跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/03 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林建甫
研究生(外文):Chen-Fu Lin
論文名稱:微流體多功能電化學檢測系統
論文名稱(外文):Multi-functional Electrochemical Detecting System Using Microfluidic Technology
指導教授:李輝煌李輝煌引用關係
指導教授(外文):Huei-Huang Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:97
中文關鍵詞:微閥門微幫浦鈣離子微機電電化學感測酸鹼值
外文關鍵詞:pH valueElectrochemical sensorMicro-valveMicro-pumpMEMSCalcium ion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
  本研究成功地利用微機電製程技術,將微流體操控系統、電化學感測電極與環境監控系統等整合於單一感測晶片中,微流體操控元件係以聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)材料製作氣動式微幫浦與微閥門。電化學感測電極中,以氯化銀(AgCl)當作參考電極,並使用氧化層SLBTLO (SiO2-LiO2-BaO-TiO2-La2O3)作為酸鹼值感測器與ETH 129( N, N, N’, N’-tetracyclohexyl-3-oxa-pentane-diaminde)離子選擇性薄膜作為鈣離子感測器,搭配環境監控系統-包括溫度監控系統、流速監控系統,可以精確與即時地回報環境參數,使電化學感測結果更正確,且可監控幫浦流速,瞭解檢體使用量等功能。本檢測晶片測試結果中,包括酸鹼值感測器之靈敏度達-57.74mV/pH與鈣離子靈敏度34.7mV/decade,且檢測時間只需200秒內即可同時測量出酸鹼值與鈣離子之濃度,與傳統大型檢測系統比較,本研究晶片不但可以同時檢測多種離子,且檢測檢體需要量從原本20㏄降至100μL,成為一快速且方便的手持式檢測工具。
 This paper presents a microfluidic chip capable of automatically performing precise and continuous pH measurements. It is an electrochemical sensing system integrated with a microfluid and environmental monitoring system based on MEMS-technology. The chip’s microfluidic control devices and microchannels are made of PDMS (Polydimethylsiloxane), and its reference electrodes fabricated with AgCl. One of the two sensing electrodes is fabricated by sputtering a layer of SLBTLO (SiO2-LiO2-BaO-TiO2-La2O3) for evaluating pH value. The ion selective membrane on the second electrode is made from ETH 129( N, N, N’, N’-tetracyclohexyl-3-oxa-pentane-diaminde)which allows for the sensing of calcium ion concentration. Temperature sensors feed back information around the sensing electrodes to immediately calibrate the electrochemical sensors. A flow sensor monitors the flow rate of the micropumps to measure the volume of sample transported. The performance of the developed sensing chip is close to that of traditional sensing systems. The sensitivity of pH value and calcium ion concentration is -57.74mV/pH and 34.7mV/decade. The chip can simultaneously detect hydrogen and calcium ion concentration within 200 seconds and the sample size needed is 100μL. Additionally, a pneumatic fluid-control device facilitates the automatic sample injection and a continuous sensing operation. The developed system can provide a convenient and portable tool in a wide range of biomedical applications.
第一章 緒論.....................1
1-1 前言...................... 1
1-2 生物微機電技術簡介 ...............2
1-3 研究動機與目的 .................4
1-4 研究方法 ....................6
1-5 文獻回顧 ....................8
1-5-1 微幫浦文獻回顧 ................ 8
1-5-2 電化學感測器文獻回顧 .............16
1-6 論文架構 ....................19

第二章 理論與設計..................21
2-1 微流體操控系統 .................21
2-1-1 微幫浦與微閥門的原理探討 ...........22
2-1-2 微流管道設計考量 ...............26
2-2 環境監控系統 ..................30
2-2-1 溫度監控系統 .................31
2-2-2 流速監控系統 .................34
2-3 電化學感測系統 .................34
2-4 晶片設計尺寸參數 ................38

第三章 感測晶片製作.................43
3-1 製程規劃 ....................43
3-2 光罩設計與製作 .................44
3-3 基本製程技術 ..................45
3-4 晶片表面清潔 ..................45
3-4-1 黃光微影製程 .................47
3-4-2 金屬薄膜沈積製程 ...............51
3-4-3 微注模技術 ..................52
3-4-4 晶片封裝與接合技術 ..............54
3-5 晶片製作流程 ..................55
3-5-1 PDMS微流管道製程 ..............56
3-5-2 玻璃基板電極製作 ...............60
第四章 結果與討論 .................66

4-1 多功能感測晶片動作流 ..............66
4-2 微氣動幫浦與微閥門實驗與分析 ..........68
4-2-1 實驗架設 ...................68
4-2-2 微幫浦與微閥門測試結果 ............69
4-3 環境監控系統測試實驗與分析 ...........71
4-3-1 流速感測系統測試實驗與分析 ..........71
4-3-2 溫控監控系統測試實驗與分析 ..........73
4-4 電化學感測系統測試實驗與分析 ..........75
4-4-1 酸鹼值測試實驗之配製與架設 ..........75
4-4-2 酸鹼值測試實驗結果與分析 ...........75
4-4-4 鈣離子感測器實驗之藥品配製與架設 .......80
4-4-5 鈣離子感測器實驗結果與分析 ..........81

第五章 結論與未來展望 ...............84
5-1 結論 ......................84
5-2 未來展望 ....................86
[1]. T. Richter, L. Loranelle, O. D. Richtard, U. Bilitewski, D. J. Harrison, “Bi-enzymatic and capillary electrophoretic analysis of non-fluorescent compounds in microfluidic devices: Determination of xanthine,” Sensors and Actuators B, Vol.81, pp. 369-376, 2002.

[2]. D. J. Graves, “Powerful tools for genetic analysis come of age,” Trends Biotechnology, Vol. 17, pp. 127-134, 1999.

[3]. C. B. Epstein and R. A. Butow, “Microarray technology - enhanced versatility, persistent challenge,” Current Opinion in Biotechnology, Vol. 11, pp. 36-41, 2000.

[4]. G. H. W. Sanders and A. Mans, “Chip-based Microsystems for genomic and proteomic analysis,” Trends in Analytical Chemistry, Vol. 19, pp. 364-378, 2000.

[5]. N. H. Chiem and D. J. Harrison, “Microchip system for immunoassay: an integrated immunoreactor with electrophoretic separation for serum theophylline determination, ” Clinical Chemistry, Vol. 44, pp. 591-598, 1998.

[6]. K. Sato, A. Hibara, M. Tokeshi, H. Hisamoto, and T. Kitamori, “Microchip-based clinical and biochemical analysis system,” Journal of Chromatography A, Vol. 987, pp. 197-204, 2003.

[7]. A. C. R. Grayson, R. S. Shawgo, Y. Li, and M. J. Cima, “Electronic MEMS for triggered delivery,” Advanced Drug Delivery Reviews, Vol. 56, pp. 173-184, 2004.

[8]. M. R. Prausnitz, “Microneedles for transdermal drug delivery,” Advanced Drug Delivery Reviews, Vol. 56, pp. 581-587, 2004.

[9]. B. H. Weigl, R. L. Bardell, and C. R. Cabrera, “Lab-on-a-chip for drug development,” Advanced Drug Delivery Reviews, Vol. 55, pp. 349-377, 2003.

[10]. J. Janata, “Principle of chemical sensor, Plenum Press, ” New York, 1989.

[11]. A. J. Bard and L. R. Faulkner, “Electrochemical methods,” John Wiley & Sons, New York, 2001.

[12]. P. T. Moseley, J. O. W. Norries, and D. E. Willians, “Techniques and Mechanisms in gas sensor,” Adam Hilger, New York, 1990.

[13]. 邱秋燕、周澤川,”電化學感測器之原理與應用”,化工,第16卷,第6期,第49頁,1993。

[14]. W. Gopel, J. Hesse, and J. N. Zemel, “Sensors,” VCH Verlaysgesesllschaft mbH, New York, 1991.

[15]. M. L. Hitchmam, “Measurement of dissolved oxygen.” John Wiley & Sons, New York, 1978.

[16]. A. Richter, A. Bund, M. Keller and K. F. Arndt, “Characterization of a microgravimetric sensor based on pH sensitive hydrogels,” Sensors and Actuators B, Vol. 99, pp. 579-585, 2004.

[17]. D. R. Reyes, D.Iossifidis, P. A. Auroux and A. Manz, ”Micro total analysis systems. “1. Introduction, Theory, and Technology,” Analytical Chemistry, vol. 74, pp. 2623-2636, 2002.

[18]. P. A. Auroux, D. R. Reyes, D. Iossifidisand A. Manz, “Micro total analysis aystems. 2. analytical standard operations and applications, ” Analytical Chemistry, Vol. 74, pp. 2637-2652, 2002.

[19]. R. Zengerle, J. Ulrich, S. Kluge, M. Richter and A. Richter, “A bidirectional silicon micropump,” Sensors and Actuators A: Physical, Vol. 50, pp. 81-86, 1995.

[20]. A. Manz, D. J. Harrison, J. C. Verpoorte, and H. Ludi, H. M. Widmer, “Integrated electroosmotic pumps and flow manifolds for total chemical analysis systems,” Proceeding of Transducers 1991, pp. 939-941, 1991.

[21]. R. Zengerle and M. Richter, “Simulation of microfluid systems,” Journal of Micromechanics and Microengineering, Vol. 4, No. 4, pp. 192-204, 1994.

[22]. G. Zhan, T. Lo, L. Liu, and P. Tsien, “A silicon membrane micropump with integrated bimetallic actuator,” Chinese Journal of Electronics, Vol. 5, No. 2, pp. 29-35, 1996.

[23]. W. L. Benard, H. Kahn, A. H. Heuer, and M. A. Huff, “A Titanium-Nickel shape memory alloy actuated micropump,” Proceedings of Transducers 1997, pp. 361-364, 1997.

[24]. J. G. Smits, “Piezoelectric micropump with three valves working peristaltically,” Sensors and Actuators, Vol. A 21-23, pp. 203-206, 1990.

[25]. O. C. Jeongand, and S. S. Yang, “Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm,” Sensors and Actuators A, Vol. 83, pp. 249-255, 2000.

[26]. F. C. M. Van De Pol, H. T. G. Van Lintel, M. Elwenspoek and J. H. J. Fluitman, “Thermopneumatic micropump based on microengineering techniques,” Sensors and Actuators A, Vol. 21, pp. 198-202, 1990.

[27]. C. Vieider, O. Ohman and Eldertig, “A pneumatically actuated micro valve with a silicon rubber membrane for integrated with fluid-handling systems,” Solid-State Sensors and Actuators, Vol. 2, pp. 284-286, 1995.

[28]. E. Makino, T. Mitauya, T. Shibata, “Fabrication of TiNi shape memory micropump,” Sensors and Actuators A: Physical, Vol. 88, pp. 256-262, 2001.

[29]. A. Olsson, P. Enoksson, G. Stemme and E. Stemme, “A valveless planar pump isotropically etched in silicon,” Proceedings of Micromechanics Europe, pp. 120-123, 1995.

[30]. J. M. Berg, R. Anderson, M. Anaya, B. Lahlouh, M. Holtz, T. Dallas, “A two-stage discrete peristaltic micropump,” Sensors and Actuators A: Physical, Vol. 104, pp. 6-10, 2003.

[31]. J. G. Spencer, “Piezoelectric micropump with three valves working peristaltically,” Sensors and Actuators A: Physical, Vol. 21-23, pp. 203-206, 1990.

[32]. M. A. Unger, H. P Chou., T. Thorsen, A. Scherer and S. R. Quake, ”Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, vol. 288, pp. 113-116, 2000.

[33]. A. Y. Fu, H. P. Chou, Spence, F. H. Arnold and S. R. Quake, “An integrated microfabricated cell sorter”, Analytical Chemistry, Vol. 74, pp. 2451-2457, 2002.

[34]. 郭盈成, ”新式微幫浦與微閥門之設計與製作”,國立成功大學工程科學研究所碩士論文, 2003。

[35]. H. Glaster, “The pH measurements-fundamentals, methods, applications, instruments,” VCH, 1991.

[36]. S. Glab, A. Hulanicki, G. Edwall, and F. Ingan, “Metal-metal oxide and metal oxide electrodes as pH sensor,” Critical Review in Analytical Chemistry, Vol. 21, pp. 29-47, 1989.

[37]. Y. Abe and M. Maeda, “Origin of pH-glass electrode potentials and development of pNa-responsive glasses, Journals of Electrochemistry,” Vol. 147, pp. 787-791, 2000.

[38]. W. Y. Liao, Y. G. Lee, C. Y. Huang, H. Y. Lin, Y. C. Weng, and T. C. Chou, “Telemetric Electrochemical Sensor,” Biosensors and Bioelectronics, Vol. 20, pp.482-490, 2004.

[39]. E. Bakker, D. Diamond, A. Lewenstam, and E. Pretsch, “Ion sensors: current limits and new trend,” Analytical Chemistry Acta 1999, Vol. 393, pp. 11-18, 1999.

[40]. M. S. Frant, “Ion-selective electrodes: historical, mechanism of response, selectivity and concept review,” Analyst 1994, Vol. 119, pp. 2293, 1994.

[41]. P. Buhlmann, E. Pretsch, and E. Bakker, “Carrier-based ion-selective electrodes and bulk optodes. 2. ionophores for potentiometric and optical sensors,” Chemistry Review, Vol. 98, pp. 1593-1687, 1998.

[42]. 王詩涵,”微製造技術應用於鈣離子感測器及奈米氧化鎢二氧化氮感測器,” 國立成功大學化學工程研究所碩士論文, 2003。

[43]. D. C. Duffy, H. L. Gillis, J. Lin, N. F. Sheppard, and G. J. Kellogg, “Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays, ” Analytical Chemistry, Vol. 71, pp. 4669-4698, 1999.

[44]. G. B. Lee, J. H. Hu, and J. J. Miau, “A flexible skin with temperature sensor array,” Journal of the Chinese Institute of Engineers, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張毅君(2003),「年近半百的速食店連鎖業龍頭急著年輕化-新潮歌手擠走麥當勞叔叔」,商業周刊,9月15日,頁 128 - 130。
2. 孫路弘(1996),「餐飲服務品質管理」,觀光研究學報,第2卷,第1期,頁 79 - 91。
3. 范碧珍(2005),「消費者心象十大趨勢」,突破雜誌,第234期,元月號,頁48-51。
4. 胡光夏(2002),「西方速食連鎖店在臺發展歷程與影響之研究:以麥當勞在臺發展為例」,傳播與管理研究,第1卷,第2期,頁 239 - 253。
5. 洪順慶(2005),「為品牌創價值,才有銷售力」,突破雜誌,第238期,5月號,頁22-25。
6. 何玉美(1999),「行銷全球,在地思考」,管理雜誌,第295期,一月號,頁 80 - 83。
7. 卜繁裕(2004),�苤u網路接力,到處都不是肯德基」,e天下雜誌,第47期,11月號,頁 184。
8. [13]. 邱秋燕、周澤川,”電化學感測器之原理與應用”,化工,第16卷,第6期,第49頁,1993。
9. 黃俊英(2005),「創造理想品牌的魅力與價值」,突破雜誌,第234期,元月號,頁58-62。
10. 陳振燧、洪順慶(1998),「顧客基礎的品牌權益建立之研究」,管理學報,第15卷,頁 623 - 642。
11. 吳昭怡(2004),「日本摩斯漢堡自我變革-向速食再見」,天下雜誌,7月15日,頁 130 – 131。
12. 吳昭怡(2003),「選對顧客,抓住健康趨勢-摩斯漢堡,焦點經營抓顧客」,天下雜誌,8月1日,頁 72 - 74。
13. 吳昭怡(2002),「肯德基如何讓對手等一下」,天下雜誌,5月2日,頁 174 - 176。