跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/21 14:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁金條
研究生(外文):Jin-Tiao Liang
論文名稱:利用田口方法分析對WLCSP含UBM厚度與錫球形狀之最佳化分析
論文名稱(外文):Optimal Design of UBM Thickness and Solder Shape for WLCSP by Taguchi Method
指導教授:陳榮盛陳榮盛引用關係
指導教授(外文):Rong-Sheng Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:198
中文關鍵詞:WLCSP田口UBM最佳化
外文關鍵詞:WLCSPTaguchiUBMOptimal
相關次數:
  • 被引用被引用:6
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
中 文 摘 要
  晶圓級封裝形式(Wafer Level Chip Scale Package,WLCSP),由於其具有高效能、高功率與高密度等優點,已逐漸成為未來發展的趨勢。雖然WLCSP構裝體之電子訊號I/O密度得以提升,但其可靠度卻降低。然而影響構裝體可靠度的原因良多,其中又以錫球為主要之關鍵。
  本文利用Surface Evolver建構非罩幕定界分析模型模擬含多層金屬薄膜的錫球進行分析,即引用Chen混合型態之模型觀點,將介於錫球與晶片間之多層金屬薄膜材料考慮於模型中。本文採用95.5Sn3.8Ag0.7Cu無鉛錫球含UBM材料之WLCSP構裝體,先利用Surface Evolver預測錫球迴焊後之形狀,再利用ANSYS 7.0有限元素分析軟體建立二維及三維模型,以瞭解構裝體在受溫度循環負荷下之變形、錫球應力應變及遲滯曲線等機械行為之變化情形,並將等效潛變應變範圍值於修正之Coffin-Manson計算公式中,以預估構裝體之疲勞壽命。然而本文之模型與劉振中原始模型的差異為劉振中原始模型之錫球外形曲線為一任意圓弧,而本文利用Surface Evolver軟體預測錫球迴焊後之形狀,並將所求得之外形曲線於ANSYS建構模型,並與劉振中之原始模型進行比較與差異分析。
其次,本文探討多層金屬薄膜厚度、錫球墊半徑與錫球體積等單一控制因子的變動對WLCSP構裝體可靠度之影響。隨後,配合田口品質工程方法探討各控制因子間之互動對構裝體可靠度之影響。並根據模擬結果製作回應表、回應圖,及進行變異數分析以判斷何項控制因子之影響最為顯著,以找出最佳之水準組合,及有效提升構裝體之可靠度。
  透過本文之完成,希望能提供業界對無鉛錫球含多層金屬薄膜材料之WLCSP構裝體的應用有更深一層的認識,以期降低WLCSP構裝體的成本與提高構裝體的可靠度,並縮短開發時間,提升產品的競爭力。
 The Wafer Level Chip Scale Package (WLCSP) has increasingly been becoming popular, because it has some advantages, such as high power, high efficiency and high density. Though WLCSP electronic signal (I/O density) can be improved, the reliability reduces. Among affecting factors of package reliability, solder joints are considered as the main keys.

 This study uses Surface Evolver to construct Non-Solder Mask Defined model, and ANSYS for simulation. The Chen model of mixing type is adopted to analyze solder joints with under bump metallurgy (UBM), which is between the solder joint and the chip. This paper focuses on 95.5Sn3.8Ag0.7Cu lead-free solder joints with UBM in a WLCSP. First, utilize Surface Evolver to predict the solder joint shape after reflow, and then use finite element analysis ANSYS 7.0 to build up two-dimensional and three-dimensional models under thermal cycling to investigate deformations of entire package, and changes of stress-strain hysterisis curve for solder joints. Then the accumulated equivalent creep strain puts into modified Coffin-Manson formula to calculate the fatigue life of WLCSP. The model in this study is different from Liu’s model. In Liu’s model, the meridian arc of solder joint is arbitrarily taken, but in this study, Surface Evolver is utilized to predict the post-reflow solder joint shape before putting it into ANSYS for further simulation. The comparison between these two models is also introduced.

 Additionally, the variations of UBM thickness, solder pad radius and solder volume are made to observe their effects on WLCSP reliability. Finally, Taguchi Method is introduced to find optimal control factors for WLCSP reliability. According to the results, the factor response table, graphs are made to seek the most significant control factor and the optimal level set to improve WLCSP reliability.

 The complication of this study could give manufacturers some suggestions for the application of lead-free UBM solder joint, hopefully cutting cost, enhancing WLCSP reliability, and shortening manufacturing period, and improving the cutting edge of the products.
目 錄
中文摘要.......................................................................................Ⅰ
英文摘要......................................................................................Ⅲ
誌謝..............................................................................................Ⅳ
目錄..............................................................................................Ⅴ
表目錄..........................................................................................Ⅸ
圖目錄.....................................................................................ⅩⅠⅡ
符號說明.................................................................................ⅩⅩⅠ
第一章 緒論................................................................................1
1-1 前言....................................................................................................1
1-2 研究動機與目的................................................................................4
1-3 文獻回顧............................................................................................5
1-4 研究方法............................................................................................7
1-5 章節提要............................................................................................8
第二章 理論基礎.......................................................................11
2-1 研究主題...........................................................................................11
2-2 含UBM錫球之製程........................................................................12
2-3 錫球迴焊過程後之外形預測..........................................................16
2-3-1 能量法.......................................................................................16
2-3-2 力平衡解析法 ..........................................................................19
2-4 低循環疲勞壽命...............................................................................24
2-5 田口式品質工程...............................................................................25
2-5-1 機能品質特性值........................................................................26
2-5-2 直交表........................................................................................26
2-5-3 自由度.........................................................................................26
2-5-4 信號雜音比.................................................................................27
2-5-5 回應表和輔助回應圖................................................................30
2-5-6 變異數分析................................................................................31
2-5-7 最適條件及其推定....................................................................33
2-5-8 信賴區間....................................................................................34
2-5-9 機能窗法....................................................................................35
第三章 球型柵狀陣列錫球之形狀評估......................................45
3-1 Surface Evolver模型建立.................................................................45
3-1-1 球型柵狀陣列結構模型............................................................46
3-1-2 錫球基本假設條件....................................................................46
3-1-3 邊界條件與負載狀況................................................................47
3-1-4 分析流程....................................................................................48
3-1-5 錫球接觸角之預測....................................................................49
3-2 分析結果與評估...............................................................................49
3-2-1 Surface Evolver與Heinrich model進行驗證...........................49
3-2-2 多層金屬薄膜分析....................................................................52
第四章 WLCSP模型建立與評估................................................90
4-1 分析模型建立..................................................................................90
4-1-1 WLCSP構裝體模型...................................................................91
4-1-2 模型之基本假設條件................................................................92
4-1-3 邊界條件與負載........................................................................93
4-2 ANSYS有限元素分析軟體..............................................................94
4-3 分析流程...........................................................................................98
4-4 分析結果與評估......................................................................99
4-4-1 本方法分析之差異比較..........................................................100
4-4-2 單一因子對疲勞壽命之影響分析..........................................101
4-4-3 各因子間之互動對疲勞壽命影響分析..................................103
4-4-4 二維模型等效潛變應變範圍分析..........................................103
4-4-5 二維模型疲勞壽命之預測及可靠度分析..............................104
4-4-6 三維模型等效潛變應變範圍分析..........................................104
4-4-7 三維模型疲勞壽命之預測及可靠度分析...............................105
第五章 田口氏品質工程分析.....................................................170
5-1 田口方法實驗設計...........................................................................170
5-2 實驗結果與資料分析......................................................................172
5-2-1 二維模型實驗結果...................................................................172
5-2-2 二維模型變異分析...................................................................173
5-2-3 二維模型確認實驗...................................................................174
5-2-4 三維模型實驗結果...................................................................176
5-2-5 三維模型變異分析...................................................................177
5-2-6 三維模型確認實驗...................................................................178
第六章 結論.................................................................................189
6-1 結論..................................................................................................189
6-2 未來研究方向..................................................................................194
參考文獻.......................................................................................195
自述...............................................................................................198
參考文獻
﹝1﹞R. R. Tummala, “Fundamentals of Microsystems Packaging”,Mc GRAW-HILL, New York,pp.406,2001.
﹝2﹞L. S. Goldmann, “Geometric Optimization of Controlled Collapse
Interconnection”, IBM Journal of Research and Development, vol. 120,pp.175~178, May 1969.Nov. 2001.
﹝3﹞S. M. Heinrich, M. Schaefer, S. A. Schroeder, P. S. Lee, “Prediction of Solder Joint Geometry in Array-Type Interconnects”, ASME J. Elec.Pack., Vol. 118, No. 3, pp. 114~121, 1996.
﹝4﹞A. Mertol, “Application of the Taguchi Method on the Robust Design of Molded 225 Plastic Ball Grid Array Packages”,IEEE Transaction on Components,Packaging and Manufacturing Technology Part B,pp.734~743,1995.
﹝5﹞M. Ikemizu, Y. Fukuzawa, J. Nakano, T. Yokoi, K. Miyajima, H. Funakura, E. Hosomi,“CSP solder ball reliability”, Twenty-First IEEE/CPMT International 13-15,pp.447~ 451,1997.
﹝6﹞K. N. Chiang, W. H. Chen, "Electronic Packaging Reflow Shape Prediction for The Solder Mask Defined Ball Grid Array", ASME Transaction, Journal of Electronic Packaging, Vol. 120,pp.175~178, 1998.
﹝7﹞L. L. Mercado, V. Sarihan, Y. Guo, A. Mawer,"Impact of Solder Pad Size on Solder Joint Reliabilityin Flip Chip PBGA Packages", IEEE Transactions on Advanced Packaging, Vol. 23, No. 3, August 2000.
﹝8﹞K. N. Chiang , C. A. Yuan, "An Overview of Solder Bump Shape Prediction Algorithms with Validations", IEEE Transactions on Advanced Packaging, Vol.24, No.2, pp.158~162, May, 2001.
﹝9﹞J. H. Lau,“Effects of Microvia Build-Up Layers on the Solder Joint Reliability of a Wafer Level Chip Scale Package (WLCSP)”,IEEE Electronic Components and Technology Conference,2001.
﹝10﹞W. H. Chen, K. N. Chiang , S. R. Lin, “Prediction of Liquid Formation for Solder and Non-Solder Mask Defined Array Packages”, ASME Journal of Electronic Packaging, Vol. 124, pp.37~44. ,2002.
﹝11﹞D. H. Kim, P. Elenius, S. Barrett , “Solder Joint Reliability and Characteristics of Deformation and Crack Growth of Sn–Ag–Cu Versus Eutectic Sn–Pb on a WLP in a Thermal Cycling Test”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No. 2, April 2002.
﹝12﹞L. Cergel, L. Wetz, B. Keser, J. White, “Chip Size Packages with Wafer-Level Ball Attach and their Reliability”, Smolenice Castle, Slovakia,pp.14~16,October 2002.
﹝13﹞劉振中,“無鉛錫球含多層金屬薄膜之晶圓級封裝結構應力分析”, 成功大學工程科學系碩士畢業論文, 2003.
﹝14﹞T. H. Leng, G. Kirkpatrick,“Cr/Cu/Ni Underbump Metallization Study”, Electronic Components and Technology Conference, pp.939~944, 2001.
﹝15﹞K. A. Brakke, “ Surface Evolver Manual. ” Minneapolis, MN: The GeometryCenter, 1994.
﹝16﹞N. Paydar, Y. Tong , H. U. Akay, “A Finite Element Study of Factors Affecting Fatigue Life of Solder Joints, ”Journal of Electronic Packaging, Vol. 116,Dec,pp.265~273, 1994.
﹝17﹞A. Schubert , R. Dudek, “Reliability Assessment of Flip-Chip Assemblies with Lead-free Solder Joints, ”Electronic Components and Technology Conference,pp.1246~1255, 2002.
﹝18﹞S. Wiese, “Constitutive Behaviour of Lead-free Solders vs. Lead-containing Solders -Experiments on Bulk Specimens and Flip-Chip Joints”,Electronic Components and Technology Conference, 2001.
﹝19﹞J. H. Lau, “Modeling and Analysis of 96.5Sn-3.5Ag Lead-Free Solder Joints of Wafer Level Chip Scale package on Buildup Microvia Printed Circuit Board”, IEEE Transaction on Electronics Packaging Manufacturing, Vol. 25, No.1,pp.51~58, January 2002.
﹝20﹞J. H. Lau, “Solder Joint Crack Propagation Analysis of Wafer-Level Chip Scale Package on Printed Circuit Board Assemblies”,Electronic Components and Technology Conference , 2000.
﹝21﹞李輝煌, “田口方法品質設計的原理與實務”,高立圖書有限公司,2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top