan Center, Tokyo. pp. 1-309.
Furuya, T., Hirotani, M., & Matsuzawa, M. 1983. N6-(2-Hydroxyethyl) adenosine, a biologically active compound from cultured mycelia of Cordyceps and Isaria species. Phytochemistry, 22: 2509-2512.
Gbedemah, C.M., Obodai, M., & Sawyerr, L.C. 1998. Preliminary investigations into the bioconversion of gamma irradiated agricultural waste by Pleurotus spp. Radiation Physics and Chemistry, 52: 379-382.
Glazer, R.I., Lott T.J., & Peale, A.L. 1978. Potentiation by 2′-deoxycoformycin of the inhibitory effect by 3′-deoxyadenosine (cordycepin) on nuclear RNA synthesis in L1210 cells in vitro. Cancer Research, 38: 2233–2238.
Halliwell, B., & Gutteridge, J.M.C. 1999. “Free Radical in Biology and Medicine”, ed. By B. Halliwell and J. M. C. Gutteridge. Clarendon Press, Oxford.
Hammond, J.B.W., & Nichols, R. 1976. Carbohydrate metabolism in Agaricus bisporus (Lange) Sing.: change on soluble carbohydrate during growth of mycelium and sporephore. Journal of General Microbiology, 93: 309-320.
Holker, U., Hofer, M., & Lenz, J. 2004. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnoloy, 64: 175-86
Huang, L.-C., Huang, S.-J., Chen, C.-C., & Mau, J.-L. 1999b. Antioxidant properties of Antrodia camphorata. In: Proceedings of the Third International Conference on Mushroom Biology and Mushroom Products, Sydney, Australia. pp. 275-283.
Huang, S.-J., Huang, L.-C., Chen, C.-C., & Mau, J.-L. 1999a. Antioxidant properties of Agaricus blazei. In: Proceedings of 3rd International Conference on Mushroom Biology and Mushroom Products. Sydney, Australia. pp. 266-274.
Humfeld, H. 1948. The production of mushroom mycelium Agaricus campestris in submerged culture. Science, 107: 33.
Hwang, S.-J., & Mau, J.-L. 1997. Quality evaluation of Agaricus bisporus mycelia. Food Science (ROC), 24: 44-55.
International Atomic Energy Agency. 1992. Irradiation of spices herbs and other vegetable seasonings. A compilation of technical data for its authorization and control. International Atomic Energy Agency. IAEA-TECDOC-639. pp.16-17.
Ishihara T. 1999. Polysaccharide of Agaricus blazei Murill. In: Tanimura A, editor. Handbook of active substances in plant resources. 2nd ed. Tokyo: Science Forum, pp. 348-50.
Ito, H., Shimura, K., Itoh, H., & Kawade, M. 1997. Antitumor effects of a new polysaccharide-protein complex (ATOM) prepared from Agaricus blazei (Iwade strain 101) "Himematsutake" and its mechanisms in tumor-bearing mice. Anticancer Research, 17: 277-284.
James, C.S. 1995. Analytical chemistry of foods (pp. 124-125). London: Chapman & Hall.
Jo, C., Son, J.H., Lee, H.J., & Byun, M.W. 2003. Irradiation application for color removal and purification of green tea leaves extract. Radiation Physics and Chemistry, 66: 179-184.
Kaneno, R., Fontanari, L.M., Santos, S.A., Di Stasi, L.C., Rodrigues Filho, E., & Eira, A.F. 2004. Effects of extracts from Brazilian sun-mushroom (Agaricus blazei) on the NK activity and lymphoproliferative responsiveness of Ehrlich tumor-bearing mice. Food and Chemical Toxicology, 42: 909-916.
Kang, I.J., Byun, M.W., Yook, H.S., Bae, C.H., Lee, H.S., Kwon, J.H., & Chung, C.K. 1999. Production of modified starches by gamma irradiation. Radiation Physics and Chemistry, 54: 425-430.
Kasai, H., He, L.M., Kawamura, M., Yang, P.T., Deng, X.W., Munkanta, M., Yamashita, A., Terunuma, H., Hirama, M., Horiuchi, I., Natori, T., Koga, T., Amano, Y., Yamaguchi, N., & Ito, M. 2004. IL-12 production induced by Agaricus blazei fraction H (ABH) involves Toll-like receptor (TLR). Evidenced-based Complementary and Alternative Medicine, 1: 259-267.
Katušin-Razem, B., Novak, B., & Razem, D. 2001. Microbiological decontamination of botanical raw materials and corresponding pharmaceutical products by irradiation. Radiation Physics and Chemistry, 62: 261-275.
Kawagishi, H., Inagaki, R., Kanao, T., Mizuno, T., Shimura, K., Ito, H., Hagiwara, T., & Nakamura, T. 1989. Fractionation and antitumor activity of the water-insoluble residue of Agaricus blazei fruiting bodies. Carbohydrate Research, 186: 267-273.
Kawagishi, H., Katsumi, R., Sazawa, T., Mizuno, T., Hagiwara, T., & Nakamura, T. 1988. Cytotoxic steroids from the mushroom Agaricus blazei. Phytochemistry, 27: 2777-2779.
Kier, L.B. 1972. A molecular theory of sweet taste. Journal of Pharmaceutical Sciences, 61: 1394-1397.
Kim, M.J., Yook, H.S., & Byun, M.W. 2000. Effects of Gamma irradiation on microbial contamination and extraction yields of Korean medicinal herbs. Radiation Physics and Chemistry, 57: 55-58.
Kimura, Y. 2005. New anticancer agents: in vitro and in vivo evaluation of the antitumor and antimetastatic actions of various compounds isolated from medicinal plants. In Vivo, 19: 37-60.
Kimura, Y., Kido, T., Takaku, T., Sumiyoshi, M., & Baba, K. 2004. Isolation of an anti-angiogenic substance from Agaricus blazei Murill: its antitumor and antimetastatic actions. Cancer Science, 95: 758-764.
Kitazuru, E.R., Moreira, A.V.B., Mancini-Filho, J., Delincée, H., & Villavicencio, A.L.C.H. 2004. Effects of irradiation on natural antioxidants of cinnamon (Cinnamomum zeylanicum N.). Radiation Physics and Chemistry, 71: 37-39.
Klein, B.P., & Perry, A.K. 1982. Ascorbic acid and vitamin A activity in selected vegetables from different geographical areas of the United States. Journal of Food Science, 47: 941-945, 948.
Kobayashi, H., Yoshida, R., and Kanada, Y., et al. 2005. Suppressing effects of daily oral supplementation of beta-glucan extracted from Agaricus blazei Murill on spontaneous and peritoneal disseminated metastasis in mouse model. Journal of Cancer Research and Clinical Oncology. (Published online: 10 May 2005)
Komata, Y. 1969. The taste and constituents of foods. Nippon Shokuhin Kogyo Gakkaishi, 3: 26.
Kume, T., Nagasawa, N., & Yoshii, F. 2002. Utilization of carbohydrates by radiation processing. Radiation Physics and Chemistry, 63: 625-627.
Kuroiwa, Y., Nishikawa, A., Imazawa, T., Kanki, K., Kitamura, Y., Umemura, T., & Hirose, M. 2005. Lack of subchronic toxicity of an aqueous extract of Agaricus blazei Murrill in F344 rats. Food and Chemical Toxicology, 43: 1047-1053.
Kuruppu, D.P., Schmidt, J., Langerak, D.I., Van Duren, D.A., & Farkas, J. 1985. The effect of irradiation and fumigation on the antioxidant properties of some spices. Acta Alimentaria, 14: 343-353.
Lampart-Szczapa, E., Korczak, J., Nogala-Kalucka, M., & Zawirska-Wojtasiak, R. 2003. Antioxidant properties of lupin seed products. Food Chemistry, 83: 279-285.
Lingnert, H., Vallentin, K., & Eriksson, C.E. 1979. Measurement of antioxidative effect in model system. Journal of Food Processing and Preservation, 3: 87-103.
Litchfield, J.H. 1967. Morel mushroom mycelium as a food flavoring material. Biotechnology and Bioengineering, 9: 289-304.
Luiz, R.C., Jordao, B.Q., da Eira, A.F., Ribeiro, L.R., & Mantovani, M.S. 2003. Mechanism of anticlastogenicity of Agaricus blazei Murill mushroom organic extracts in wild type CHO (K(1)) and repair deficient (xrs5) cells by chromosome aberration and sister chromatid exchange assays. Mutattion Research, 528: 75-79.
Madhavi, D.L., Singhal, R.S., & Kulkarni, P.R. 1996. Technological aspects of food antioxidants. In Madhavi, D. L., Deshpande, S. S., & Salunkhe, D. K., Food antioxidants: technological, toxicological, and health perspectives (pp. 159-265) New York: Marcel Dekker.
Maga J.A. 1981. Mushroom flaavor. Journal of Agricultural and Food Chemistry, 29: 1-4.
Manzi, P., Gambelli, L., Marconi, S., Vivanti, V., & Pizzoferrato, L. 1999. Nutrients in edible mushrooms: an inter-species comparative study. Food Chemistry, 65: 477-482.
Martins de Oliveira, J., Jordao, B.Q., Ribeiro, L.R., Ferreira da Eira, A., & Mantovani, M.S. 2002. Anti-genotoxic effect of aqueous extracts of sun mushroom (Agaricus blazei Murill lineage 99/26) in mammalian cells in vitro. Food and Chemical Toxicology, 40: 1775-1780.
Masotti, P., & Zonta, F. 1999. Food irradiation: an update of legal and analytical aspects. International Journal of Food Science and Technology, 4: 305-316.
Mau, J.-L. 2005. The umami taste of edible and medicinal mushrooms. International Journal of Medicinal Mushrooms, 7: 119-125.
Mau, J.-L., & Tseng, Y.-H. 1998. Nonvolatile taste components of three strains of Agrocybe cylindracea. Journal of Agricultural and Food Chemistry, 46: 2071-2074.
Mau, J.-L., Chao, G.-R., & Wu, K.-T. 2001b. Antioxidant properties of methanolic extracts from several ear mushrooms. Journal of Agricultural and Food Chemistry, 49: 5461-5467.
Mau, J.-L., Chen, P.-R., & Yang, J.-H. 1998. Ultraviolet irradiation increased vitamin D2 content in edible mushrooms. Journal of Agricultural and Food Chemistry, 46: 5269-5272.
Mau, J.-L., Chyau, C.-C., Li, J.-Y., & Tseng, Y.-H. 1997. Flavor compounds in straw mushrooms Volvariella volvacea harvested at different stages of maturity. Journal of Agricultural and Food Chemistry, 45: 4726-4729.
Mau, J.-L., Huang, P.-N. Huang, S.-J., & Chen, C.-C. 2003. Time course for antioxidants production by Antrodia camphorata in submerged culture. Fungal Science, 18: 59-71.
Mau, J.-L., Huang, P.-N. Huang, S.-J., & Chen, C.-C. 2004. Antioxidant properties of methanolic extracts from two kinds of Antrodia camphorata mycelia. Food Chemistry, 86: 25-31.
Mau, J.-L., Lin, H.-C., & Chen, C.-C. 2001a. Non-volatile components of several medicinal mushrooms. Food Research International, 34: 521-526.
Mau, J.-L., Lin, H.-C., & Chen, C.-C. 2002a. Antioxidant properties of several medicinal mushrooms. Journal of Agricultural and Food Chemistry, 50: 6072-6077.
Mau, J.-L., Lin, H.-C., & Song, S.-F. 2002b. Antioxidant properties of several specialty mushrooms. Food Research International, 35: 519-526.
Menoli, R.C., Mantovani, M.S., Ribeiro, L.R., Speit, G., & Jordao, B.Q. 2001. Antimutagenic effects of the mushroom Agaricus blazei Murrill extracts on V79 cells. Mutation Research, 496: 5-13.
Mizuno, M., Morimoto, M., Minate, K., & Tsuchida, H. 1998. Polysaccharides from Agaricus blazei stimulate lymphocyte T-cell subsets in mice. Bioscience Biotechnology and Biochemistry, 62: 434-437.
Mizuno, T. 1995. Bioactive biomolecules of mushrooms-food, function and medicinal effect of mushrooms fungi. Food Review International,11: 7-21.
Mizuno, T. 2002. Medicinal properties and clinical effects of culinary-medicinal mushroom Agaricus blazei Murrill (Agaricomycetideae) (review). International Journal of Medicinal Mushrooms, 4: 299-312.
Mizuno, T., Inagaki, R., Kanao, T., Hagiwara, T., Nakamura, T., Ito, H., Shimura, K., Sumiya, T., & Asakura, A. 1990. Antitumor activity and some properties of water-insoluble hetero-glycans from “Himematsutake”, the fruiting body of Agaricus blazei Murill. Agricultural and Biological Chemistry, 54: 2897-2905.
Mizuno, T., Saito, H., Nishitoba, T., & Kawagishi, H. 1995. Antitumor-active substances from mushrooms. Food Review International, 11: 23-61.
Muller, W.E.G., Seihard, G., Beyer, R., Breter, H.J., Maidhof, A., & Zahn, R.K. 1977. Effect of cordycepin on nucleic acid metabolism in L5178Y cells and on nucleic acid-synthesizing enzyme systems. Cancer Research, 37: 3824-3833.
Nakajima, A., Ishida, T., Koga, M., Takeuchi, T., Mazda, O., & Takeuchi, M. 2002. Effect of hot water extract from Agaricus blazei Murill on antibody-producing cells in mice. International Immunopharmacology, 2: 1205-1211.
Nakamura, N., Hirakawa, A., Gao, J.-J., Kakuda, H., Shiro, M., Komatsu, Y., Sheu, C., & Hattori, M. 2004. Five new maleic and succinic acid derivatives from the mycelium of Antrodia camphorata and their cytotoxic effects on LLC tumor cell line. Journal of Natural Products, 67: 46-48.
Nan, J.X., Park, E.J., Yang, B.K., Song, C.H., Ko, G., & Sohn, D.H. 2001. Antifibrotic effect of extracellular biopolymer from submerged mycelial cultures of Cordyceps militaris on liver fibrosis induced by bile duct ligation and scission in rats. Archives of Pharmacal Research, 24: 327-32.
Nan, J.X., Park, E.J., Yang, B.K., Song, C.H., Ko, G., & Sohn, D.H. 2001. Antifibrotic effect of extracellular biopolymer from submerged mycelial cultures of Cordyceps militaris on liver fibrosis induced by bile duct ligation and scission in rats. Archives of Pharmacal Research, 24: 327-332.
Norton, S. 1993. Food irradiation . A Guide Book. Technomic Publishing Company, Inc. USA.
Oufedjikh, H., Mahrouz, M., Lacroix, M., Amiot, M.J., & Taccini, M. 1998. The influence of gamma irradiation on flavonoids content during storage of irradiated clementina. Radiation Physics and Chemistry, 52: 107-112.
Oyaizu, M. 1986. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition, 44: 307-315.
Pal, U.S., & Chakraverty, A. 1997. Thin layer convection of mushrooms. Energy Conversion and Management, 38: 107-113.
Park, C., Hong, S.H., Lee, J.Y., Kim, G.Y., Choi, B.T., Lee, Y.T., Park, D.I., Park, Y.M., Jeong, Y.K., & Choi, Y.H. 2005. Growth inhibition of U937 leukemia cells by aqueous extract of Cordyceps militaris through induction of apoptosis. Oncology Reports, 13: 1211-1216.
Penman, S., Rosbash, M., & Penman, M. 1970. Messenger and heterogeneous nuclear RNA in HeLa cells: Differential inhibition by cordycepin. Proceedings of the National Academy of Sciences of the United States of America, 67: 1878–1885.
Pinheiro, F., Faria, R.R., de Camargo, J.L., Spinardi-Barbisan, A.L., da Eira, A.F., & Barbisan, L.F. 2003. Chemoprevention of preneoplastic liver foci development by dietary mushroom Agaricus blazei Murrill in the rat. Food and Chemical Toxicology, 41: 1543-1550.
Robinson, T., Singh, D., & Nigam, P. 2001. Solid-state fermentation: a promising microbial technology for secondary metabolite production. Applied Microbiology and Biotechnology, 55: 284-289.
Rukachaisirikul, V., Pramjit, S., Pakawatchai, C., Isaka, M., & Supothina, S. 2004. 10-membered macrolides from the insect pathogenic fungus Cordyceps militaris BCC 2816. Journal of Natural Producst, 67: 1953-1955.
Rundhaug, J.E., Pung, A., Read, C.M., & Bertram, J.S. 1988. Uptake and metabolism of β-carotene and retinal by C3H/10T1/2 cells. Carcinogenesis, 9: 1541-1545.
Shen, Q., & Chen, S. 2001. Effect of Cordyceps militaris on the damage of rats induced by n-hexane. Zhong Yao Cai, 24: 112-116.
Shi, X., Dalal, N.S., & Jain, A.C. 1991. Antioxidant behaviour of caffeine: Efficient scavenging of hydroxyl radicals. Food and Chemical Toxicology, 29: 1-6.
Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40: 945-948.
Smith, D., & Kolkowski, J. 1996. Chapter 6: Fungi. In: Maintaining Cultures for Biotechnology and Industry. Edited by Jennie C. Hunter-Cevera, pp. 101-132. Angela Belt Academic Press Inc.
Song, T.-Y., & Yen, G.-C. 2002. Antioxidant properties of Antrodia camphorata in submerged culture. Journal of Agricultural and Food Chemistry, 50: 3322-3327.
Sorimachi, K., Akimoto, K., Ikehara, Y., Inafuku, K., Okubo, A., & Yamazaki, S. 2001. Secretion of TNF-alpha, IL-8 and nitric oxide by macrophages activated with Agaricus blazei Murill fractions in vitro. Cell Structure and Function, 26: 103-108.
Sugar, A.M., & McCaffrey, R.P. 1998. Antifungal activity of 3'-deoxyadenosine (cordycepin). Antimicrobial Agents and Chemotherapy, 42: 1424-1427.
Taga, M.S., Miller, E.E., & Pratt, D.E. 1984. Chia seeds as a source of natural lipid antioxidants. Journal of the American Oil Chemists' Society, 61: 928-93.
Takaku, T., Kimura, Y., & Okuda, H. 2001. Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action. Journal of Nutrition, 131: 1409-1413.
Taylor, M.W., Hershey, R.A., Levine, R.A., Coy, K., & Olivelle, S. 1981. Improved method of resolving nucleotides by reverse-phase high performance liquid chromatography. Journal of Chromatography A, 219: 133-139.

Terashita, T. 1988. Biochemistry and ultilization of mushrooms (in Japanese). Ohyo Gizyutsu Shyupan, Tokyo. pp. 1-254.
Thomas, M.J. 1995. The role of free radicals and antioxidant: how do we know that they are working? Critical Reviews in Food Science and Nutrition, 35: 21-39.
Tollier, M.T., & Guilbot, A., 1970. Development of certain physicochemical properties of the starch granule as a function of irradiation conditions. Starch/Staerke, 22: 296.
Tseng, Y.-H., & Mau, J.-L. 1999. Contents of sugars, free amino acids and free 5'-nucleotides in mushroom, Agaricus bisporus, during post-harvest storage. Journal of the Science of Food and Agriculture, 79: 1519-1523.
Vakil, U.K., Aravindakshan, M., Srinivas, H., Chauhan, P.S., & Sreenivasan, A., 1973. Nutritional and wholesomeness studies with irradiated foods: India's program, IAEA, SM-166/12. Vienna, p. 673.
Variyar, P. S., Limaye, A., & Sharma, A. 2004. Radiation-induced enhancement of antioxidant contents of soybean (Glycine max Merrill). Journal of Agricultural and Food Chemistry, 52: 3385-3388.
von Sonntag, C. 1987. The Chemical Basis of Radiation Biology. London: Taylor & Francis.
Wang, H.X., Liu, W.K., Ng, T.B., Ooi, V.E., & Chang, S.T. 1995. Immunomodulatory and antitumor activities of a polysaccharide- peptide complex from a mycelial culture of Tricholoma sp., a local edible mushroom. Life Science, 57: 269-281.
Wasser, S.P., & Weis, A.L. 1999. Medicinal properties of substances occurring in higher Basidiomycetes mushrooms: current perspective (review). International Journal of Medicinal Mushroom, 1: 31-62.
Witting, L.A. 1975. Vitamin E as a food additive. Journal of American Oil and Chemists' Society, 52: 64-68.
Won, S.Y., & Park, E.H. 2005. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. Journal of Ethnopharmacology, 96: 555-561
Wu, S.-H., Ryvarden, L., & Chang, T.-T. 1997. Antrodia camphorata (“niu-chang-chih”), new combination of a medicinal fungus in Taiwan. Botanical Bulletin Academia Sinica, 38: 273-275.
Wu, T.-N., Yang, K.-C., Wang, C.-M., Lai, J.-S., Ko, K.-N., Chang, P.-Y., & Liou, S.-H. 1996. Lead poisoning caused by contaminated Cordyceps, a Chinese herbal medicine: two case reports. Science of the Total Environment, 182: 193-5.
Xing, Z., Guo, Q., Feng, Z., Guo, L., & Liu, Y. 2003. Analysis on the volatile flavor compounds in Agaricus blazei by GC-MS. Zhong Yao Cai, 26: 789-791.
Yamaguchi, R., Tatsumi, M.A., Kato, K., & Yoshimitsu, U. 1988. Effect of metal salts and fructose on the autoxidation of methyl linoleate in emulsions. Agricultural and Biological Chemistry, 52: 849–850.
Yamaguchi, S. 1979. The umami taste. In J. C. Boudreau (Ed.), ACS Symposium Series: 115. Food taste chemistry (pp. 33-51). Washington, DC: American Chemical Society.
Yamaguchi, S., 1967. The synergistic taste effect of monosodiunm glutamate and disodium 5-inosinate. Journal of Food Science, 32: 473.
Yamaguchi, S., Yoshikawa, T., Ikeda, S., & Ninomiya, T. 1971. Measurement of the relative taste intensity of some L-amino acid and 5′-nucleotides. Journal of Food Science, 36: 846–849.
Yang, J.-H., Lin, H.-C., & Mau, J.-L. 2001. Non-volatile taste components of several commercial mushrooms. Food Chemistry, 72: 465-471.
Yang, J.-H., Lin, H.-C., & Mau, J.-L. 2002. Antioxidant properties of several commercial mushrooms. Food Chemistry, 77: 229-235.
Yang, Q.Y., & Jong, S.C. 1989. Medicinal mushroom in China. Mushroom Science, 12: 631-641.
Yasumoto, K., Iwami, K., & Mitsuda, H. 1976. Enzymatic formation of Shiitake aroma non-volatile precursor(s)-lenthionine from lethinic acid. Mushroom Science, 9: 371.
Yen, G.-C., Duh, P.-D., & Tsai, C.-L. 1993. The relationship between antioxidant activity and maturity of peanut hulls. Journal of Agricultural and Food Chemistry, 41: 67-70.
Yoo, H.S., Shin, J.W., Cho, J.H., Son, C.G., Lee, Y.W., Park, S.Y., & Cho, C.K. 2004. Effects of Cordyceps militaris extract on angiogenesis and tumor growth. Acta Pharmacologica Sinica, 25: 657-665.
Yoshikawa, N., Nakamura, K., Yamaguchi, Y., Kagota, S., Shinozuka, K., & Kunitomo, M. 2004. Antitumour activity of cordycepin in mice. Clinical and Experimental Pharmacology & Physiology, 2: S51-3.
Yu, R., Song, L., Zhao, Y., Bin, W., Wang, L., Zhang, H., Wu, Y., Ye, W., & Yao, X. 2004. Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris. Fitoterapia, 75: 465-472.
Yu, R., Wang, L., Zhang, H., Zhou, C., & Zhao, Y. 2004. Isolation, purification and identification of polysaccharides from cultured Cordyceps militaris. Fitoterapia, 75: 62-66.
Zhou, X., Meyer, C.U., Schmidtke, P., & Zepp, F. 2002. Effect of cordycepin on interleukin-10 production of human peripheral blood mononuclear cells. European Journal of Pharmacology, 453: 309-317.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 廖英明。1998。菇類中的許不了:樟芝。農業世界雜誌,176: 76-79。
2. 楊國卿、賴俊雄、王建民、劉紹興、林春蓮、楊燦、許昭純、趙秀琳、劉淑芬、吳聰能。1996。鉛污染中藥冬蟲夏草造成的鉛危害:四個案例分析。中華職業醫學雜誌,3: 73-77。
3. 黃惠君。2004。食藥用菇的營養與藥用價值。食品工業,36: 25-32。
4. 黃仕政、陳勁初。2000。發酵生物技術在菇類食品的應用,中華食品工業雜誌,40: 62-67。
5. 陳啟楨。1999。菇類二次代謝物質及其利用。食品工業,31: 1-11。
6. 陳美瑩。2003a。照射技術及其在食品中之應用。食品工業,35: 47-60。
7. 陳勁初、黃仕政。2000。菇菌類機能性食品之開發。生物產業,11: 164-172。
8. 陳勁初、林文鑫、陳清農、許勝傑、黃仕政、陳炎鍊。2001a。台灣特有真菌--樟芝菌絲體之開發。中華真菌學會會刊,16: 7-22。
9. 畢培曦、馬平。1995。香港市售冬蟲夏草偽品之生藥鑒定。中醫藥雜誌,6: 259-264。
10. 林婉茹、劉黃碧圓、林芳存、李堂察、洪進雄。2004。溫度對巴西蘑菇儲藏壽命及品質之影響。中華真菌學會會刊,19: 169-179。
11. 王伯徹。2004b。菇類菌種之長期保存。食品工業,36: 16-24。
12. 王伯徹。2004a。綜論菇類大型真菌的利用與開發。食品工業,36: 1-3。
13. 王伯徹、邱世浩、黃仁彰。1998a。食用菇保健食品專輯。食品工業,30:1-36。
14. 王伯徹、林錦堂、華傑。1990。靈芝菌種之長期保存。中國農業化學會誌,28: 86-93。