跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/16 18:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:姚偉凱
研究生(外文):Wei-Kai Yao
論文名稱:嶄新單級高功因混橋型順向式電力轉換器之分析與設計
論文名稱(外文):Analysis and Design of a Novel Single-Stage Hybrid-Bridge Forward Converter with High Power Factor Correction
指導教授:林鐘烲
指導教授(外文):Jong-Lick Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:165
中文關鍵詞:混橋型順向式電力轉換器元件移位法單級次迴路回授控制器
外文關鍵詞:hybrid-bridge forward convertercomponent placementsingle-stageminor-loop feedback controller
相關次數:
  • 被引用被引用:9
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

  本論文探討元件移位法之原理,並應用此法將降-升壓式(buck-boost)與混橋型順向式(hybrid-bridge forward)電力轉換器合併,設計出嶄新單級HPFC混橋型順向式電力轉換器。本論文提出之電力轉換器具有下列優點:(1)輸入端功因良好、(2)儲能電容電壓應力小、(3)輸出穩壓。
  論文中的嶄新單級HPFC混橋型順向式電力轉換器,當前級的降-升壓式電力轉換器操作於DCM模式時,天生就具有功因校正能力,故無須設計功因校正控制器。當電力轉換器操作於DCM+CCM或DCM+DCM模式,吾人先作電路動作原理分析,並探討當負載變為輕載時,對於儲能電容電壓之影響。本電力轉換器操作於DCM+DCM模式時,不但天生具有高功因的特性,同時可以避免儲能電容高電壓應力的問題,此為本電力轉換器操作於DCM+DCM模式之主要原因。
  確定電力轉換器之操作模式後,吾人使用平均化法推導電力轉換器之直流工作點及小信號數學模式,以瞭解其動態特性。根據轉換器之操作條件設計電力轉換器之元件規格,並應用IsSpice模擬軟體驗證直流工作點之正確性。並使用頻譜分析儀(R9211),量測實作電路的轉移函數,以驗證數學模式推導之正確性。
  最後,利用古典控制理論設計PI控制器及次迴路回授(minor-loop feedback)控制器,將輸出電壓加以穩壓,而不受線電壓及負載變動的影響。實作輸出功率為100 W之AC/DC電力轉換器,由實作結果顯示,兩種控制器均不會影響電力轉換器的功因校正能力,並能夠達到輸出穩壓,降低線電壓及負載變動的影響,但次迴路回授控制器優於PI控制器。
Abstract

  In this thesis, the principle of the component placement is discussed. By means of component placement, the buck-boost and hybrid-bridge forward converter are combined to create a novel single-stage high power factor correction (HPFC) hybrid-bridge forward converter. The main advantages for the proposed converter are high power factor, low voltage stress of the bulk capacitor, and the output voltage regulation.
  The novel single-stage hybrid-bridge forward converter with HPFC proposed in this thesis has inherent gift of power factor correction (PFC), when the first stage operates in DCM mode. Hence the PFC controller is not necessary. For the proposed converter operating in DCM+CCM or DCM+DCM mode, the circuit operation principle is analyzed and the effect influenced by light loads on the voltage of bulk capacitor is also discussed. It is revealed that when the proposed converter is operating in the discontinuous conduction mode, it not only has high power factor inherently, but also avoids to suffer from high voltage stress across the bulk capacitor at light loads. That is the main reason for the proposed converter operating in DCM+DCM mode.
  After deciding the operating mode of the converter, in order to investigate the dynamic behaviors, the averaging method is used to drive the DC operating point and the small-signal model. Each component of the proposed converter is designed to satisfy the operation conditions. The operating point is verified by IsSpice software simulations. Then, the experimental results, which are measured by FFT servo analyzer R9211, are used to verify the accuracy of small-signal model by the illustration of Bode plots.
  Finally, the PI controller and the minor-loop feedback controller, based on the classical control theory, are designed to achieve output voltage regulation despite of the line voltage and load variations. A AC/DC power converter with output power 100 W is implemented in this thesis.The experimental results show that both controllers can keep the inheremt ability of PFC the converter and tightly regulate the output voltage despite variations in line voltage and load resistance. However the minor-loop feedback controller is superior to the PI controller.
目錄

                                     頁次
中文摘要.....................................................................I
英文摘要....................................................................II
目錄.......................................................................III
圖表目錄....................................................................VI
第一章 緒論...............................................................1-1
1.1 簡介.........................................................1-1
1.2 功率因數校正電路.............................................1-2
1.3 相關論文回顧.................................................1-3
1.4 本實驗室相關論文之回顧.......................................1-5
1.5 諧波限制規範.................................................1-7
1.6 數學模式推導方法與控制方法...................................1-9
1.7 本文架構....................................................1-10
第二章 功率因數之校正.....................................................2-1
2.1 功率因數之探討...............................................2-1
   2.1.1 線性負載.............................................2-1
   2.1.2 非線性負載...........................................2-2
2.2 功率因數校正電路之介紹.......................................2-4
2.3 主動式功因校正電路...........................................2-6
2.4 高功因電力轉換器.............................................2-9
第三章 嶄新單級HPFC混橋型順向式電力轉換器之設計原理......................3-1
3.1 混橋型順向式電力轉換器.......................................3-1
   3.1.1 混橋型順向式電力轉換器磁通重置方法之分析.............3-2
   3.1.2 混橋型順向式電力轉換器磁通重置迴路之設計.............3-3
   3.1.3 混橋型順向式電力轉換器之電路動作原理分析.............3-7
3.2 元件移位法..................................................3-16
   3.2.1 元件移位法的移位原則................................3-16
   3.2.2 元件移位法之應用....................................3-17
3.3 嶄新單級HPFC混橋型順向式電力轉換器之設計....................3-19
第四章 嶄新單級HPFC混橋型順向式電力轉換器之電路動作原理分析...........4-1
4.1 電路動作原理分析.............................................4-1
4.2 DCM+CCM模式下電路動作原理分析................................4-2
   4.2.1 DCM+CCM之數學模式建立................................4-7
   4.2.2 DCM+CCM之IsSpice軟體模擬............................4-10
   4.2.3 DCM+CCM模式下儲能電容電壓之探討.....................4-12
4.3 DCM+DCM模式下電路動作原理分析...............................4-13
   4.3.1 DCM+DCM之數學模式建立...............................4-16
   4.3.2 DCM+DCM之IsSpice軟體模擬............................4-19
   4.3.3 DCM+DCM模式下儲能電容電壓之探討.....................4-21
4.4 DCM+CCM與DCM+DCM模式下儲能電容電壓比較......................4-22
4.5 結論........................................................4-22
附錄4A 電感電流依序下降之條件...................................4A-1
附錄4B 嶄新單級HPFC混橋型順向式電力轉換器應用能量轉移法
    (穩態直流分析)...........................................4B-1
第五章 嶄新單級HPFC混橋型順向式電力轉換器之數學模式推導...................5-1
5.1 切換週期平均化模式之推導.....................................5-1
5.2 半線電壓週期平均化模式之推導.................................5-5
5.3 脈波寬度調變器之小信號交流等效增益..........................5-11
第六章 轉換器元件規格設計與模式驗證.......................................6-1
6.1 轉換器之電感值設計...........................................6-1
6.2 轉換器之電容值設計...........................................6-6
6.3 轉換器具有高功因特性之驗證..................................6-10
6.4 IsSpice模擬驗證.............................................6-11
附錄6A 線濾波器之探討...........................................6A-1
第七章 控制器設計與實作結果...............................................7-1
7.1 轉換器數學模式之量測.........................................7-1
7.2 古典控制器之設計與製作.......................................7-2
   7.2.1 根軌跡法設計PI控制器.................................7-2
   7.2.2 負載變動對閉迴路系統之影響:PI控制器.................7-7
   7.2.3 次迴路回授控制.......................................7-8
   7.2.4 負載變動對(總)閉迴路系統之影響:次迴路回授控制器....7-15
7.3 實作結果....................................................7-16
附錄7A 次迴路回授之設計精神.....................................7A-1
第八章 實作心得...........................................................8-1
8.1 實作週邊設備.................................................8-1
8.2 電磁干擾問題.................................................8-3
8.3 實作心路歷程.................................................8-6
第九章 結論與未來展望.....................................................9-1
9.1 結論.........................................................9-1
9.2 未來展望.....................................................9-2
參考文獻
自述
[CLT98]Chow, M. H. L., Y. S. Lee and C. K. Tse, “Single-Stage Single-Switch Isolated PFC Regulator with Unity Power Factor, Fast Transient Response and Low Voltage Stress,”IEEE PESC, pp. 1422-1428, 1998.

[CSTL98]Chow, M. H. L., K. W. Siu., C. K. Tse and Y. S. Lee, “A Novel Method for Elimination of Line-Current Harmonics in Single-Stage PFC Switching Regulators,”IEEE Trans. Power Electronics, Vol. 13, pp. 75-83, 1998.

[DJJ99] Daniele, M., P. K. Jain and G. Joos, “A Single-Stage Power-Factor-Corrected AC/DC Converter,” IEEE Trans. Power Electronics, Vol. 14, pp. 1046-1055, 1999.

[EC95]Electromagnetic Compatibility(EMC)-Part3: Limits Section II: Limits for Harmonic Current Emissions(Equipment Input Current 16 A per Phase), IEC 1000-3-2, 1st ed., 1995.

[EHIT03]Endo, H., K. Harada, Y. Ishihara and T. Todaka, “A Novel Single-Stage Active Clamped PFC Converter,” IEEE INTELEC, pp. 124-131, 2003.

[ErM01]Erickson, R. W. and D. Maksimovic, Fundamentals of Power Electronics, Kluwer Academic Publishers, Second Edition, 2001.

[JTL94]Jovanovic, M. M., D. M. Tsang and F. C. Lee, “Reduction of Voltage Stress in Integrated High-Quality Rectifier-Regulators by Variable Frequency Control,” IEEE APEC, pp. 569-575, 1994.

[JW02]Jewell, W. and D. J. Ward, “Single Phase Harmonic Limits,” PSERC EMI, Power Quality, and Safety Workshop, April 18-19, 2002.

[KSG91]Kheraluwala, M. H., R. L. Steigerwald and R. A. Gurumoorthy, “Fast-Response High Power Factor Converter with a Single Power Stage,” IEEE PESC, pp. 769-779, 1991.

[LeS96]Lee, Y. S. and K. W. Siu, “Single-Switch Fast-Response Switching Regulators with Unity Power Factor,”IEEE APEC, pp.791-796, 1996.

[LiM03]Liu, Y. and G. Moschopoulos, “A Single-Stage AC/DC Forward Converter with Input Power Factor Correction and Reduced DC Bus Voltage,” IEEE INTELEC, pp. 132-139, 2003.

[MEI92]Madigan, M., R. Erickson and E. Ismail, “Integrated High-Quality Rectifier-Regulators,” IEEE PESC, pp. 1043-1051, 1992.

[Mid76]Middlebrook, R. D., “Input Filter Considerations in Design and Application of Switching Regulators,” IEEE IASAM, pp. 366-382, 1976.

[PZM92]Prasad, A. R., P. O. Ziogas and S. Manias, “A New Active Power Factor Correction Circuits,” IEEE Trans. Power Electronics, Vol. 11, No. 1, pp. 199-205, 1996.

[Pet00]Petersen, L., “Advantages of Using a Two-Switch Forward in Single-Stage Power Factor Corrected Power Supplies,” IEEE INTELEC, pp. 325-331, 2000.

[QiL96]Qian, J. and F. C. Lee, “A Novel Single Stage High Power Factor Rectifier with a Coupling Inductor,” VPEC Seminar, pp. 1-7, 1996

[RBS94]Redl, R., L. Balogh and N. O. Sokal, “A New Family of Single-Stage Isolated Power-Factor Corrector with Fast Regulation of the Output Voltage,” IEEE PESC, pp. 1137-1144, 1994.

[ReB95]Redl, R. and L. Balogh, “Design Consideration for Single Stage Isolated Power Factor Corrected Power Supplies with Fast Regualtion of the Output Voltage,” IEEE PESC, pp. 454-458, 1995.

[SiE92]Singer, S. and R. W. Erickson, “Canonical Modeling of Power Processing Circuits Based on the POPI Concept,” IEEE Trans. Power Electronics, Vol. 7, No. 1, pp. 37-43, 1992.

[SuG92]Sun, J. and H. Grotstollen, “Avegaged Modeling of Switching Power Converters: Reformulation and Theoretical Basis,” IEEE PESC, pp. 1162-1172, 1992.

[SuG93]Sun, J. and H. Grotstollen, “Averaged Modeling and Analysis of Resonant Converters,” IEEE PESC, pp. 707-713, 1993.

[TaI91]Takahasi, I. and R. Y. Igarashi, “A Switching Power Supply of 99% Power Factor by the Dither Rectifier,” IEEE INTELEC, pp. 714-719, 1991.

[TCC01]Tse, C. K., M. H. L. Chow and M. K. H. Cheung,“A Family of PFC Voltage Regulator Configurations with Reduced Redundant Power Processing,”IEEE Trans. Power Electronics, Vol. 16, No. 6, pp. 794-802, 2001.

[TMW96]Tsai, F. S., P. Markowski and E. Whitcomb, “Off-Line Flyback Converter with Input Harmonic Correction,” IEEE INTELEC, pp. 120-124, 1996.

[VBL96]Vlatkovic, V., D. Borojevic and F. C. Lee, “Input Filter Desgin for Power Factor Correction Circuits,” IEEE Trans. Power Electronics, Vol. 11, No. 1, pp. 199-205, 1996.

[WeB98]Wei, H. and I. Batarseh, “Comparison of Basic Converter Topologies for Power Factor Correction,” IEEE PESC, pp. 348-353, 1998.

[WEMD99]Willers, M. J., M. G. Egan, J. M. D. Murphy and S. Daly, “A BIFRED Converter with a Wide Load Rang,” IEEE IECON, pp. 226-231, 1999.

[WYL95]Wu, T. F., T. H. Yu and Y. C. Liu,“Generation of Power Converters with Graft Technique,”Proceedings of EPE’95, pp. 370-376, 1995.

[施錕鴻99]施錕鴻,升壓型高功率因數電力轉換器之模式分析及控制器設計,碩士論文,國立成功大學工程科學系,1999。

[游志雄00]游志雄,零電壓轉移高功率因數電力轉換器之模式分析及控制器設計,碩士論文,國立成功大學工程科學系,2000。

[劉智豪00]劉智豪,單級隔離式高功因電力轉換器之模式分析及控制器設計,碩士論文,國立成功大學工程科學系,2000。

[蔡璨鴻01]蔡璨鴻,單級隔離式高功因磁性開關電力轉換器之模式分析,碩士論文,國立成功大學工程科學系,2001。

[林保偉02]林保偉,基本電力轉換器功因校正能力性能分析與隔離式Zeta電力轉換器之模式推導及控制器設計,碩士論文,國立成功大學工程科學系,2002。

[張銘智02]張銘智,嶄新單級隔離式高功因電力轉換器之分析與控制器之設計,碩士論文,國立成功大學工程科學系,2002。

[葉怡君03]葉怡君,新型零電流零電壓轉移柔切式高功因AC/DC整流器,碩士論文,國立成功大學工程科學系,2003。

[黃碩國03]黃碩國,嶄新單級並聯返馳式高功因電力轉換器之模式分析及控制器設計,碩士論文,國立成功大學工程科學系,2003。

[施奕丞03]施奕丞,低電壓應力之嶄新單級隔離式高功因電力轉換器之模式分析與控制器設計,碩士論文,國立成功大學工程科學系,2003。

[賴建志04]賴建志,具有同步整流技術之零電流零電壓柔切轉移順向式DC/DC電力轉換器之研製,碩士論文,國立成功大學工程科學系,2004。

[陳學展04]陳學展,新型順向式單級高功因電力轉換器之分析與控制器設計,碩士論文,國立成功大學工程科學系,2004。

[林謝蔡, IEE05]Lin, J. L., J. C. Hsieh and T. H. Tsai, “Dynamics Analysis of a Single-Stage Isolated High Power Factor Converter with a Magnetic Switch,” IEE Proc.-Electr. Power Appl., Vol. 152, No. 3 ,pp. 643-652, 2005.

[林楊林, IEEE]Lin, J. L., S. P. Yang and P. W. Lin, “Small-Signal and Controller Design for an Isolated Zeta Converter with High Power Factor Correction,” Accepted for Publication in Electric Power Systems Research.

[林張楊, IEEE]Lin, J. L. and M. Z. Chang and S. P. Yang, “Synthesis and Analysis for a Novel Single-Stage Isolated High Power Factor Correction Converter,” Accepted for Publication in IEEE Trans. on Circuits and Systems Part I.

[林施, IEEE]Lin, J. L. and Y. C. Shih, “A Novel Single-Stage Isolated High Power Factor Correction Converter with Low Voltage Stress: Dynamics and Control,” Revised for Publication in IEEE Trans. on Power Electronics.

[王98]王順忠,電力電子學,東華書局,1998年2月初版。

[史95]史富元,切換式電源供應器之雜訊分析與其EMI濾波器之設計,博士論文,國立台灣大學電機工程學系,1995。

[吳余劉97]吳財福、余德鴻、劉原全,單級高功因電子安定器,全華科技圖書股份有限公司,1997年11月初版。

[郭黃96]郭塗註、黃錦華,基本電學下冊,華興書局,1996年1月初版。

[黃03]黃建銘,填谷濾波變頻式返馳轉換器,碩士論文,國立成功大學電機工程學系,2003。

[楊05]楊繼深,電磁相容技術之產品研發與認證,全華科技圖書股份有限公司,2005年3月初版。

[鄭99]鄭培璿,IsSpice在電力電子與電子轉換器上的應用,全華科技圖書股份有限公司,1999年9月初版。

[鄭02]鄭振東,交換式穩壓電源的高諧波干擾對策,全華科技圖書股份有限公司,2002年4月初版。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊