跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅秋梅
研究生(外文):Qiu-Mei Luo
論文名稱:建立地衣芽孢桿菌表現系統以應用於靈芝免疫調節蛋白之生產
論文名稱(外文):Development of Bacillus licheniformis expression system for production of fungal immunomodulatory protein LZ-8
指導教授:葉娟美林金源林金源引用關係
指導教授(外文):Chuan-Mei YehJin-Yuarn Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:66
中文關鍵詞:地衣芽孢桿菌靈芝免疫調節蛋白
外文關鍵詞:Bacillus licheniformisLing Zhi-8
相關次數:
  • 被引用被引用:6
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
地衣芽孢桿菌 (Bacillus licheniformis) 為革蘭氏陽性(gram-positive) 、兼性厭氧 (facultative anaerobe) 之產孢桿菌,廣泛的存在於自然界的土壤及榖類中。由於其生長容易、具有分泌胞外蛋白質之能力,且同時為GRAS (generally recognized as safe) 級宿主,能安全而廣泛的被使用在酵素工業及生產蛋白質上,故被認為是遺傳工程上為具有發展潛力之宿主。
本研究建立了一個簡單又快速的地衣芽孢桿菌電轉形方法,在培養勝任細胞的培養基組成中添加1% 甘胺酸,可於電阻200 Ω、電容25 μF、電場強度為10 kv cm-1下,得到最佳轉型效率1.72 × 103 transformants μg DNA-1。此外,鹼性彈性蛋白酶基因以及增強型的綠螢光蛋白基因於本宿主中皆適合作為報導基因。比較各種表現元件活性,結果以本實驗室所設計構築的σA型人工合成啟動子配合最適SD 序列的pOA-系列載體有最強活性表現。
Ling Zhi-8是由靈芝 (Ganoderma lucidum) 菌絲體 (mycelia) 中純化而來,為具有免疫調節功能之小分子蛋白質,有作為生物反應調節劑 (biological response modifier) 或免疫調節試劑 (immunomodul- ating agent) 之潛力。本實驗室先前以人工合成方式設計、合成重組靈芝免疫調節蛋白,包括N端帶有或不帶有來自鹼性彈性蛋白酶之訊息胜肽,及C端帶有6個組胺酸 (histidine) 以利純化。本研究中,將其表現於地衣芽孢桿菌及枯草桿菌蛋白酶缺損株 (Bacillus subtilis WB800) 中。結果顯示,N端不帶有訊息胜肽之rLZ-8,亦可分泌表現至胞外,且表現量更甚於N端帶有訊息胜肽者。而小鼠脾臟初代細胞增生能力結果則顯示,來自B. subtilis WB800之rLZ-8無法增生或抑制BALB/c小鼠脾臟初代細胞;然而來自地衣芽孢桿菌之重組靈芝免疫調節蛋白,具有抑制BALB/c小鼠脾臟初代細胞增生之能力。
Bacillus licheniformis is a gram-positive, facultative anaerobic, endospore-forming bacterium and widely distributed in the environment. Due to the characteristics of B. licheniformis such as: easy to growth, efficient secretion ability and considered GRAS (generally recognized as safe) by FDA (US Food and Drug Administration). B. licheniformis is a potential strain for secretion and production of heterologous proteins.
In this study, a simple and rapid electroporation procedure of this strain was established. The effect of electrical parameters and medium composition on electroporation efficiency was determined. Highest transformation efficiency (1.72 × 103 transformants μg DNA-1) was obtained when glycine-treated B. licheniformis were subjected to one pulse with 2.0 kv and 200 Ω with plasmid DNA.
The suitability of subtilisin YaB and GFP+ as reporters and function analysis of various expression signals in B. licheniformis was examined. Results suggest that Subtilisin YaB and GFP+ is suitable as reporters and expression signal containing artificial σA type promoter and optimized SD sequence pOA achieved highest expression level in B. licheniformis.
LZ-8, a fungal immunomodulatory protein (FIP) from Ganoderma lucidium, is considered as potential biological response modifier or immunomodulating agent. In our previously study, recombinant LZ-8 was designed and constructed with or without signal peptide in N-terminus and six histidine tag in C-terminus. The rLZ-8 was expressed in B. licheniformis and B. subtilis WB800 by pOA. The rLZ-8 without signal peptide could be directly secreted into supernatant of those hosts. Expression level of rLZ-8 was higher in B. licheniformis. The cell proliferation assay showed that rLZ-8 from B. subtilis WB800 did not significantly affect the proliferation of splenocytes from BALB/c mice. However, rLZ-8 from B. licheniformis inhibited the proliferation of spleen cells from the mice.
中文摘要…………………………………………………………................. i

Abstract……………………………………………………………………… ii

壹、前言……………………………………………………………………. 1
一、 芽孢桿菌屬 (Bacillus spp.)………………………………………..... 1
(一) 地衣芽孢桿菌之簡介……………………………………............... 1
(二) 枯草桿菌之簡介……………………………................................... 12
二、 靈芝免疫調節蛋白(Ling Zhi-8)…………………………………. 18
(一) 靈芝 (Ganoderma lucidum) 之簡介………………………………. 18
(二) 靈芝免疫調節蛋白 (Ling Zhi-8) 之發現………………………… 21
(三) 真菌免疫調節蛋白
(fungal immunomodulatory protein family, FIP family)..................... 21
(四) 真菌免疫調節蛋白之結構 24
三、 實驗目的……………………………………………………………... 26
四、 實驗策略…………………….…………….…………….…………… 27
貳、材料與方法…………………………………..….…………………….. 28
一、 菌種與質體………………………………..……….………………… 28
二、 藥品與試劑………………………………….………….……………. 32
三、 宿主特性分析……..………………………………............................. 32
四、 質體DNA抽取法……..…………...…….………………………….. 32
五、 電轉形法…………………………………………………………….. 33
六、 不同報導基因於地衣芽孢桿菌之適用性評估 .……………............ 35
七、 不同表現訊號於地衣芽孢桿菌之適用性評估……………............... 36
八、 DNA分子之電泳、剪切、回收及黏合…………………..………… 36
九、 重組靈芝免疫調節蛋白表現載體之構築………………................... 38
十、 重組之靈芝免疫調節蛋白於不同宿主中之分泌表現與偵測……... 38
十一、 不同來源的重組靈芝免疫調節蛋白之純化…....………………... 39
十二、 重組靈芝免疫調節蛋白對於老鼠脾臟細胞增生能力之評估....... 40
參、結果與討論..………………....………………....………...…………… 41
一、 宿主特性分析結果………....………...……………............................ 41
二、 地衣芽孢桿菌電轉形方法之建立………....………………............... 41
三、 不同報導基因於地衣芽孢桿菌之適用性評估……………............... 45
四、 不同表現訊號於地衣芽孢桿菌之適用性評估……………............... 45
五、 重組靈芝免疫調節蛋白表現載體之構築………....………………... 48
六、 重組靈芝免疫調節蛋白於地衣芽孢桿菌中之表現情形…............... 52
七、 重組靈芝免疫調節蛋白於B. subtilis WB800中之表現情形............ 52
八、 不同來源的重組靈芝免疫調節蛋白之純化……........…................... 56
九、 不同來源的重組靈芝免疫調節蛋白對於老鼠脾臟初代細胞增生
能力之評估…………………………………………………………
56
肆、結論........….....……........…......……........…..........….....……............... 59
伍、參考文獻….....……........…......……........…..........….....……................. 60
王志鵬。2001年。一、枯草桿菌Bacillus subtilis DB104電轉形效率之增進。二、設計、合成第一型抗凍蛋白基因及其在枯草桿菌、大腸桿菌中之表現。國立中興大學食品科學系碩士論文。
曹巧吟。2003年。樟芝中免疫調節蛋白的純化與其生理活性之探討。國立台灣大學園藝學研究所碩士論文。
楊令仰。2002年。靈芝對小鼠動脈粥狀硬化與乙醯氨酚引發肝損傷之保護作用。國立陽明大學藥理學研究所碩士論文。
蔡淑瑶。2002年。靈芝與柳松菇之抗氧化性質和其對腫瘤細胞之毒性及柳松菇之抗致突變性質。國立中興大學食品科學系碩士論文。
蘇芳仙。2001年。σA啟動子及多重啟動子之構築及其於枯草桿菌中之表現。國立中興大學食品科學系碩士論文。
Baltz, R.H., Hegeman, G.D., and Skatrud, P.L. 1993. Industrial Microorganisms: Basic and Applied Molecular Genetics. pp. 143, American Society for Microbiology. Washington, USA.
Birnboim, H.C. and Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic. Acids. Res. 7:1513.
de Boer, A.S., Priest, F., and Diderichsen, B. 1994. On the industrial use of Bacillus licheniformis: a review. Appl Microbiol Biotechnol. 40(5):595-598.
Declerck, N., Machius, M., Wiegand, G., Huber, R., and Gaillardin, C. 2000. Probing structural determinants specifying high thermostability in Bacillus licheniformis α-Amylase. J. Mol. Biol. 301:1041-1057.
Eppelmann, K., Doekek, S., and Marahiel, M. A. 2001. Engineered biosynthesis of the peptide antibiotic bacitracin in the surrogate host Bacillus subtilis. J Biol Chem. 276(37):34824-34831.
Gray, O., and Chang, S. 1981. Molecular cloning and expression of Bacillus licheniformis beta-lactamase gene in Escherichia coli and Bacillus subtilis. J Bacteriol. 145(1):422-428.
Gupta, R., Beg, Q.K., and Lorenz, P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol. 59(1):15-32.
Haak-Frendscho, M., Kino, K., Sone, T., and Jardieu, P. 1993. Ling Zhi-8: a novel T cell mitogen induces cytokine production and upregulation of ICAM-1 expression. Cell Immunol. 150(1):101-113.
Hammes, W., Schleifer, K.H., and Kandler, O. 1973. Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol. 116: 1029-1053.
Harwood, C.R. 1989. Bacillus. pp. 268, Plenum Press. New York, USA.
Harwood, C.R. and Cutting, S.M. 1990. In Molecular Biological Methods for Bacillus. pp. 392, John Wiley press. New York, USA.
Hsu, H.C., Hsu, C.I., Lin, R.H., Kao, C.L., and Lin, J.Y. 1997. Fip-vvo, a new fungal immunomodulatory protein isolated from Volvariella volvacea. Biochem J. 323 ( Pt 2):557-565.
Jensen, K.K., and Hulett, F.M. 1989. Protoplast transformation of Bacillus licheniformis MC14. J Gen Microbiol. 135(8):2283-2287.
Kakudo, S., Kikuchi, N., Kitadokoro, K., Fujiwara, T., Nakamura, E., Okamoto, H., Shin, M., Tamaki, M., Teraoka, H., and Tsuzuki, H. 1992. Purification, characterization, cloning, and expression of a glutamic acid-specific protease from Bacillus licheniformis ATCC 14580. J Biol Chem. 267(33):23782-23788.
Kino, K., Mizumoto, K., Sone, T., Yamaji, T., Watanabe, J., Yamashita, A., Yamaoka, K., Shimizu, K., Ko, K., and Tsunoo, H. 1990. An immunomodulating protein, Ling Zhi-8 (LZ-8) prevents insulitis in non-obese diabetic mice. Diabetologia. 33(12):713-718.
Kino, K., Sone, T., Watanabe, J., Yamashita, A., Tsuboi, H., Miyajima, H., and Tsunoo, H. 1991. Immunomodulator, LZ-8, prevents antibody production in mice. Int J Immunopharmacol. 13(8):1109-1115.
Kino, K., Yamashita, A., Yamaoka, K., Watanabe, J., Tanaka, S., Ko, K., Shimizu, K., and Tsunoo, H. 1989. Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from Ganoderma lucidium. J Biol Chem. 264(1):472-478.
Ko, J.L., Hsu, C.I., Lin, R.H., Kao, C.L., and Lin, J.Y. 1995. A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence. Eur J Biochem. 228(2):244-249.
Lin, W.H., Hung, C.H., Hsu, C.I., and Lin, J.Y. 1997. Dimerization of the N-terminal amphipathic alpha-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (Fip-gts) defined by a yeast two-hybrid system and site-directed mutagenesis. J Biol Chem. 272(32):20044-20048.
Lin, X., Wong, S.L., Miller, E.S., Shih, J.C. 1997. Expression of the Bacillus licheniformis PWD-1 keratinase gene in B. subtilis. J Ind Microbiol Biotechnol. 19(2):134-138.
Lin, Z.B., and Zhang, H.N. 2004. Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta Pharmacol Sin. 25(11):1387-95.
Miller, J.F. 1994. Bacterial transformation by electroporation. Methods. Enzymol. 235:373-385.
Miyasaka, N., Inoue, H., Totsuka, T., Koike, R., Kino, K., and Tsunoo, H. 1992. An immunomodulatory protein, Ling Zhi-8, facilitates cellular interaction through modulation of adhesion molecules. Biochem Biophys Res Commun. 186(1):385-390.
Murasugi, A., Tanaka, S., Komiyama, N., Iwata, N., Kino, K., Tsunoo, H., and Sakuma, S. 1991. Molecular cloning of a cDNA and a gene encoding an immunomodulatory protein, Ling Zhi-8, from a fungus, Ganoderma lucidum. J Biol Chem. 266(4):2486-2493.
Nigam, P., and Singh, D.1995. Enzyme and microbial systems involved in starch. Enzyme Microb Technol. 17:770-778.
Nthangeni, M.B., Patterton, H., van Tonder, A., Vergeer, W.P., and Litthauer, D. 2001. Over-expression and properties of a purified recombinant Bacillus licheniformis lipase: a comparative report on Bacillus lipases. Enzyme Microb Technol. 28(7-8):705-712.
Paaventhan, P., Joseph, J.S., Seow, S.V., Vaday, S., Robinson, H., Chua, K.Y., and Kolatkar, P.R. 2003. A 1.7A structure of Fve, a member of the new fungal immunomodulatory protein family. J Mol Biol. 332(2):461-470.
Rey, M.W., Ramaiya, P., Nelson, B.A., Brody-Karpin, S.D., Zaretsky, E.J., Tang, M., Lopez, L.A., Xiang, H., Gusti, V., Clausen, I.G., Olsen, P.B., Rasmussen, M.D., Andersen, J.T., Jorgensen, P.L., Larsen, T.S., Sorokin, A., Bolotin, A., Lapidus, A., Galleron, N., Ehrlich, SD., and Berka, R.M. 2004. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol. 5(10):R77.
Schagger, H., and von Jagow, G. 1987. Tricine-sodium dodecyl sulfate-poly- acrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 166(2):368-379.
Schallmey, M., Singh, A., and Ward, O.P. 2004. Developments in the use of Bacillus species for industrial production. Can J Microbiol. 50(1):1-17.
Shahhoseini, M., Ziaee, A.A., Ghaemi, N. 2003. Expression and secretion of an α-amylase gene from a native strain of Bacillus licheniformis in Escherichia coli by T7 promoter and putative signal peptide of the gene. J Appl Microbiol. 95(6):1250-1254.
Shevelev, A.B., Aleoshin, V.V., Trachuk, L.A., Granovsky, A.E., Kogan, Y.N., Rumer, L.M., Serkina, A.V., Semenova, E.V., Bushueva, A.M., Livshits, V.A., Kostrov, S.V., Shcheglov, A.S., Novikova, S.I., and Chestukhina, G.G. 2000. Expression of Bacillar Glutamyl Endopeptidase Genes in Bacillus subtilis by a New Mobilizable Single-Replicon Vector pLF. Plasmid. 43(3):190-199.
Shih, I.L., and Van, Y.T. 2001. The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour Technol. 79:207-225.
Shih, I.L., Van, Y.T., and Chang, Y.N. 2002. Application of statistical experimental methods to optimize production of poly(γ-glutamic acid) by Bacillus licheniformis CCRC 12826. Enzyme Microb Technol. 31:213-220.
Tanaka, S., Ko, K., Kino, K., Tsuchiya, K., Yamashita, A., Murasugi, A., Sakuma, S., and Tsunoo, H. 1989. Complete amino acid sequence of an immunomodulatory protein, ling zhi-8 (LZ-8). An immunomodulator from a fungus, Ganoderma lucidium, having similarity to immunoglobulin variable regions. J Biol Chem. 264(28):16372-16377.
Tang, X.M., Shen, W., Lakay, F.M., Shao, W.L., Wang, Z.X., Prior, B.A., and Zhuge, J. 2004. Cloning and over-expression of an alkaline protease from Bacillus licheniformis. Biotechnol Lett. 26(12):975-979.
Tjalsma, H., Bolhuis, A., Jongbloed, J.D.H., Bron, S., and Van Dijl, J.M. 2000. Signal peptide-dependent protein transporter in Bacillus subtilis: a genome-based survey of the secretome. Microbiol. Mol. Biol. Rev. 64: 514-517.
van der Hem, L.G., van der Vliet, J.A., Bocken, C.F., Kino, K., Hoitsma, A.J., and Tax, W.J. 1995. Ling Zhi-8: studies of a new immunomodulating agent. Transplantation. 60(5):438-443.
van Wely, K.H., Swaving, J., Freud, R., and Driessen, A.J. 2001. Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev. 25(4):437-454.
Veith, B., Herzberg, C., Steckel, S., Feesche, J., Maurer, K.H., Ehrenreich, P., Baumer, S., Henne, A., Liesegang, H., Merkl, R., Ehrenreich, A., and Gottschalk, G. 2004. The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol. 7(4):204-211.
Westers, L., Westers, H., Quax, W.J. 2004. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta. 1694(1-3):299-310.
Williams, C. M., Richter, C. S., MACKenzie, J. M., and Shih, J. C. H. 1990. Isolation, identification, and characterization of a feather-degrading bacterium. Appl Environ Microbiol. 56(6):1509-1515.
Wohlkonig, A., Stalon, V., and Vander, W. C. 2004. Purification of ArcR, an oxidation-sensitive regulatory protein from Bacillus licheniformis. Protein Expr Purif. 37(1):32-38.
Wu, S.C., Ye, R., Wu, X.C., Ng, S.C., and Wong, S.L. 1998. Enhanced secretory production of a single-chain antibody fragment from Bacillus subtilis by coproduction of molecular chaperones. J Bacteriol. 180(11):2830-2835.
Wu, S.C., Yeung, J. C., Duan, Y., Ye, R., Szarka, S. J., Habibi, H. R., and Wong, S.L. 2002. Functional Production and Characterization of a Fibrin-Specific Single-Chain Antibody Fragment from Bacillus subtilis: Effects of Molecular Chaperones and a Wall-Bound Protease on Antibody Fragment Production. Appl. Environ. Microbiol. 68: 3261–3269.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊