跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/15 04:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黎炯良
研究生(外文):Chiung-Liang Li
論文名稱:辭書間之自動化對映機制
論文名稱(外文):The Automatic Mapping Mechanism between Ontologies
指導教授:王宗一王宗一引用關係
指導教授(外文):Wang, T. I
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:68
中文關鍵詞:辭書辭書對映詞網
外文關鍵詞:ontologyontology mappingWordNet
相關次數:
  • 被引用被引用:1
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:4
  辭書(Ontology)是構成語意網最重要的基礎,可以用來描述特定領域(Domain)下的知識。透過辭書使得存在於全球資訊網上的資源能夠明確的被定義,因此不只是人們可以藉由辭書了解並獲得網路上的資源,機器也可以透過辭書的描述,自動地存取或是整合網路上的資源。

  目前知識的管理是一熱門的研究領域,在面臨多元化、複雜化的知識產出,如何整合、管理、分享這些知識是一大挑戰。而面對大量的知識,自動化的知識管理是必須的,由於知識是使用辭書來描述與定義,因此要達成知識之間的整合與分享,首先必須的工作為建立
辭書之間的對映,讓不同辭書的知識概念可以有語意上關連,進而達成知識的自動化的整合與管理。

  因此本論文提出一個結合WordNet辭典的自動化辭書對映系統,來完成知識的整合與分享,本系統使用WordNet辭典的詞彙,結合觀察知識概念其鄰近概念關係的機制,來增進辭書中知識概念的對映精確度,並且可以完成不同辭書中其知識概念ㄧ對ㄧ與ㄧ對多的對映。
  Ontology is the most important foundation of the Semantic Web, which will be the infrastructure for exchanging knowledge of different domains in the next generation of Internet. Through ontology, different domain knowledge can be extracted and abstracted as resources in the World Wide Web. People and machines, with proper interpretations, can easily and clearly understand and access resources on the Semantic Web. By the ontology, knowledge can be integrated or exchanged by machines on the network automatically.
  
  Presently, knowledge management is a popular research topic. With more and more pluralism and complicated knowledge established, it is a real challenge to organize, manage, extend and share useful knowledge. To deal with such an enormous amount of knowledge, the technology of automatic knowledge management becomes urgently needed. Knowledge of specific domains may be described and defined by different ontologies and deployed onto the semantic web. To achieve automatic knowledge exchange, it is necessary to build some mapping mechanism between the ontologies. This mapping mechanism will clarify the literal difference of semantically equivalent terminologies that describe the same knowledge but in different ontology.

  This thesis designs and implements an ontology mapping mechanism. It is based on WordNet and can precisely find semantically equivalent but differently named terminologies in two different ontologies. It is done by using the WordNet to compare these names and attributes first, and then by observing and calculating the similarity of their neighboring concepts which are sibling, parental or children nodes in the ontology hierarchies. This ontology mapping mechanism supports one-to-one and one-to-many mapping between knowledge concepts of different ontologies.
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究成果與貢獻 3
1.4 章節介紹 4

第二章 相關研究 5
2.1 辭書基本定義 5
2.2 辭書描述語言 8
2.2.1 資源描述架構(RDF) 10
2.2.2 資源描述綱要(RDFS) 11
2.2.3 DAML+OIL 12
2.2.4 OWL 13
2.2.5 辭書描述語言編輯器(Ontology Language Editor) 15
2.3 辭書對映 16
2.3.1 辭書對映的定義 16
2.3.2 辭書對映的起源 16
2.3.3 人工建立辭書對映 17
2.3.4自動化建立辭書對映及其相關研究 17
2.4 WordNet 22

第三章 自動化辭書對映架構與運作 25
3.1 辭書對映之基本定義 25
3.2 系統概觀 26
3.3 自動化辭書對映演算法 28

第四章 自動化辭書對映系統之實作 44
4.1 JWNL 44
4.2 辭書剖析 46
4.3 辭書剖析結果之對映 52
4.4 系統之效能評估 55
4.5 系統Recall值之改進 59

第五章 結論與未來展望 62
5.1 研究成果與結論 62
5.2 未來展望 63

參考文獻 65
自 述 68
[1]T.R. Gruber. “A translation approach to portable ontolog specications,”Knowledge Acquisition,vol.5,issue 2,pp.199-220.1993.
[2]N.F.Noy and D.L.Mcguinness, ”Ontology Development 101: A Guide to Creating Your First Ontology,” Stanford Knowledge System Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880,Mar.2001.
[3]T. Berner-Lee, J.Hendler, and O.Lassila. The Semantic Web. Scientific Ammerican, 279, 2001.
[4]Marc Ehrig and York Sure. Ontology mapping - an integrated approach. In Christoph Bussler, John Davis, Dieter Fensel, and Rudi Studer, editors, Proceedings of the 1st ESWS, volume 3053 of Lecture Notes in Computer Science, pages 76–91, Heraklion, Greece, MAY 2004. Springer Verlag.
[5]A. Doan, P. Domingos, and A. Halevy. Learning to match the schemas of data sources: A multistrategy approach. VLDB Journal, 50:279–301, 2003.
[6]C.Y.Kong, C.L.Wang, and F.C.M.Lau., “Ontology Mapping in Pervasive Computing Environment,” International Conference on Embedded and Ubiquitous Computing .
[7]M. Ehrig and S. Staab. QOM – Quick Ontology Mapping. In Proc. of the third ISWC. Japan. 2004.
[8]Natalya F. Noy and Mark A. Musen. The PROMPT suite: interactive tools for ontology merging and mapping. International Journal of Human-Computer Studies, 59(6):983–1024, 2003.
[9]Jie Tang, Bang-Yong Liang and Juan-Zi Li.” Toward Detecting Mapping Strategies for Ontology Interoperability ,” The 14th Int'l Conf. on World Wide Web (WWW2005). Makuhari Messe, Chiba, Japan. Tuesday May 10, 2005.
[10]Xiaomeng Su. A text categorization perspective for ontology mapping. Technical report, Department of Computer and Information Science, Norwegian University of Science and Technology, Norway, 2002.
[11]R. Karp, V.Chaudhri, and J.Thomere, “XOL: An XML-based Ontology Exchange Language,”Technical Report, Aug. 1999.
[12]O.Lassila and R.Swick, ”Resource Description Framework(RDF) Model and Syntax Specification,”World Wide Web Consortium Recommendation, Feb. 1999; available at http://www.w3.org/TR/REC-rdf-syntax/.
[13]D.Brickley and R.Guha, “Resource Description Framework(RDF) Schema Specification,”W3C Candidate Recommendation, Mar. 2000; available at http://www.w3.org/TR/2000/CR-RDF-schema-20000327.
[14]Dieter Fensel 、Framk van Harmelen、Ian Horrocks、Deborah L. McGuinness、PeterF. Patel-Schneider,”OIL:An Ontology Infrastructure for the Semantic Web”,IEEE Intelligent System,vol. 16,no. 2,pp.38-45,March/April 2001.
[15]Horrocks 、D.Fensel 、J.broekstra 、S. Decker 、M.Erdmann 、C. Grble 、F.vn Harmelen , ”The Ontology Inference Layer OIL” , Aug 2000 ,http://www.ontoknowledge.org.
[16]P. Pantel, D. Lin. Discovering Word Senses from Text. In Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2002:613-619.
[17]A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between ontologies on the semantic web. In Proceedings of the World-Wide Web Conference (WWW-2002), pages 662–673. ACM Press, 2002.
[18]http://ai-nlp.info.uniroma2.it/xeoml/
[19]http://www.w3.org/TR/2004/REC-owl-features-20040210/
[20]http://www.ontologos.org/OML/OML%200.3.htm.
[21]http://www.atl.external.lmco.com/projects/ontology/papers/I3CON-Results.pdf.
[22]石旭原, ”以SCORM為知識本體應用基模之網路學習系統實作案研究,” 逢甲大學資訊工程學研究所, 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊