(44.192.112.123) 您好!臺灣時間:2021/03/01 03:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林暐翔
研究生(外文):Wei Hsiang Lin
論文名稱:大氣中氨氣及銨鹽微粒的量測與測性分析
論文名稱(外文):Measurements and characteristics of atmospheric ammonia and particulate ammonium
指導教授:鄭曼婷鄭曼婷引用關係
指導教授(外文):Man Ting Cheng
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:132
中文關鍵詞:氨氣銨鹽交通
外文關鍵詞:ammoniaammoniumvehicle
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1691
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:921
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究利用環形擴散採樣器於台中市中興大學校園採集大氣酸鹼性氣體及PM2.5微粒,採樣時間為2004年8月至2005年1月,共採集80組日夜樣本,研究目的除了暸解都會區酸鹼性氣體及PM2.5組成特性,分析其日夜變化及臭氧事件日與非事件日之差異,並探討大氣中氨氣及銨鹽微粒的分布特性及影響因子。
  台中都會地區PM2.5、SO42-、NO3-、Cl-、NH4+、HCl、HNO3、HNO2、SO2及NH3平均濃度分別為39.3、3.9、4.6、0.7、2.8、0.3、0.8、2.8、4.5及7.1 μg/m3,酸鹼性氣體及PM2.5化學組成日夜差異變化方面,日間HNO2、HNO3及NH3濃度分別為夜間的0.4、3.0及0.6倍,顯示這些酸鹼性氣體在大氣中生命週期很短,很容易轉化及去除。此外,臭氧事件日期間HCl、HNO3、SO2及NH3濃度分別為非事件日期間的2.4、2.8、1.5及1.7倍,PM2.5、SO42-及NH4+濃度分別為非事件日期間的1.9、1.7及2.1倍,顯示在臭氧事件日時因光化反應強烈,加上大氣擴散不良,易造成污染物之累積。
為確認NH3濃度量測結果之準確性,分別以靛酚/分光光度計法與離子層析儀法分析大氣中NH3濃度,前者量測結果平均較後者低估11.8 %,然變化趨勢非常一致(R2 = 0.99),此外,本研究以ADS採集NH3氣體收集效率平均亦高達99.2 %,顯示台中都會區NH3濃度的確較國外相關文獻高出許多。揮發之NH4+微粒濃度量測方面,質量平衡推估結果平均較實際量測濃度高估11.8 %,尤其當相對濕度低及溫度高時,質量平衡推估法更大幅高估NH4+揮發量。PM2.5中NH4+微粒有34 %為NH4NO3結合態,14 %為NH4Cl結合態,52 %為 (NH4)2SO4結合態,本地區在大量的NH3存在下,酸性氣體完全被中和,約有71 %的NH3氣體未轉化成NH4+微粒,HNO3及HCl等酸性氣體不足是影響NH4+微粒生成的主要因子,NH3與CO濃度呈現中度正相關,顯示NH3污染物可能來自於裝有觸媒轉化器的交通車輛。
Abstract
An annular denuder system was used to sample ambient gaseous pollutants and PM2.5 in the campus of the National Chung Hsing University from August 2004 to January 2005. A total number of eighty daytime and nighttime samples were collected. This study intends to understand the characteristics of these pollutants and the variation between daytime and nighttime, as well as their differences between ozone and non-ozone episodes. The study also investigates the characteristics of atmospheric ammonia and particulate ammonium, and their affecting factors.
According to the experiments, the average concentrations of PM2.5, SO42-, NO3-, Cl-, NH4+, HCl, HNO3, HNO2, SO2 and NH3 were respectively 39.3, 3.9, 4.6, 0.7, 2.8, 0.3, 0.8, 2.8, 4.5 and 7.1 μg/m3. In the daytime, the concentrations of HNO2, HNO3 and NH3 were respectively 0.4, 3.0 and 0.6 times higher than those in the nighttime. It showed that the life time of these acidic or alkaline gases in the atmosphere was short, and they were easily converted to particulates. During the sampling period, the concentrations of HCl, HNO3, SO2, NH3, PM2.5, SO42- and NH4+ in ozone episodes were respectively 2.4, 2.8, 1.5, 1.7, 1.9, 1.7 and 2.1 times higher than those in non-ozone episodes. The result indicated that the strong photochemical reaction and the poor air dispersion might cause the accumulation of the air pollutants.
This study also assured the accuracy of NH3 measurements by measuring the NH3 concentrations using the indophenol-blue method and the ion chromatography. The results showed that the NH3 concentrations determined by indophenol-blue method was approximately 11.8 % lower than those by ion chromatography. However both results were well correlated (R2 = 0.99). Besides these results, the collection efficiency of NH3 by annular denuder system was determined and the efficiency could be as high as 99.2 %. All of these measurements suggested that the ambient NH3 concentrations in Taichung urban area is much higher than those with other urban areas as described in the literatures. The amount of evaporation from the NH4+ particulates can be either measured through a back-up Teflon filter or estimated by using the mass balance method. Comparing these two methods, we find that the amount derived from the mass balance method is 11.8 % higher than the results measured from the back-up filter. This phenomenon particularly occurred under the conditions of lower humidity and higher temperature.
Based on the experimental results, there were about 34 % of NH4+ associated with NO3- to form NH4NO3, and 14 % forming NH4Cl and 52 % forming (NH4)2SO4. Due to significant amount of NH3 in this area, the acidic gases were fully neutralized by NH3. It resulted in about 71 % of NH3 in the gaseous phase. Insufficient HNO3 and HCl affected the formation of the particulate ammonium. Furthermore, NH3 was found positively correlated well with CO. It indicated that NH3 might be generated from vehicles equipped with catalytic converters.
目錄
摘要……………………………………………………………………….i
Abstract………………………………………………………………….iii
目錄………………………………………………………………………v
表目錄…………………………………………………………………...ix
圖目錄…………………………………………………………………...xi
第一章 前言……………………………………………………………..1
1-1 研究緣起……………………………………………………..1
1-2 研究目的……………………………………………………..3
1-3 研究方法……………………………………………………..3
第二章 文獻回顧………………………………………………………..5
2-1 大氣中NH3之重要性及其污染來源………………………..5
2-2 大氣中NH3及NH4+之物化特性…………………………….6
2-3 NH3之量測分析與採樣誤差………………………………..8
2-4 大氣中HNO2及HNO3之生成機制………………………..10
2-5 大氣中SO42-及NO3-之生成機制…………………………..12
2-6 國內外氨氣及銨鹽微粒的量測分析結果………................14
2-7 台灣中部地區臭氧濃度與天氣型態之相關性....................16
第三章 研究方法……………………………………………………....19
3-1 採樣規劃…............................................................................19
3-1-1 採樣時間及地點之描述….......................................19
3-1-2 採樣儀器設備及濾紙…...........................................20
3-2 分析項目及方法…................................................................23
3-2-1 PM2.5化學組成分析………………………………....24
3-2-2 酸鹼性氣體分析….....................................................24
3-2-3 靛酚/分光光度計法…................................................25
3-3 方法偵測極限…………………………………………..…..26
第四章 大氣酸鹼性氣體及PM2.5化學組成特性…………………......29
4-1 PM2.5質量濃度變化分析…..................................................29
4-2 PM2.5化學組成變化分析………………………………......32
4-3 氣狀污染物濃度變化分析………………………………....36
4-4 觀測值與環保署空氣品質監測站結果之比較…………....40
4-5 酸鹼性氣體及PM2.5化學組成日夜差異之比較…………..42
4-6 臭氧事件日與非事件日期間二次光化氣膠及氣體前驅物之比較………………………………………………………....45
4-7 酸性氣體及PM2.5化學組成與國內外相關研究結果之比較
…………………………………………………………........49
4-8 PM10及O3事件日之案例分析…………...…..………….....53
4-8-1 PM10及O3事件日…………………………….……...53
4-8-2 PM10及O3事件日期間空氣品質分析………………54
4-8-3 PM10及O3事件日期間PM2.5化學組成及酸鹼性氣體之變化………………………………………………..60
4-8-4 PM10及O3事件日期間懸浮微粒粒徑分布…………64
第五章 大氣中NH3及NH4+的量測分析及特性探討….......................67
5-1 台中都會區NH3及NH4+量測結果與國內外相關研究之比較…........................................................................................67
5-2 兩種不同NH3分析方法之比較…………………………....70
5-3 NH3氣體收集效率之評估………………………………....72
5-4 揮發之NH4+微粒濃度量測…………………………….......74
5-5 台中都會區大氣中NH3及NH4+之特性分析…...................78
5-5-1 大氣中NH4+微粒之結合型態………………..……...79
5-5-2 NH4NO3及NH4Cl之氣固相平衡…...........................81
5-5-3 大氣中NH3濃度之影響因子…..................................84
第六章 結論與建議……………………………………………………89
6-1 結論………………………………………………….…..….89
6-2 建議…………………………………………………………93
參考文獻………………………………………………………………..95
附錄A 環形擴散採樣器之採樣方法與流程……………………….109
附錄B 靛酚/分光光度計標準操作程序……………………………115
附錄C 研究相關數據……………………………………………….121
附錄D 採樣期間空氣品質數據…………………………………….127



表目錄
表2-1 檸檬酸、草酸及磷酸溶液用於吸附大氣中NH3氣體及NH4+微粒之適用性評估……………………………………………..9
表3-1 各分析項目之方法偵測極限值………………………………27
表4-1 2004年8月至2005年1月台中都會區密集觀測採樣期程.…29
表4-2 大氣酸鹼性氣體及PM2.5化學組成之日夜差異比較………...44
表4-3 臭氧事件日與非事件日二次光化氣膠及氣體前驅物之比較
….……………………………………………………………...48
表4-4 台中都會區大氣酸性氣體污染物與國內外相關研究之比較
.……………………………………………………………......51
表4-5 台中都會區PM2.5化學組成與國內外相關研究之比較……...52
表4-6 2004年~2005年密集觀測期間高污染事件日發生日期及事件日類型……………………………………………………...53
表4-7 PM10及O3事件日期間PM2.5化學組成及酸鹼性氣體與非事件日之比較……………………………………………………...62
表5-1 台中都會區NH3氣體及NH4+微粒量測結果與國內外相關研究之比較……………………………………………………...69
表5-2 靛酚/分光光度計法與離子層析法分析大氣中NH3之結果比較…………………………………………………………...…70
表5-3 以ADS採集大氣中NH3之收集效率………………………...73
表5-4 NH4+微粒揮發推估值與量測值之比較………………………76
表5-5 PM2.5中NH4+與NO3-、Cl-及SO42-和NH3與NHx之morlar比..79
表5-6 大氣中NH3與其他可能影響因子之相關性矩陣……………85



圖目錄
圖1-1 研究架構與流程圖……………………………………………..4
圖3-1 採樣地點之地理位置及其鄰近環境…………………………20
圖3-2 環型擴散採樣器內部示意圖…………………………………22
圖4-1 2004年8月至2005年1月台中都會區PM2.5質量濃度變化時間序列圖…….…....……………………………………………30
圖4-2 PM2.5陰離子當量濃度及陽離子當量濃度平衡關係………...32
圖4-3a 2004年8月至2005年1月密集觀測期間台中都會區PM2.5
SO42-濃度變化時間序列圖…...……………………….……..34
圖4-3b 2004年8月至2005年1月密集觀測期間台中都會區PM2.5
NO3-濃度變化時間序列圖………………...………………...34
圖4-3c 2004年8月至2005年1月密集觀測期間台中都會區PM2.5 Cl-
濃度變化時間序列圖………………………………………..35
圖4-3d 2004年8月至2005年1月密集觀測期間台中都會區PM2.5
NH4+濃度變化時間序列圖………………..................………35
圖4-4a 2004年8月至2005年1月密集觀測期間台中都會區HNO3濃度變化時間序列圖………………………………………..37
圖4-4b 2004年8月至2005年1月密集觀測期間台中都會區HNO2濃度變化時間序列圖……………………………………......37
圖4-4c 2004年8月至2005年1月密集觀測期間台中都會區HCl濃度變化時間序列圖………………………………………..38
圖4-4d 22004年8月至2005年1月密集觀測期間台中都會區SO2濃度變化時間序列圖……......................................................38
圖4-4e 2004年8月至2005年1月密集觀測期間台中都會區NH3濃度變化時間序列圖………………………………………..39
圖4-5 中興大學測站PM2.5濃度與環保署大里及忠明空氣品質監測站之比較………………………………………………………41
圖4-6 中興大學測站SO2濃度與環保署大里及忠明空氣品質監測站之比較……………………………………………………...….41
圖4-7 中部空品區空氣品質不良日數與不良率變化趨勢圖………45
圖4-8 中部地區空品測站於11月23日至12月3日之PSI變化趨勢………………………………………………………………55
圖4-9a 2004年11月30日至2004年12月3日環保署大里空氣品質監測站PM10、PM2.5及CO逐時濃度變化圖…………………56
圖4-9b 2004年11月30日至2004年12月3日環保署大里空氣品質監測站O3、WS及WD逐時濃度變化圖…………………..57
圖4-9c 2004年11月30日至2004年12月3日環保署大里空氣品質監測站Temp、RH及SO2逐時濃度變化圖…………………..58
圖4-9d 2004年11月30日至2004年12月3日環保署大里空氣品質監測站NOx、NO及NO2逐時濃度變化圖………………...59
圖4-10 PM10及O3事件日與非事件日期間PM2.5化學組成及酸鹼性氣體濃度盒型圖……………………………………………...61
圖4-11 PM10及O3事件日與非事件日期間PM2.5化學組成分布圖
………………………………………………………………...64
圖4-12 11月26日至12月2日密集觀測期間PM10粒徑分布圖……65
圖5-1 靛酚/分光光度計法與離子層析儀法分析大氣中NH3結果相關性…………………………….………………………...………71
圖5-2 NH4+揮發推估及量測值與相對濕度關係圖…………………77
圖5-3 NH4+揮發推估及量測值與溫度關係圖………………………77
圖5-4 大氣中NH3與HNO3+HNO2+HCl之相關性………………….78
圖5-5 大氣中NH4+與2*SO42- + NO3- + Cl-之相關性………...……...80
圖5-6 NH4NO3之計算平衡常數與理論平衡常數與大氣絕對溫度關
係圖……………………………….………………….………...83
圖5-7 NH4Cl之計算平衡常數與理論平衡常數與大氣絕對溫度關係
圖………………………….………………………….…...……83
圖5-8 大氣中NH3及CO之相關性…………………………………..87
圖5-9 大氣中NH3與風速之相關性………………………………….87
參考文獻
1.彭雙能,「微粒於採樣過程中反應及揮發性物種之研究」,碩士論文,國立交通大學環境工程研究所(1995)。
2.丁偉諭,「台中都會區酸性空氣污染物之季節性變化」,碩士論文,國立中興大學環境工程研究所(2003)。
3.中華民國行政院環保署環境檢驗所,「空氣中氨氣之檢測方法-靛酚/分光光度計法」,空氣檢測方法彙編,NIEA A426. 71B(1997)。
4.蔡瀛逸,「台灣中部都會及沿海地區能見度與大氣氣膠化學特性關係之研究」,博士論文,國立中興大學環境工程研究所(1999)。
5.文恒毅、白曛綾,「環形擴散採樣器採集大氣中酸鹼性氣體之本土化適用性探討」,第十四屆空氣污染控制研討會論文集(1997)。
6.Adams, P. J., Seinfeld, J. H. and Koch, D., “Global Concentrations of Tropospheric Sulfate, Nitrate, and Ammonium Aerosol Simulated in a General Circulation Model,” Journal of Geophysical Research, Vol. 104, pp. 13791-13823 (1999).
7.Allegrini, I., Febo, A., Perrion, C. and Masia, P., “Measurement of Atmospheric Nitric Acid Gas Phase and Nitrate in Particulate Matter by Means of Annular Denuder,” International Journal of Environmental Analytical Chemistry, Vol. 54, pp. 183-201 (1993).
8.Aneja, V. P., Murthy, A. B., Battye, W., Battye, R. and Benjey, W. G., “Analysis of Ammonia and Aerosol Concentrations and Deposition near the Free Troposphere at Mt. Mitchell, NC, U.S.A.,” Atmospheric Environment, Vol. 32, pp. 353-358 (1998).
9.Aneja, V. P., Rogers, H. H. and Stahel, W. P., “Dry Deposition of Ammonia at Environmental Concentrations on Selected Plant Species,” Journal of the Air Pollution Control Association, Vol. 36, pp. 1338-1341 (1986).
10.Asman, W. A. H. and Janssen, A. J., “A Long Range Transport Model for Ammonia and Ammonium for Europe,” Atmospheric Environment, Vol. 21, pp. 2099-2119 (1987).
11.Asman, W. A. H. and Van Jaarsveld, J. A., “A Variable-resolution Transport Model Applied for NHx in Europe,” Atmospheric Environment, Vol. 26A, pp. 445-464 (1992).
12.Bari, A., Ferraro, V., Wilson, L. R., Luttinger, D. and Husain, L., “Measurements of Gaseous HONO, HNO3, SO2, HCl, NH3, Particulate Sulfate and PM2.5 in New York, NY,” Atmospheric Environment, VOl. 37, pp. 2825-2835 (2003).
13.Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., Van Der Hoek, K. W. and Olivier, J. G. J., “A Global High-resolution Emission Inventory for Ammonia,” Global Biogeochemical Cycles, Vol. 11, pp. 561-587 (1997).
14.Brook, J. R., Wiebe, A. H., Woodhouse, S. A., Audette, C. V., Dann, T. F., Callaghan, S., Piechowski, M., Dabek-Zlotorzynska, E. and Dloughy, J. F., “Temporal and Spatial Relationships in Fine Particle Strong Acidity, Sulphate, PM10, and PM2.5 across Multiple Canadian Locations,” Atmospheric Environment, Vol. 31, pp. 4223-4236 (1997).
15.Burkhardt, J., Sutton, M. A., Milford, C., Storeton-West, R. L. and Fowler, D., “Ammonia Concentrations at a Site in Southern Scotland from 2 yr of Continuous Measurements,” Atmospheric Environment, Vol. 32, pp. 325-331 (1998).
16.Cavert, J. C. and Stockwell, W. R., “Acid Generation in the Troposphere by Gas-phase Chemistry,” Environmental Science and Technology, Vol. 17, pp. 428-443 (1983).
17.Cheng, W. L., “Synoptic Weather Patterns and Their Relationship to High Ozone Concentrations in the Taichung Basin,” Atmospheric Environment, Vol. 35, pp. 4971-4994 (2001).
18.Cheng, W. L., “Ozone Distribution in Coastal Central Taiwan under Sea-breeze Conditions,” Atmospheric Environment, Vol. 36, pp. 3445-3459 (2002).
19.Cheng, W. L., Pai, J. L., Tsuang, B. J. and Chen, C. L., “Synoptic Patterns in Relation to Ozone Concentrations in West-central Taiwan,” Meteorology and Atmospheric Physics, Vol. 78, pp. 11-21 (2001).
20.Dasch, J. M., Cadle, S. H., Dennedy, K. G. and Mulawa, P. A., “Comparison of Annular Denuders and Filter Packs for Atmospheric Sampling,” Atmospheric Environment, Vol. 23, pp. 2775-2782 (1989).
21.Danalatos, D. and Glavas, S., “Gas Phase Nitric Acid, Ammonia and Related Particulate Matter at a Mediterranean Coastal Site, Patras, Greece,” Atmospheric Environment, Vol. 33, pp. 3417-3425 (1999).
22.Eatough, N. L., McGreger, S., Lewis, E. A., Eatough, D. J., Huang, A. A. and Ellis, E. C., “Comparison of Six Denuder Methods and a Filter Pack for the Collection of Ambient HNO3(g), HNO2(g), SO2(g) in 1985 NSMC Study,” Atmospheric Environment, Vol. 22, pp. 1601-1618 (1988).
23.Erduran, M. S. and Tuncel, S. G., “Gaseous and Particulate Air Pollutants in the Northeastern Mediterranean Coast,” The Science of the Total Environment, Vol. 281, pp. 205-215 (2001).
24.Fang, G. C., Chang, C. N., Lu, S. C., Wu, Y. S., Chen, S. C. and Cheng, C. D., “The Concentration Variation of Acidic Gas and their Relationship with Meteorological Factors in Sha-Lu, Taichung,” The Proceedings 17th Air Pollution Control Technology Conference (2000).
25.Fang, G. C., Chang, C. N., Wu, Y. S., Fu, P. P. C., Yang, C. J., Chen, C. D. and Chang, S. C., “Ambient Suspended Particulate Matters and Rdlated Chemical Species Study in Central Taiwan, Taichung during 1998-2001,” Atmospheric Environment, Vol. 36, pp. 1921-1928 (2002).
26.Ferm, M., “A Na2CO3-coated Denuder and Filter for Determination of Gaseous HNO3 and Particulate NO3- in the Atmosphere,” Atmospheric Environment, Vol. 20, pp. 1193-1201 (1986).
27.Fraser, M. P. and Cass, G. R., “Detection of Excess Ammonia Emissions from In-use Vehicles and the Implications for Fine Particle Control,” Environmental Science and Technology, Vol. 32, pp. 1053-1057 (1998).
28.Galloway, J. N. and Cowling, E. B., “Reactive Nitrogen and the World: 200 Years of Change,” Ambio, Vol. 31, pp. 64-71 (2002).
29.Gupta, A., Kumar, R., Kumari, K. M. and Srivastava, S. S., “Measurement of NO2, HNO3, NH3 and SO2 and Related Particulate Matter at a Rural Site in Rampur, India,” Atmospheric Environment, Vol. 37, pp. 4837-4846 (2003).
30.Hammer, W. J. and Wu, Y. C., “Osmotic Coefficients and Mean Activity Coefficients of Univalent Electrolytes in Water at 25 °C,” Journal of Physical and Chemical Reference Data, Vol. 1, pp. 1047-1099 (1972).
31.Harrison, R. M., Peak, J. D. and Collins, G. M., “Tropospheric Cycle of Nitrous Acid,” Journal of Geophyisical Research, Vol. 101, pp. 14429-14439 (1996).
32.Hoek, G., Mennen, M. G., Allen, G. A., Hofschreuder, P. and Van Der Meulen, T., “Concentrations of Acidic Air Pollutants in the Netherlands,” Atmospheric Environment, Vol. 30, pp. 3141-3150 (1996).
33.Huang, G., Zhou, X., Deng, G., Qiao, H. and Civerolo, K., “Measurements of Atmospheric Nitrous Acid and Nitric Acid,” Atmospheric Environment, Vol. 36, pp. 2225-2235 (2002).
34.Hutchings, N. J., Sommer, S. G., Andersen, J. M. and Asman, W. A. H., “A Detailed Ammonia Emission Inventory for Denmark,” Atmospheric Environment, Vol. 35, pp. 1959-1968 (2001).
35.Hsu, Y. M. and Wu, Y. L., “Inorganic Aerosol Thermodynamic Model including N (III),” The Conference on Aerosol Science and Technology (2003).
36.Kean, A. J., Harley, R. A., Littlejohn, D. and Kendall, G. R., “On-road Measurement of Ammonia and Other Motor Vehicle Exhaust Emissions,” Environmental Science and Technology, Vol. 34, pp. 3535-3539 (2000).
37.Kitto A. M. N. and Harrison, R. M., “Nitrous and Nitric acid Measurement at Sites in South-east England,” Atmospheric Environment, Vol. 26A, pp. 235-241 (1992).
38.Koutrakis, P., Thompson, K. M., Wolfson, J. M., Spengler, J. D., Keeler, G. J. and Slater, J. L., “Determination of Aerosol Strong Acidity Losses due to Interactions of Collected Particles: Results from Laboratory and Field Studies,” Atmospheric Environment, Vol. 26A, pp. 987-995 (1992).
39.Lee, H. S., Kang, C. M., Kang, B. W. and Kim, H. K., “Seasonal Variations of Acidic Air Pollutants in Seoul, South Korea,” Atmospheric Environment, Vol. 33, pp. 3143-3452 (1999).
40.Lee, H. S., Wadden, R. A. and Scheff, P. A., “Measurement and Evaluation of Acid Air Pollutants in Chicago Using an Annular Denuder System,” Atmospheric Environment, Vol. 27A, pp. 543-553 (1993).
41.Lefer, B. L., Talbot, R. W. and Munger, J. W., “Nitric Acid and Ammonia at a Rural Northeastern US Site,” Journal of Geophysical Research, Vol. 104 pp. 1645-1661 (1999).
42.Lin, J. J., “Characterization of the Major Chemical Species in PM2.5 in the Kaohsiung City, Taiwan,” Atmospheric Environment, Vol. 36, pp. 1911-1920 (2002).
43.Matsumoto, M. and Okita, T., “Long Term Measurements of Atmospheric Gaseous and Aerosol Species Using an Annular Denuder System in Nara, Japan,” Atmospheric Environment, Vol. 32, pp. 1419-1425 (1998).
44.Matsumoto, K. and Tanaka, Hiroshi, “Formation and Dissociation of Atmospheric Particulate Nitrate and Chloride: An Approach Based on Phase Equilibrium,” Atmospheric Environment, Vol. 30, pp. 639-648 (1996).
45.McCulloch, R. B., Few, G. S., Murray, G. C. and Aneja, V. P., “Analysis of Ammonia, Ammonium Aerosols and Acid Gases in the Atmosphere at a Commercial Hog Farm in Eastern North Carolina, USA,” Environmental Pollution, Vol. 102, pp. 263-268 (1998).
46.Misselbrook, T. H., Van Der Weerden, T. J., Pain, B. F., Jarvis, S. C., Chambers, B. J., Smith, K. A., Phillips, V. R. and Demmers, T. G. M., “Ammonia Emission Factors for UK Agriculture,” Atmospheric Environment, Vol. 34, pp. 871-880 (2000).
47.Moeckli, M. A. Fierz, M. and Sigrist, M. W., “Emission Factors for Ethene and Ammonia from a Tunnel Study with a Photoacoustic Trace Gas Detection System,” Environmental Science and Technology, Vol. 30 pp. 2864-2867 (1996).
48.Moya, M., Grutter, M. and Baez, A., “Diurnal Variability of Size-differentiated Inorganic Aerosols and their Gas-phase Precursors during January and February of 2003 near Downtown Mexico City,” Atmospheric Environment, Vol. 38, pp. 5651-5661 (2004).
49.Nihlgard, B., “The Ammonium Hypothesis-an Additional Explanation to the Forest Dieback in Europe,” Ambio, Vol. 14, pp. 2-8 (1985).
50.Padgett, P., Allen, E., Bytnerowicz, A. and Minisch, R., “Changes in Soil Inorganic Nitrogen as Related to Atmospheric Nitrogenous Pollutants in Southern California,” Atmospheric Environment, Vol. 33, pp. 769-781 (1999).
51.Paerl, H. W. and Whitall, D. R., “Anthropogenically Derived Atmospheric Nitrogen Deposition, Marine Eutrophication and Harmful Algal Bloom Expansion: Is There a Link?,” Ambio, Vol. 28, pp. 307-311 (1999).
52.Pakkanen, T. A., Loukkola, K., Korhonen, C. H., Aurela, M., Makela, T., Hillamo, R. E., Aarnio, P., Koskentalo, T., Kousa, A. and Maenhaut, W., “Sources and Chemical Composition of Atmospheric Fine and Coarse Particles in the Helsinki Area,” Atmospheric Environment, Vol. 35, pp. 5381-5391 (2001).
53.Parmar, R. S., Satsangi, G. S., Lakhani, A., Srivastava, S. S. and Prakash, S., “Simultaneous Measurements of Ammonia and Nitric Acid in Ambient Air at Agra (27°10’N and 78°05’E),” Atmospheric Environment, Vol. 35, pp. 5979-5988 (2001).
54.Park, S. S., Hong, S. B., Jung, Y. G. and Lee, J. H., “Measurements of PM10 Aerosol and Gas-phase Nitrous Acid during Fall Season in a Semi-urban Atmosphere,” Atmospheric Environment, Vol. 38, pp. 293-304 (2004).
55.Pathak, R. K., Yao, X., Lau, A. K. H. and Chan, C. K., “Acidity and Concentrations of Ionic Species of PM2.5 in Hong Kong,” Atmospheric Environment, Vol. 37, pp. 1113-1124 (2003).
56.Perrino, C., Catrambone, M., Di Menno Di Bucchianico, A. and Allegrini, I., “Gaseous Ammonia in the Urban Area of Rome, Italy and its Relationship with Traffic Emissions,” Atmospheric Environment, Vol. 36, pp. 5385-5394 (2002).
57.Perrino, C. and Gherardi, M., “Optimization of the Coating Layer for the Measurement of Ammonia by Diffusion Denuders,” Atmospheric Environment, Vol. 33, pp. 4579-4587 (1999).
58.Pierson, W. R. and Brachaczek, W. W., “Particulate Matter Associated with Vehicles on the Road,” Environment Science and Technology, Vol. 17, pp. 757-760 (1983).
59.Pio, C. A. and Harrison, R. M., “Vapour Pressure of Ammonium Chloride Aerosol: Effect of Temperature and Humidity,” Atmospheric Environment, Vol. 21, pp. 2711-2715 (1987).
60.Possanzini, M., Santis, F. D. and Palo, V. D., “Measurements of Nitric Acid and Ammonium Salts in Lower Bavaria,” Atmospheric Environment, Vol. 33, pp. 3597-3602 (1999).
61.Poissant, L., Bottenheim, P., Rousel, P. and Reid, N. W., “Multivariate Anylysis of a 1992 SONTOS Data Subset,” Atmospheric Environment, Vol. 30, pp. 2133-2144 (1996).
62.Puxbaum, H., Haumer, G., Moser, K. and Ellinger, R., “Seasonal Variation of HNO3, HCl, SO2, NH3 and Particulate Matter at a Rural Site in Northeastern Austria (Wolersdorf, 240m asl),” Atmospheric Environment, Vol. 27A, pp. 2445-2447 (1993).
63.Reisinger, A. R., “Observations of HNO2 in the Polluted Winter Atmosphere: Possible Heterogeneous Production on Aerosols,” Atmospheric Environment, Vol. 34, pp. 3865-3874 (2000).
64.Ren, X., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Shirley, T., Adams, J., Simpas, J. B. and Brune, W. H., “HOx Concentrations and OH Reactivity Observations in New York City during PMTACS-NY2001,” Atmospheric Environment, Vol. 37, pp. 3627-3637 (2003).
65.Robarge, W. P., Walker, J. T., McCulloch, R. B. and Murray, G., “Atmospheric Concentrations of Ammonia and Ammonium at an Agricultural Site in the Southeast United States,” Atmospheric Environment, Vol. 36, pp. 1661-1674 (2002).
66.Roelofs, F. G. M., Kempers, A. J., Houdijk, A. L. F. M. and Jansen, J., “The Effect of Airborne Ammonium Sulphate on Pinus Nigra Var. Maritima in The Netherlands,” Plant and Soil, Vol. 84, pp. 45-56 (1985).
67.Seinfeld, J. H. and Pandis, S. N., “Atmospheric Chemistry and Physics,” John Wiley & Sons, Inc., New York (1998).
68.Sievering, H., Fernandez, I., Lee, J., Hom, J. and Rustad, L., “Forest Canopy Uptake of Atmospheric Nitrogen Deposition at Eastern US Conifer Sites: Carbon Storage Implications?,” Global Biogeochemical Cycles, Vol. 14, pp. 1153-1160 (2000).
69.Singh, S. P., Satsangi, G. S., Khard, P., Lakhani, A., Kumari, K. M. and Srivastava, S. S., “Multiphase Measurement of Atmospheric Ammonia,” Chemosphere-Global Change Science, Vol. 3, pp.107-116 (2001).
70.Stelson, A. W. and Seinfeld, J. H., “Relative Humidity and Temperature Dependence of the Ammonium Nitrate Dissociation Constant,” Atmospheric Environment, Vol. 16, pp. 983-992 (1982).
71.Sutton, M. A., Dragosits, U., Tang, Y. S. and Fowler, D., “Ammonia Emissions from Non-agricultural Sources in the UK,” Atmospheric Environment, Vol. 34, pp. 855-869 (2000) .
72.US EPA, “Determination of Reactive Acidic and Basic Gases and Strong Acidity of Atmospheric Fine Particles in Ambient Air Using the Annular Denuder Technology,” Method IO-4, Center for Environmental Research and Development, Office of Research and Development, U.S. EPA, Cincinnati (1999).
73.Walker, J. T., Whitall, D. R., Robarge, W. and Paerl, H. W., “Ambient Ammonia and Ammonium Aerosol across a Region of Variable Ammonia Emission Density,” Atmospheric Environment, Vol. 38, pp. 1235-1246 (2004).
74.Yao, X., Chan, C. K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K. and Ye, B., “The Water-soluble Inoic Composition of PM2.5 in Shanghai and Beijing, China,” Atmospheric Environment, Vol. 36, pp. 4223-4234 (2002).
75.Ye, B., Ji, X., Yang, H., Yao, X., Chan, C. K., Cadle, S. H., Chan, T. and Mulawa, P. A, “Concentration and Chemical Composition of PM2.5 in Shanghai for a 1-year Period,” Atmospheric Environment, Vol. 37, pp. 499-510 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔