(3.235.11.178) 您好!臺灣時間:2021/02/26 02:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:欉宜婷
研究生(外文):Yi-Ting Tsung
論文名稱:應用JKR理論於固體材料表面能與彈性模數之實驗測定
論文名稱(外文):Experimental Determination of Surface Energy and Elastic Modulus of Solid Material using JKR Theory
指導教授:游憲一
指導教授(外文):Hsien-I You
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:76
中文關鍵詞:JKR理論表面能彈性模數
外文關鍵詞:JKR theorysurface energyelastic modulus
相關次數:
  • 被引用被引用:2
  • 點閱點閱:385
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
應用由JKR理論所發展之接觸機制,來探討固體材料其表面能及彈性模數之熱力學性質為本論文之研究目標,主要針對六種硬度不同之塑膠材料進行試驗,藉由微接觸力量測儀量測塑膠材料其球型表面及平板間之接觸,並基於JKR 方程式和接觸力與微變形量間的最小誤差平方法之數值分析來獲得固體塑膠之材料性質。

研究結果顯示,在兩固體材料相互接觸時,由於遲滯現象的原因,致使在卸力過程下之變形量大於在施力過程時之變形量,且發現在增加或減少負荷之過程對接觸模數數值之獲得是沒有影響的,研究結果也顯示當材料硬度越高時,會擁有較高的表面能,並將此研究結果與從楊氏方程式使用動態接觸角分析儀所得之實驗數值相互比較。
The thermodynamic characteristics of solid materials in surface energy and elastic modulus are investigated using the contact mechanism developed by the JKR theory. Six plastic materials with different surface hardness are selected to demonstrate the use of the theory. The contact between a semispherical surface and a plane, both made of the plastic materials, are conducted by the micro-contact-force measuring instrument. The materials properties of the solid plastics are therefore obtained by the method of the numerical fitting based on the least square error between the JKR equation and the micro-deformation of the spherical surface varied with the contact force.

The results show that the contact deformations and hence the surface energy during unloading process are greater than the counterparts in the loading contact, because of the hysteresis effect. While it is found that a unique value of contact modulus is obtained for each plastic material without affected by the forward or reversing loading action. The higher surface energy associated with the harder plastic surface is evidenced by the present investigated. Comparisons are made between the present results and that obtained from Young’s equation, using the dynamic contact angle analyzer.
摘 要 I
ABSTRACT II
致謝 III
表目錄 VI
圖目錄 VII
符號說明 VIII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與目的 5
第二章 赫茲接觸理論與表面能 6
2-1 赫茲接觸理論 6
2-2 表面能 7
2-3 JKR理論 9
2-4 黏著功 11
第三章 實驗方法及解析 14
3-1 試片材料 14
3-2 試片製作 15
3-3 試片粗糙度量測 16
3-3-1 儀器介紹 16
3-3-2 實驗方法 18
3-4試片硬度量測 19
3-4-1 儀器介紹 19
3-4-2 量測方法 20
3-5 微接觸力量測 21
3-5-1 儀器介紹 21
3-5-2 量測方法 24
3-6 解析 26
3-6-1 最小誤差平方法 26
3-6-2 鮑威爾混合演算法 28
第四章 研究結果與討論 29
4-1微接觸力量測分析 29
4-2表面能與彈性模數 30
4-3表面能與硬度之關係 31
4-4微接觸力量測與動態接觸角量測比較分析 32
第五章 結論與未來研究方向 33
5-1結論 33
5-2未來研究方向與建議 34
參考文獻 65
[1]Bin, Z., Jeffrey, S. M., David, J., 2001, ”Beebe Surface-Directed Liquid Flow Inside Microchannels,” Science, Vol.291, Issue 5506, pp.1023-1026.
[2]Good, R. J., 1993, “Contact Angle, Wetting, and Adhesion : A Critical Review,” in Contact angle, Wettability and Adhesion, pp.3-36.
[3]Kwok, D. Y., Lin, R., Mui, M., and Neumann, A. W., 1996, “Low-Rate Dynamic and Static Contact Angles and the Determination of Solid Surface Tension,”Physicochemical and Engineering, Vol.116, pp.63-77.
[4]Aumussen, E., and Peutzfeldt, A., 1998, “Surface Energy Characteristics of Adhesive Monomers,” Dental Materials, vol.14, pp.21-28.
[5]Lugscheider, E., Bobzin, K., and Moller, M., 1999, “The Effect of PVD Layer Constitution on Surface Free Energy,” Thin Solis Films, Vol.355-356, pp.367-373.
[6]Kamusewitz, H., Possart, W., and Paul, D., 1999, ”The Relation between Young’s Equilibrium Contact Angle and the Hysteresis on Rough Paraffin Wax Surface,” Colloid and Surface A : Physico-chemical and Engineering Aspect, vol.156, pp.271-279.
[7]Johnson, K. L., Kendall, K., and Roberts, A.D., 1971, “Surface energy and the contact of elastic solids,” Proceedings of the Royal Society of London, Series A, vol.324, pp.301-313.
[8]Mats, R. et al., 2000,“Application of the JKR Method to Measurement of Adhesion to Langmuir-Blodgett Cellulose Surface,” Journal of Colloid and Interface Science, vol. 230, pp.441-447.
[9]Derjaguin, B. V., Muller, V. M., and Toporov, YU. P., 1975, “Effect of Contact Deformations on the Adhesion of Particles,” Journal of Colloid and Interface Science, vol.53, no.2, pp.314-326.
[10]Chen, Y. L., Helm, C. A., and Israelachvili, J. N., 1991, “Molecular Mechanisms Associated with Adhesion and Contact Angle Hysteresis of Monolayer Surface,” Journal of Physical Chemistry, vol.95, no.26, pp.10736-10747.
[11]Chaudhury, M. K., and Whitesides, G. M., 1992, “Correlation Between Surface Free Energy and Surface Constitution,” Science, vol.255, pp.1230-1232.
[12]Yoshizawa, H., Chen, Y. L., and Israelachvili, J. N., 1993, “Recent Advances in Molecular Level Understanding of Adhesion, Friction and Lubricatoin,” Wear, vol.168, pp.161-166.
[13]Israelachvili, J. N., Chen, Y. L., and Yoshizawa, H., 1994, “Relationship between Adhesion and Friction Forces,” J. Adhesion Sci. Technol., vol.8, no.11, pp.1231-1249.
[14]Packham, D. E., 1996, “Work of adhesion:contact angles and contact mechanics,” INT. J. Adhesion and Adhesives, vol.16, no.2, pp.121-128.
[15]Yasuhisa Ando and Jiro Ino, 1997, “The Effect of Asperity Array Geometry on Friction and Pull-Off Force,” Journal of Tribology, vol.119, pp.781-787.
[16]Johnson, K. L., 1999,“Mechanics of Adhesion,” Tribology Inter-national, vol.31, No.8, pp.413-418.
[17]Woerdeman, D. L., Emerson, J. A., Giunta, R. K., 2002, “JKR contact mechanics for evaluating surface contamination on inorganic substrates,” Journal of Adhesion & Adhesives, vol.22, pp.257-264.
[18]Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, U. K.
[19]Williams, J. A., 1994, Engineering Tribology, University of Cambridge, Oxford University Press.
[20]James M. Howe, 1995, Interfaces in materials, University of Virginia, a Wiley-Interscience publication.
[21]Langmuir, I., 1925, Colloid Symposium Monograph, New York, p.48.
[22]Young, T., 1805, Trans. R. Soc. London 95.
[23]Fowkes, F. M., 1964, Chem, Vol.90, pp.4.
[24]Attard, P., and Parker, J., 1992, L. Phys. Rev. A 46, pp.7959-7971.
[25]Ernest Rabinowicz, 1995, Friction and Wear of Materials, a Wiley-Interscience publication.
[26]J. J. Moré, B. S. Garbow, and K. E. Hillstrom, User Guide for MINPACK-1, Argonne National Laboratory Report ANL-80-74, Argonne, Ill., 1980.
[27]http://www.xjjjb.com/bxjs/2004-10/21/content_17104.jsp
[28]Arthur, A. W., 原著, 陶雨台 譯, “表面物理化學,”千華出版公司, 1998.
[29]趙承琛編著, “界面科學基礎”, 復文書局, 1999.
[30]伊寶內贒編著, 洪榮哲 譯, “實用塑膠學”, 全華科技, 1993.
[31]賴耿陽編著, “塑膠材料技術讀本”, 復文書局, 1994.
[32]洪瑞庭編著, “塑膠加工技術與工程”, 高立, 1987.
[33]包筱梅著, “工程塑膠”﹐國防工業出版社﹐北京﹐1981.
[34]洪世淇著, “聚縮醛塑膠的最新發展現況”, 化工科技與商情, 2003.
[35]黃文魁, 2003, “真假奈米產品如何分辨,” 化工科技與商情第44期, 奈米專欄.
[36]李康業,“探討表面粗糙度和材料硬度對金屬表面能的影響,”國立中興大學機械工程研究所 碩士論文, 1999.
[37]陳崇福,“由表面能量測探討金屬表面鍍膜結合強度,”國立中興大學機械工程研究所 碩士論文, 2000.
[38]何志成,“分子吸附力對破碎粗糙面與平面之彈-塑性接觸效應,”國立中興大學機械工程研究所 碩士論文, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔