跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 15:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張揚狀
研究生(外文):Yang-Chuang Chang
論文名稱:表面被覆幾丁聚醣之多功能磁性奈米載體的製備與應用
論文名稱(外文):Preparation and Applications of Chitosan-coated Multifunctional Magnetic Nano-Carrier
指導教授:陳東煌陳東煌引用關係
指導教授(外文):Dong-Hwang Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:217
中文關鍵詞:幾丁聚醣奈米磁性
外文關鍵詞:nanochitosanmagnetic
相關次數:
  • 被引用被引用:22
  • 點閱點閱:682
  • 評分評分:
  • 下載下載:153
  • 收藏至我的研究室書目清單書目收藏:1
  本論文係有關幾丁聚醣被覆之多功能氧化鐵磁性奈米粒子的製備及其作為磁性奈米吸附劑、磁性可操控觸媒載體、與藥物磁性標的載體等方面的應用研究。

  關於幾丁聚醣被覆之氧化鐵磁性奈米粒子的製備,係先將幾丁聚醣進行羧基甲基化反應,再藉由碳二醯胺的活化直接共價鍵結在氧化鐵奈米粒子上。穿透式電子顯微鏡與動態光散射分析儀之分析顯示,幾丁聚醣被覆之磁性奈米粒子具有單分散性,其平均粒徑為13.5 nm,平均水力直徑為17.1 nm。由X射線繞射儀分析得知,磁性奈米粒子為四氧化三鐵之尖晶石結構,且不因幾丁聚醣的被覆而改變。此外,由磁性量測得知,所得磁性奈米粒子具有超順磁性,其飽和磁化量、殘留磁化量、保磁力與squareness分別為63.2 emu/g、0.83 emu/g、8.3 Oe和0.013。而由傅立葉轉換紅外線光譜儀與界面電位分析儀之分析可確認幾丁聚醣以共價鍵結方式被覆在氧化鐵奈米粒子上,其鍵結重量百分比約為4.92wt%,等電點則為5.95。

  關於幾丁聚醣被覆之氧化鐵奈米粒子作為新型磁性奈米吸附劑之研究,主要探討其藉由螯合及/或陰離子交換機制吸附水溶液中之金屬陽離子、金屬鹽類陰離子、和酸性染料的效能。實驗結果顯示,因比表面積大且無孔內擴散阻力,故吸附容量甚高且吸附平衡時間明顯比微米級之吸附劑要來的短。此外,此磁性奈米吸附劑吸附Cu2+、AuCl4-、及酸性染料AO12與AG25皆遵守Langmuir恆溫吸附模式,而動力學分析則顯示,吸附AuCl4-與酸性染料係遵守擬二階動力方程式。因此,以幾丁聚醣被覆之氧化鐵奈米粒子作為磁性奈米吸附劑,不但可以磁性操控,同時擁有高吸附速率與高吸附容量之優點,可有效的應用在分離程序上。

  關於幾丁聚醣被覆之氧化鐵奈米粒子作為新型磁性可操控觸媒載體之研究,首先將銅離子吸附於幾丁聚醣被覆之磁性載體,探討其催化雙硝基苯磷酸酯水解反應之效能。其次,將金離子吸附於幾丁聚醣被覆之磁性載體,並進一步還原成金奈米粒子,探討其催化硝基酚化合物還原反應之效能。實驗結果顯示,吸附或承載於幾丁聚醣被覆之磁性載體的銅離子或金奈米粒子,皆具有良好的觸媒作用,且經由磁性回收與多次反覆使用後,仍可維持高的觸媒活性,顯示此載體具有良好的安定性。因此,幾丁聚醣被覆之氧化鐵奈米粒子確可作為一優良之磁性可操控觸媒載體,應用於觸媒反應程序上。

  關於幾丁聚醣被覆之氧化鐵奈米粒子作為新型藥物磁性標的載體之研究,係將抗癌藥物epirubicin吸附於幾丁聚醣被覆之磁性載體,並評估此複合物對體外抗癌之效率。吸附研究顯示,此複合物在pH 3~7與25~40℃間相當穩定,且高epirubicin負載量可以達成。而以牛血清蛋白溶液與0.03M磷酸緩衝溶液進行epirubicin的脫附,則分別約需150與300分鐘才會達到80%的釋放量。此外,口腔癌細胞毒殺的體外試驗顯示,epirubicin與幾丁聚醣磁性奈米載體所形成之複合物對癌細胞具有與epirubicin單獨存在時相似的毒殺效果。由於幾丁聚醣被覆之磁性奈米載體同時兼具磁性標的、藥物治療與核磁共振顯影的功能,因此在生醫領域上將極有用處。
 This dissertation concerns the preparation of chitosan-coated multifunctional iron oxide magnetic nanoparticles and their uses as the magnetic nano-adsorbent, the magnetically manipulated catalyst carrier, and the magnetic targeting carrier for drugs.

 The chitosan-coated iron oxide nanoparticles were prepared by the carboxymethylation of chitosan and the followed covalently binding on the surface of iron oxide nanoparticles via carbodiimide activation. Transmission electron microscopy (TEM) micrograph and dynamic light scattering (DLS) measurement showed that the chitosan-coated iron oxide nanoparticles were monodisperse with a mean core diameter of 13.5 nm and a mean hydrodynamic diameter of 17.1 nm. X-ray diffraction (XRD) patterns indicated the iron oxide nanoparticles were pure Fe3O4 with a spinel structure, and the binding of chitosan did not result in the phase change. In addition, the magnetic measurement revealed that they were superparamagnetic with a saturation magnetization of 63.2 emu/g, a remanent magnetization of 0.83 emu/g, a coercivity of 8.3 Oe, and a squareness of 0.013. The covalently binding of chitosan onto the surface of iron oxide nanoparticles was demonstrated by FTIR analysis and the measurement of zeta potential. The weight percentage of chitosan bound onto Fe3O4 nanoparticles was about 4.92 wt%, and the isoelectric point of the product was 5.95.

 For the study on the use of the chitosan-coated iron oxide nanoparticles as a novel magnetic nano-adsorbent, its capability for the adsorption of metal cations, metal anions, and acid dyes from the aqueous solutions via chelating and/or anion exchange mechanism was examined. The results showed the adsorption capacity was quite high and the time required to reach the equilibrium was significantly shorter than those for the micro-sized adsorbents due to the high specific surface area and the absence of pore diffusion resistance. Moreover, the adsorption of Cu2+ ions, AuCl4- ions, and acid dyes AO12 and AG25 all obeyed the Langmuir equation, and the adsorption kinetics of AuCl4- ions and acid dyes revealed both the adsorption processes obeyed the pseudo-second-order kinetic model. Thus, the chitosan-coated iron oxide nanoparticles as a magnetic nano-adsorbent not only could be magnetically manipulated but also possessed the advantages of fast adsorption and high adsorption capacity. They are expected to be efficiently applied in separation processes.

 For the study on the use of the chitosan-coated iron oxide nanoparticles as a novel magnetically manipulated catalyst carrier, Cu2+ ions were adsorbed and their ability for the catalytic hydrolysis of bis(4-nitrophenyl) phosphate (BNPP) was examined. In addition, AuCl4- ions were adsorbed and reduced into Au nanoparticles. Their ability for the catalytic reduction of aromatic nitro compounds was investigated. The results showed both the Cu2+ ions and Au nanoparticles, adsorbed and supported chitosan-coated magnetic carriers respectively, exhibited high catalytic activities. Also, high catalytic activities retained after being reused and magnetically recovery several times, revealing the catalyst carrier had high stability. So, the chitosan-coated iron oxide nanoparticles could be used as a good catalyst carrier which could be magnetically manipulated and applied in catalytic reaction processes.

 For the study on the use of the chitosan-coated iron oxide nanoparticles as a novel magnetic targeting carrier for drugs, the anti-cancer drug epirubicin was adsorbed and the in vitro anti-cancer efficacy of the conjugate was evaluated. The adsorption study indicated that the conjugate was stable at pH 3-7 and 25-40˚C and a high epirubicin loading could be achieved. The desorption kinetics showed that about 80% epirubicin released from the chitosan-coated magnetic carrier after 150 and 300 min in serum and 0.03 M phosphate buffer, respectively. In vitro cytotoxicity evaluation revealed that the epirubicin-loaded magnetic conjugate was able to exhibit comparable efficacy as free epirubicin did alone. Because of the combined functions of magnetic targeting、drug therapy, and MRI diagnosis, the chitosan-coated iron oxide nanoparticles will be quite useful in the field of biomedicine.
中文摘要……………………………………………...…………….. I
英文摘要……………………………………………...…………….. III
誌謝…………………………………………………………………. V
總目錄………………………………………………………………. VI
表目錄………………………………………………...…………….. X
圖目錄………………………………………………...…………….. XII
符號說明……………………………………………...…………….. XVIII


第一章 緒論
1.1 奈米材料與奈米技術………..………………………………… 1
1.1.1前言………………….……………………………………... 1
1.1.2奈米材料的定義…………….……………………………... 2
1.1.3奈米材料的特性………………….………………………... 2
1.1.4奈米材料的製備…………………………………………… 13
1.1.5奈米材料的應用…………………………………………… 14
1.2幾丁聚醣………………...…………………………...…………. 17
1.2.1簡介……………………………..………………………….. 17
1.2.2幾丁聚醣的基本特性……………………..……………….. 19
1.2.3幾丁聚醣的應用………………………..…………….….… 20
1.3奈米複合材料…………………………...……………….……... 25
1.3.1奈米複合材料的定義與分類………………..…………….. 25
1.3.2無機-無機奈米複合材……………………………..….…… 25
1.3.3有機-有機奈米複合材……………………………..…….… 34
1.3.4有機-無機奈米複合材……………………………...……… 34
1.3.5無機-生物分子奈米複合材…………………………..….… 39
1.4研究動機………………………………….……………...……... 41

第二章 基礎原理 43
2.1磁性材料………………………………………...…...…………. 43
2.1.1磁學理論………………………………..………………….. 43
2.1.2磁性載體技術…………………………..………………….. 53
2.2吸附與催化理論…………………………………………...…… 57
2.2.1吸附理論………………………………………..…..……… 57
2.2.2催化理論………………………………………..…..……… 61

第三章 材料與方法 67
3.1藥品………………………………..……………..………….….. 67
3.2儀器………………………………...………………..….………. 70
3.3材料………………………………...…………………..…….…. 71
3.4幾丁聚醣被覆之磁性奈米粒子之製備…………..……………. 72
3.4.1磁性奈米粒子之製備……………………………….....…... 72
3.4.2羧基甲基化幾丁聚醣之製備………………………..…..… 72
3.4.3幾丁聚醣被覆之磁性奈米粒子之製備………………..….. 73
3.4.4幾丁聚醣被覆之磁性奈米粒子之特性分析…………...…. 73
3.5幾丁聚醣被覆之磁性奈米粒子作為吸附劑之應用…............... 79
3.5.1磁性奈米吸附劑之性能鑑定…………………………..….. 79
3.5.2金屬陽離子之吸附………………………………..……….. 79
3.5.3金屬鹽類陰離子之吸附……………………………..…….. 80
3.5.4酸性染料之吸附………………..………..………………… 80
3.6幾丁聚醣被覆之磁性奈米粒子作為觸媒載體之應用…........... 81
3.6.1 螯合銅離子之磁性奈米載體作為磷酸酯化合物之水解觸媒………81
3.6.2結合金奈米粒子之磁性奈米載體作為硝基酚之還原觸媒………… 85
3.7幾丁聚醣被覆之磁性奈米粒子作為藥物標的之應用………... 88
3.7.1抗癌藥物epirubicin在磁性奈米粒子上之吸附研究…….. 88
3.7.2 結合抗癌藥物epirubicin之磁性奈米載體在體外試驗之口腔癌
細胞毒殺研究………………………….………… 88

第四章 結果與討論 90
4.1幾丁聚醣被覆之磁性奈米粒子之製備…..……..……..………. 90
4.1.1粒子型態與粒徑大小……….………………..….………… 90
4.1.2晶相結構與磁性……….…………………………..………. 92
4.1.3合成機制……….…………………………………..………. 95
4.1.4幾丁聚醣鍵結量之估算……………………………..…..… 95
4.1.5界面電位與等電點……………………………………..….. 98
4.2幾丁聚醣被覆之磁性奈米粒子作為吸附劑之研究..…............. 100
4.2.1作為奈米吸附劑之性能鑑定…………………………..….. 100
4.2.2金屬陽離子之吸附……………………………..………….. 102
4.2.3金屬鹽類陰離子之吸附…………………………..……...... 108
4.2.4酸性染料之吸附……………………………………….…... 118
4.3幾丁聚醣被覆之磁性奈米粒子作為觸媒載體之研究..….…… 131
4.3.1螯合銅離子之磁性奈米載體作為磷酸酯化合物之水解觸媒……… 131
4.3.2結合金奈米粒子之磁性奈米載體作為硝基酚之還原觸媒.........144
4.4幾丁聚醣被覆之磁性奈米粒子作為藥物標的之研究………... 158
4.4.1抗癌藥物epirubicin在磁性奈米粒子上之吸附研究…….. 158
4.4.2結合抗癌藥物epirubicin之磁性奈米載體在體外試驗之口腔癌
細胞毒殺研究………………………….………… 160

第五章 結論……………………………………….……..…….…. 168
參考文獻……………………………………………………...…….. 175
自述……………………………………………..……………….….. 215
1.Feynman, R. P. (1960) A lecture in engineering and science. In
California Institute of Technology February edn.
2.Drexler, K. E. (1990) Engines of Creation. London:Fourth Estate,
pp.296.
3.黃德歡 (2002) 改變世界的奈米技術,臺北:瀛舟。
4.蘇品書 (1989) 超微粒子材料技術,臺南:復漢。
5.張立德 (2000) 奈米材料,北京:化學工業。
6.張立德,牟季美 (2001) 奈米材料和奈米結構,北京:科學。
7.張志焜,崔作林 (2000) 奈米技術與奈米材料,北京:國防工業。
8.Wilson, M.; Kannangara, K.; Smith, G.; Simmons, M.; Raguse, B.
(2002) nanotechnology:Basic Science and Emerging Technologies. New
York:Chapman & Hall/CRC, pp. 2.
9.呂世源 (2002) 奈米新世界,科學發展月刊,359,4。
10.Klabunde, K. J. (2001) Introduction to Nanotechnology. In:
Klabunde, K. J., ed. Nanoscale Materials in Chemistry. New York:
Wiley, pp.1-13.
11.工研院工業材料研究所 (2001) 2001材料奈米技術專刊,臺北:經濟部技術處。
12.吳明立 (2001) 微乳化系統製備雙金屬奈米粒子之研究,國立成功大學化學工程
研究所博士論文。
13.Schmid, G. (2001) Metals. In:Klabunde, K. J., ed. Nanoscale
Materials in Chemistry. New York:Wiley, pp.15-59.
14.莊萬發 (1998) 超微粒子理論應用,臺南:復漢。
15.廖敏宏 (2002) 磁性奈米載體在生物觸媒和生化分離之應用,國立成功大學化學
工程研究所博士論文。
16.Freeman, R. G.; Hommer, M. B.; Grabar, K. C.; Jackson, M. A.; Natan,
M. J. (1996) Ag-clad Au nanoparticles: Novel aggregation, optical,
and surface-enhanced Raman scattering properties. J. Phys. Chem. 100,
718.
17.Michaels, A. M.; Jiang, J.; Brus, L. (2000) Ag nanocrystal junctions
as the site for surface-enhanced Raman scattering of single Rhodamine
6G molecules. J. Phys. Chem. B 104, 11965.
18.Felidj, N.; Aubard, J.; Levi. G.; Krenn, J. R.; Hohenau, A.; Schider,
G.; Leitner, A.; Aussenegg, F. R. (2003) Optimized surface-enhanced
Raman scattering on gold nanoparticle arrays. Appl. Phys. Lett. 82,
3095.
19.Lu, L. H.; Zhang, H. J.; Sun, G. Y.; Xi, S. Q.; Wang, H. S.; Li, X.
L.; Wang, X.; Zhao, B. (2003) Aggregation-based fabrication and
assembly of roughened composite metallic nanoshells: Application in
surface-enhanced Raman scattering. Langmuir 19, 9490.
20.Mandal, M.; Jana, N. R.; Kundu, S. ; Ghosh, S. K. ; Panigrahi, M. ;
Pal, T. (2004) Synthesis of Au-core-Ag-shell type bimetallic
nanoparticles for single molecule detection in solution by SERS
method. J. Nanoparticle Res. 6, 53.
21.Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.;
Weiss, S.; Alivisatos, A. P. (2001) Synthesis and properties of
biocompatible water-soluble silica-coated CdSe/ZnS semiconductor
quantum dots. J. Phys. Chem. B 105, 8861.
22.Parak, W. J.; Gerion, D.; Zanchet, D.; Woerz, A. S.; Pellegrino, T.;
Micheel, C.; Williams, S. C.; Seitz, M.; Bruehl, R. E.; Bryant, Z.;
Bustamante, C.; Bertozzi, C. R.; Alivisatos, A. P. (2002) Conjugation
of DNA to silanized colloidal semiconductor nanocrystalline quantum
dots. Chem. Mater. 14, 2113.
23.Haram, S. K.; Quinn, B. M.; Bard, A. J. (2001) Electrochemistry of
CdS nanoparticles: A correlation between optical and electrochemical
band gaps. J. Am. Chem. Soc. 123, 8860.
24.Hickey, S. G.; Riley, D. J.; Tull, E. J. (2000)Photoelectrochemical
studies of CdS nanoparticle modified electrodes: Absorption and
photocurrent investigations. J. Phys. Chem. B 104, 7623.
25.Alamri, S. N.; Brinkman, A. W. (2000) The effect of the transparent
conductive oxide on the performance of thin film CdS/CdTe solar
cells. J. Phys. D: Appl. Phys. 33, L1.
26.Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. (2004) In
vivo Cancer targeting and imaging with semiconductor quantum dots.
Nat. Biotechnol. 22, 969.
27.尹邦耀 (2002) 奈米時代,臺北:五南。
28.吳國卿,董玉蘭 (1999) 奈米粒子材料的觸媒性質,化工資訊 5月:42.
29.連昭晴 (2004) 鐵/金核殼型磁性複合奈米粒子之製備與應用,國立成功大學化
學工程研究所碩士論文。
30.史宗淮 (1995) 微粉製程技術簡介,化工 42,28。
31.吳思翰 (2004) 金屬及金屬核殼型複合奈米粒子之製備,國立成功大學化學工程
研究所博士論文。
32.Sugimoto, T. (1987) Preparation of monodispersed colloidal particles.
Adv. Colloid Interface Sci. 28, 65.
33.Ayyappan, S.; Gopalan, R. S.; Subbanna, G. N.; Rao, C. N. R. (1997)
Nanoaprticles of Ag, Au, Pd, and Cu produced by alcohol reduction of
the salts. J. Mater. Res. 12, 398.
34.Zhang, Z.; Zhao, B.; Hu, L. (1996) PVP protective mechanism of
ultrafine silver powder synthesized by chemical-reduction processes.
J. Solid State Chem. 121, 105.
35.Teranishi, T.; Nakata, K.; Miyake, M.; Toshima, N. (1996) Promotion
effect of polymer-immobilized neodymiumions on catalytic activity of
ultrafine palladium particles. Chem. Lett. 4, 277.
36.Li, X.; Lu, G.; Li, S. (1996) Synthesis and properties of strontium
ferrite ultrafine powders. J. Mater. Sci. Lett. 15, 397.
37.Lee, J.; Isobe, T.; Senna, M. (1996) Preparation of ultrafine Fe3O4
particles by precipitation in the presence of PVA at high pH. J.
Colloid Interface Sci. 177, 490.
38.Ishizuki, N.; Torigoe, N.; Esumi, K.; Meguro, K. (1991)
Characterization of precious metal particles prepared using chitosan
as a protective agent. Colloids and Surfaces 55, 15.
39.Osseo-Asare, K.; Arriagada, F. J. (1990) Nanosize silica via
controlled hydrolysis in reverse micellar systems. Ceram. Trans. 12,
3.
40.Meyer, M.; Wallberg, C.; Kurihara, K.; Fendler, J. H. (1984) J. Chem.
Soc. Chem. Commun. 90.
41.Fendler, J. H. (1987) Atomic and molecular clusters in membrane
mimetic chemistry. Chem. Rev. 87, 877.
42.Kitahara, A.; Kazuhiko, K.; Kijiro, K. (1988) Formation of ionic
water oil microemulsions and their application in the preparation of
CaCO3 particles. J. Colloid Interface Sci. 122, 78.
43.Osseo-Asare, K.; Arriagada, F. J. (1990) Preparation of SiO2
nanoparticles in a nonionic reverse micellar system. Colloids and
surfaces 50, 321.
44.Sarathy, K. V.; Kulkarni, G. U.; Rao, C. N. R. (1997) A novel method
of preparing thiol-derivatized nanoparticles of gold, platinum and
silver forming superstructures. Chem. Commun. 537.
45.Yonezawa, T.; Tominaga, T.; Richard, D. (1996) Stabilizing structure
of tertiary amine-protechted rhodium colloid dispersions in
chloroform. J. Chem. Soc. Dalton Trans. 783.
46.Reetz, M. T.; Winter, M.; Tesche, B. (1997) Regioselective palladium-
catalyzed coupling reactions of vinyl chlorides with carbon
nucleophiles. Chem. Commun. 535.
47.Siegel, R. W.; Hu, E.; Roco, M. C. (1999) WTEC panel report on
nanostructure science and technology:R&D status and trends in
nanoparticles, nanostructured materials, and nanodevices. Boston:
Kluwer Academic.
48.林景正,賴宏仁 (1999) 奈米材料技術與發展趨勢,工業材料 153,95.
49.馬遠榮 (2002) 奈米科技,臺北:商周。
50.Kurita, K. (2001) Controlled functionalization of the polysaccharide
chitin. Prog. Polym. Sci. 26, 1921.
51.洪聖修 (2004) 幾丁聚醣顆粒固定化惡臭假單胞菌對酚降解的評估,國立成功大
學化學工程研究所碩士論文。
52.楊惠嘉 (2003) 利用幾丁聚醣吸附卡馬西藍染料之研究,國立成功大學化學研究
所碩士論文。
53.蔣挺大 (1994) 甲殼素,北京:中國環境科學。
54.Kurita, K. (1998) Chemistry and application of chitin and chitosan.
Polym. Degrad. Stab. 59, 117.
55.王嘉薇 (2003) 丁醯化幾丁聚醣之研究,國立成功大學化學研究所碩士論文。
56.Kurita, K. (2001) Controlled functionalization of the polysaccharide
chitin. Prog. Polym. Sci. 26, 1921.
57.Majeti, N. V.; Ravi, Kumar (2000) A review of chitin and chitosan
applications. React. Funct. Polym. 46, 1.
58.Putri, F. A.; Kennedy, J. F. (1998) Application of chitin and
chitosan. Carbohydr. Polym. 34, 414.
59.Shigemasa, Y.; Minami, S. (1996) Application of chitin and chitosan
for biomaterials. Biotechnol. Genetic Eng. Rev. 13, 383.
60.Muzzarelli, R. A. A. (1973) Natural Chelating Polymers. New York:
Pergamon, pp.177-226.
61. 陳國誠 (2000) 生物固定化技術與產業應用,臺北:茂昌。
62.Mark, H. F.; Bikales, N. M.; Overberger, C. G.; Menges, G. (1985)
Encyclopedia of polymer science and engineering. New York:Wiley,
pp.20.
63.Olsen, R.; Schwartzmiller, D.; Weppner, W.; Winandy, R. (1989)
Biomedical applications of chitin and its derivatives. In:Skjak-
Brack, G.; Anthonsen, T.; Sandford, P. A., ed. Chitin and chitosan:
sources, chemistry, biochemistry, physical properties and
applications. New York:Elsevier Applied Science.
64.Peniche-covas, C.; Alwarez, L. W.; Arguelles-Monal, W. (1987) The
adsorption of mercuric ions by chitosan. J. Appl. Polym. Sci. 46,
1147.
65.Jha, N.; Leela, I.; Prabhakar-Rao, A. V. S. (1988) Removal of cadmium
using chitosan. J. Environ. Eng. 114, 962.
66.Weber, W. B. (1992) Physicochemical process for wastewater control.
New York:Wiley.
67.Dutta, P. K.; Ravi-Kumar, M. N. V. (1998) Textile industries: safety,
health and environment. In:Trivedy, R. K., ed. Advances in
wastewater treatment technologies. India:Global Science, pp.229.
68.Knorr, D. (1983) Dye binding properties of chitin and chitosan. J.
Food Sci. 48, 37.
69.Miyazaki, S. (1998) Chitin and chitosan as vehicle for drug delivery.
Zairyo Gijutsu 16, 276.
70.Ritthidej, G. C.; Chomto, P.; Pummangura, S.; Menasveta, P. (1994)
Chitin and chitosan as disintigrants in paracetamol tablets. Drug
Dev. Ind. Pharm. 20, 2019.
71.Calvo, P.; Remunan-Lopez, C.; Vila-Jato, J. L.; Alonso, M. J. (1997)
Novel hydrophilic chitosan-poly ethylene oxide nanoparticles as
protein carriers. J. Appl. Polym. Sci. 63, 125.
72.Huguet, M. L.; Dellacherie, E. (1996) Calcium alginate beads coated
with chitosan: effect of structure encapsulated materials on their
release. Process Biochem. 31, 745.
73.Hirano, S. (1999) Chitin and chitosan as novel biotechnological
materials. Polym. Int. 48, 732.
74.柯揚船,皮特斯壯 (2004) 聚合物-無機奈米複合材料,臺北:五南。
75.Harrison, M. T.; Kershaw, S. V.; Burt, M. G.; Rogach, A. L.;
Kornowski, A.; Eychmüller, A.; Weller, H. (2000) Colloidal
nanocrystals for telecommunications: Complete coverage of the low-
loss fiber windows by mercury telluride quantum dots. Pure Appl.
Chem. 72, 295.
76.Han, M.; Gao, X.; Su, J. Z.; Nie, S. (2001) Quantum-dot-tagged
microbeads for multiplexed optical coding of biomolecules. Nat.
Biotechnol. 19, 631.
77.Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J.
R.;Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (1997)
(CdSe)ZnS core-shell quantum dots: synthesis and characterization of
a size series of highly luminescent nanocrystallites. J. Phys. Chem.
B 101, 9463.
78.Danek, M.; Jensen, K. F.; Bawendi, M. G. (1996) Synthesis of
luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe
quantum dots passivated with an overlayer of ZnSe. Chem. Mater. 8,
173.
79.Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. (1997)
Epitaxial growth of highly luminescent CdSe/CdS core/shell
nanocrystals with photostability and electronic accessibility.
J.Am.Chem. Soc. 119, 7019.
80.Hines, M. A.; Guyot-Sionnest, P. (1996) Synthesis and
characterization of strongly luminescing ZnS-capped CdSe
nanocrystals. J. Phys. Chem. 100, 468.
81.Hasselbarth, A.; Eychmüller, A.; Eichberger, M.; Giersig, M.; Mews,
A.; Weller, H. (1993) Chemistry and photophysics of mixed cadmium
sulfide/mercury sulfide colloids. J. Phys. Chem. 97, 5333.
82.Kamalov, V. F.; Little, R.; Logunov, S. L.; El-Sayed, M. A. (1996)
Picosecond electronic relaxation in CdS/HgS/CdS quantum dot quantum
well semiconductor nanoparticles. J. Phys. Chem. 100, 6381.
83.Zhou, H. S.; Sasahara, H.; Homma, I.; Komiyama, H.; Haus, J.
(1994) Coated semiconductor nanoparticles: The CdS/PbS system's
photoluminescence properties. Chem. Mater. 6, 1534.
84.Counio, G.; Esnouf, S.; Gacoin, T.; Boilot, J. P. (1996)
CdS:Mn nanocrystals in transparent xerogel matrices: synthesis and
luminescence properties. J. Phys. Chem. 100, 20021.
85.Murray, C. B.; Norris, D. J.; Bawendi, M. G. (1993) Synthesis and
characterization of nearly monodisperse CdE (E = sulfur, selenium,
tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115,
8706.
86.Revaprasadu, N.; Malik, M. A.; O’Brien, P. ; Wakefield, G.
(1999) A simple route to synthesise nanodimensional CdSe-CdS core-
shell structures from single molecule precursors. Chem. Commun. 1573.
87.Kickelbick, G.; Liz-Marzán, L. M. (2004) Core-shell nanoaprticles.
In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and
Nanotechnology. California:American Scientific Publishers, Vol. 4,
pp.199-220.
88.Hoener, C, F.; Allan, K. A.; Bard, A. J.; Campion, A.; Fox, A. M.;
Mallouk. T. E.; Webber, S. E.; White, J. M. (1992) Demonstration of a
shell-core structure in layered cadmium selenide-zinc selenide small
particles by x-ray photoelectron and Auger spectroscopies. J. Phys.
Chem. 96, 3812.
89.Malik, M. A.; O’Brien, P.; Revaprasadu, N. (2002) A simple route to
the synthesis of core/shell nanoparticles of chalcogenides. Chem.
Mater. 14, 2004.
90.Tian, Y.; Newton, T.; Kotov, N. A.; Guldi, D. M.; Fendler, J. H.
(1996) Coupled composite CdS-CdSe and core-shell types of (CdS)CdSe
and (CdSe)CdS nanoparticles. J. Phys. Chem. 100, 8927.
91.Hao, E.; Sun, H.; Zhou, Z.; Liu, J.; Yang, B.; Shen, J. (1999)
Synthesis and optical properties of CdSe and CdSe/CdS nanoparticles.
Chem. Mater. 11, 3096.
92.Han, M. Y.; Huang, W.; Chew, C. H.; Gan, L. M.; Zhang, X. J.; Ji, W.
(1998) Large nonlinear absorption in coated Ag2S/CdS nanoparticles by
inverse microemulsion. J. Phys. Chem. B 102, 1884.
93.Cao, Y. W.; Banin, U. (1999) Synthesis and characterization of
InAs/InP and InAs/CdSe core/shell nanocrystals. Angew. Chem., Int.
Ed. 38, 3692.
94.Hu, J. Q.; Bando, Y. (2004) Si/ZnS and Si/ZnSe core/shell nanocrystal
structures. Appl. Phys. Lett. 85, 3593.
95.Elder, S. H.; Cot, F. M.; Su, Y.; Heald, S. M.; Tyryshkin, A. M.;
Bowman, M. K.; Gao, Y.; Joly, A. G.; Balmer, M. L.; Kolwaite, A. C.;
Magrini, K. A.; Blake, D. M. (2000) The discovery and study of
nanocrystalline TiO2-(MoO3) core-shell materials. J. Am. Chem. Soc.
122, 5138.
96.Morriss, R. H.; Collins, L. F. (1964) Optical properties of
multilayer colloids. J. Chem. Phys. 41, 3357.
97.Zhu, J.; Wang, Y. C.; Huang, L. Q.; Lu, Y. M. (2004) Resonance light
scattering characters of core-shell structure of Au-Ag nanoparticles.
Phys. Lett. A 323, 455.
98.Mulvaney, P.; Giersig, M.; Henglein, A. (1993) Electrochemistry of
multilayer colloids: preparation and absorption spectrum of gold-
coated silver particles. J. Phys. Chem. 97, 7061.
99.Henglein, A.; Giersig, M. (1994) Radiolytic formation of colloidal
tin and tin-gold particles in aqueous solution. J. Phys. Chem. 98,
6931.
100.Henglein, A.; Mulvaney, P.; Holzwarth, A.; Sosebee, T. E.; Fojtik, A.
(1992) Electrochemistry of colloidal silver particles in aqueous
solution: deposition of lead and indium and accompanying optical
effects. Ber. Bunsenges. Phys. Chem. 96, 754.
101.Henglein, A.; Holzwarth, A.; Mulvaney, P. (1992) Fermi level
equilibration between colloidal lead and silver particles in aqueous
solution. J. Phys. Chem. 96, 8700.
102.Henglein, A.; Mulvaney, P.; Holzwarth, A. (1992) Surface chemistry of
colloidal silver: reduction of adsorbed cadmium(2+) ions and
accompanying optical effects. J. Phys. Chem. 96, 2411.
103.Rivas, L.; Sánchez-Cortes, S.; García-Ramos, J. V. ; Morcillo, G.
(2000) Mixed silver/gold colloids: a study of their formation,
morphology, and surface-enhanced raman activity. Langmuir 16, 9722.
104.Lu, L.; Wang, H.; Zhou, Y.; Xi, S.; Zhang, H.; Hu, J.; Zhao, B.
(2002) Seed-mediated growth of large, monodisperse core–shell gold–
silver nanoparticles with Ag-like optical properties. Chem. Commun.
144.
105.Schierhorn, M.; Liz-Marzán, L. M. (2002) Synthesis of bimetallic
colloids with tailored intermetallic separation. NanoLetters 2, 13.
106.Cao, Y. W.; Jin, R.; Mirkin, C. A. (2001) DNA-modified core-shell
Ag/Au nanoparticles. J. Am. Chem. Soc. 123, 7961.
107.Henglein, A. (2000) Preparation and optical aborption spectra of
AucorePtshell and PtcoreAushell colloidal nanoparticles in aqueous
solution. J. Phys. Chem. B 104, 2201.
108.Katsikas, L.; Gutiérrez, M.; Henglein, A. (1996) Bimetallic colloids:
silver and mercury. J. Phys. Chem. 100, 11203.
109.Njoki, P. N.; Luo, J.; Wang, L. Y.; Maye, M. M.; Quaizar, H., Zhong,
C. J. (2005) Platinum-catalyzed synthesis of water-soluble gold-
platinum nanoparticles. Langmuir 21, 1623.
110.Liang, H. P.; Guo, Y. G.; Zhang, H. M.; Hu, J. S.; Wan, L. J.; Bai,
C. L. (2004) Controllable AuPt bimetallic hollow nanostructures.
Chem. Commun. 1496.
111.Scott, R. W. J.; Sivadinarayana, C.; Wi;on, O. M.; Yan, Z.; Goodman,
D. W.; Crooks, R. M. (2005) Titania-supported PdAu bimetallic
catalysts prepared from dendrimer-encapsulated nanoparticle
precursors. J. Am. Chem. Soc. 127, 1380.
112.Venezia, A. M.; Liotta, L. F.; Pantaleo, G.; La-Parola, V.;
Deganello, G.; Beck, A.; Koppany, Z.; Frey, K. ; Horvath, D. ;
Guczi, L. (2003) Activity of SiO2 supported gold-palladium catalysts
in CO oxidation. Appl. Catal. A 251, 359.
113.Zhang, X.; Chan, K. Y. (2003) Water-in-oil microemulsion synthesis of
platinum-ruthenium nanoparticles: their characterization and
electrocatalytic properties. Chem. Mater. 15, 451.
114.Heemeier, M.; Carlsson, A. F.; Naschitzki, M.; Schmal, M.; Baumer,
M.; Freund, H. J. (2002) Preparation and characterization of a model
bimetallic catalyst: Co-Pd nanoparticles supported on Al2O3. Angew.
Chem., Int. Ed. 41, 4073.
115.Nagaveni, K.; Gayen, A.; Subbanna, G. N.; Hegde, M. S. (2002) Pd-
coated Ni nanoparticles by the polyol method: an efficient
hydrogenation catalyst. J. Mater. Chem. 12, 3147.
116.Lu, P.; Teranishi, T.; Asakura, K.; Miyake, M.; Toshima, N. (1999)
Polymer-protected Ni/Pd bimetallic nano-clusters : preparation,
characterization and catalysis for hydrogenation of nitrobenzene.
J. Phys. Chem. B 103, 9673.
117.Cho, S. J.; Ryoo, R. (2001) Formation and growth of a nanosized RuIr
bimetallic cluster supported on NaY zeolite. J. Phys. Chem. B 105,
1293.
118.Toshima, N.; Shiraishi, Y.; Shiotsuki, A.; Ikenaga, D.; Wang, Y.
(2001) Novel synthesis, structure and catalysis of inverted
core/shell structured Pd/Pt bimetallic nanoclusters. Eur. Phys. J. D
16, 209.
119.Okitsu, K.; Murakami, M.; Tanabe, S.; Matsumoto, H. (2000) Catalytic
behavior of Au core/Pd shell bimetallic nanoparticles on silica
prepared by sonochemical and sol-gel processes. Chem. Lett. 11, 1336.
120.Pecharsky, V. K.; Gschneidner, K. A., Jr. (1999) Magnetocaloric
effect and magnetic refrigeration. J. Magn. Magn. Mater. 200, 44.
121.Kormann, C.; Schwab, E.; Raulfs, F. W.; Beck, K. H. (1996) Magnetic
ink concentrate. U.S. Patent 5,500,141.
122.Lodder, J. C.; Monsma, D. J.; Vlutters, R.; Shimatsu, T. (1999) The
spin-valve transistor: technologies and progress. J. Magn. Magn.
Mater. 198-199, 119.
123.Iakovenko, S. A.; Trifonov, A. S.; Giersig, M.; Mamedov, A.; Nagecha,
D. K.; Hanin, V. V.; Soldatov, E. C.; Kotov, N. A. (1999) One- and
two-dimensional arrays of magnetic nanoparticles by the Langmuir-
Blodgett technique. Adv. Mater. 11, 388.
124.Fried, T.; Shemer, G.; Markovich, G. (2001) Ordered two-dimensional
arrays of ferrite nanoparticles. Adv. Mater. 13, 1158.
125.ALiev, F. G.; Correa-Duarte, M. A.; Mamedov, A.; Ostrander, J. W.;
Giersig, M.; Liz-Marzán, L. M.; Kotov, N. A. (1999) Layer-by-layer
assembly of core-shell magnetite nanoparticles: effect of silica
coating on interparticle interactions and magnetic properties. Adv.
Mater. 11, 1006.
126.Giersig, M.; Hilgendorff, M. (1999) The preparation of ordered
colloidal magnetic particles by magnetophoretic deposition. J. Phys.
D: Appl. Phys. 32, L111.
127.Jordan, A.; Scholz, R.; Wust, P.; Schirra, H.; Schiestel, T.;
Schmidt, H.; Felix, R. (1999) Endocytosis of dextran and silan-coated
magnetite nanoparticles and the effect of intracellular hyperthermia
on human mammary carcinoma cells in vitro. J. Magn. Magn. Mater. 194,
185.
128.Mapra, M. Y.; Körner, I. J.; Hildebrandt, M.; Bargou, R.; Krahl, D.;
Reichardt, P.; Dörken, B. (1997) Monitoring of tumor cell purging
after highly efficient immunomagnetic selection of CD34 cells from
leukapheresis products in breast cancer patients: comparison of
immunocytochemical tumor cell staining and reverse transcriptase-
polymerase chain reaction. Blood 89, 337.
129.Rivas, J.; Sánchez, R. D.; Fondado, A.; Izco, C.; García-Bastida, A.
J. ; García-Otero, J.; Mira, J.; Baldomir, D.; González, A.; Lado,
I.; López-Quintela, M. A.; Oseroff, S. B. (1994) Structural and
magnetic characterization of Co particles coated with Ag. J. Appl.
Phys. 76, 6564.
130.Seip, C. T.; O’Connor, C. J. (1999) The fabrication and organization
of self-assembled metallic nanoparticles formed in reverse micelles.
Nanostruct. Mater. 12, 183.
131.Cho, S. J.; Kauzlarich, S. M.; Olamit, J.; Liu, K.; Grandjean, F.;
Rebbouh, L.; Long, G. J. (2004) Characterization and magnetic
properties of core/shell structured Fe/Au nanoparticles. J. Appl.
Phys. 95, 6804.
132.Carpenter, E. E. ; Sangregorio, C.; O’Connor, C. J. (1999) Effect of
shell thickness on blocking temperature of nanocomposites of metal
particles with gold shells. IEEE Trans. Magn. 35, 3496.
133.Zhang, D.; Glavee, G.; Klabunde, K. J.; Hadjipanayis, G. C.;
Sorensen, C. M. (1997) Nanoscale iron crystallites encapsulated in
nonmagnetic metal shells: synthesis, chemical, and magnetic
properties of core/shell iron-indium, iron-neodymium, and related
materials. High Temp. Mater. Sci. 36, 93.
134.Sumiyama, K.; Hihara, T.; Peng, D. L.; Katoh, R. (2005) Structure and
magnetic properties of Co/CoO and Co/Si core-shell cluster assemblies
prepared via gas-phase. Sci. Technol. Adv. Mater. 6, 18.
135.You, C. Y.; Yang, Z. Q.; Xiao, Q. F.; Skorvanek, I.; Kovac, J.; Li,
Z. J.; Liu, W.; Zhang, Z. D. (2004) Structural and magnetic
characterization of Co-Cu nanoparticles prepared by arc-discharge.
Eur. Phys. J. Appl. Phys. 28, 73.
136.Kwiatkowski, K. C.; Lukehart, C. M. (2002) Nanocomposites prepared by
sol-gel methods:synthesis and characterization. In:Nalwa, H. S.,
ed. Nanostructured materials and nanotechnology. San Diego:Academic
Press, pp.57-91.
137.Li, W.; Seal, S. (2004) Nonlinear optical materials by sol-gel
method. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and
Nanotechnology. California:American Scientific Publishers, Vol.
8, pp.49-66.
138.Wang, Q. (2004) Nonlinear optical of nanoparticles and
nanocomposites. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience
and Nanotechnology. California:American Scientific Publishers, Vol.
8, pp.101-111.
139.Ohmori, M.; Matijevic, E. (1992) Preparation and properties of
uniform coated colloidal particles: VII. silica on hematite. J.
Colloid Interface Sci. 150, 594.
140.Thies-Weesie, D. M.; Philipse, A. P. (1995) Light-induced convection
in sedimenting silica-hematite dispersions. Langmuir 11, 4180.
141.Philipse, A. P.; van Bruggen, M. P.; Pathmamanoharan, C. (1994)
Magnetic silica dispersions: preparation and stability of surface-
modified silica particles with a magnetic core. Langmuir 10, 92.
142.Correa-Duarte, M. A.; Giersig, M.; Kotov, N. A.; Liz-Marzán, L. M.
(1998) Control of packing order of self-assembled monolayers of
magnetite nanoparticles with and without SiO2 coating by microwave
irradiation. Langmuir 14, 6430.
143.Liu, Q.; Xu, Z.; Finch, J. A.; Egerton, R. (1998) A novel two-step
silica-coating process for engineering magnetic nanocomposites. Chem.
Mater. 10, 3936.
144.Donselaar, L. N.; Philipse, A. P. (1999) Interactions between
silica colloids with magnetite cores: diffusion, sedimentation and
light scattering. J. Colloid Interface Sci. 212, 14.
145.Aliev, F. G.; Correa-Duarte, M. A.; Mamedov, A.; Ostrander, J. W.;
Giersig, M.; Liz-Marzán, L. M.; Kotov, N. A. (1999) Layer-by-layer
assembly of core-shell magnetite nanoparticles: effect of silica
coating on interparticle interactions and magnetic properties. Adv.
Mater. 11, 1006.
146.Ohmori, M.; Matijevic, E. (1993) Preparation and properties of
uniform coated inorganic colloidal particles: 8. silica on iron. J.
Colloid Interface Sci. 160, 288.
147.Liz-Marzán, L. M.; Philipse, A. P. (1995) Synthesis and optical
properties of gold-labeled silica particles. J. Colloid Interface
Sci. 176, 459.
148.Nooney, R. I.; Dhanasekaran, T.; Chen, Y.; Josephs, R.; Ostafin, A.
E. (2002) Self-assembled highly ordered spherical mesoporous
silica/gold nanocomposites. Adv. Mater. 14, 529.
149.Obare, S. O.; Jana, N. R.; Murphy, C. J. (2001) Preparation of
polystyrene- and silica-coated gold nanorods and their use as
templates for the synthesis of hollow nanotubes. NanoLetters 1, 601.
150.Liz-Marzán, L. M.; Giersig, M.; Mulvaney, P. (1996) Synthesis of
nanosized gold-silica core-shell particles. Langmuir 12, 4329.
151.Chang, S. S.; Shih, C. W.; Chen, C. D.; Lai, W. C.; Wang, C. R.
(1999) The shape transition of gold nanorods. Langmuir 15, 701.
152.Hall, S. R.; Davis, S. A.; Mann, S. (2000) Cocondensation of
organosilica hybrid shells on nanoparticle templates: a direct
Synthetic route to functionalized core-shell colloids. Langmuir 16,
1454.
153.Liz-Marzán, L. M.; Mulvaney, P. (1998) Au@SiO2 colloids: effect of
temperature on the surface plasmon absorption. New J. Chem. 1285.
154.Liz-Marzán, L. M.; Giersig, M.; Mulvaney, P. (1996) Homogeneous
silica coating of vitreophobic colloids. Chem. Commun. 731.
155.Hardikar, V. V.; Matijevic, E. (2000) Coating of nanosize silver
particles with silica. J. Colloid Interface Sci. 221, 133.
156.Giersig, M.; Ung, T.; Liz-Marzán, L. M.; Mulvaney, P. (1997) Direct
observation of chemical reactions in silica-coated gold and silver
nanoparticles. Adv. Mater. 9, 570.
157.Yin, Y.; Lu, Y.; Sun, Y.; Xia, Y. (2002) Silver nanowires can be
directly coated with amorphous silica to generate well-controlled
coaxial nanocables of silver/silica. Nanoletters 2, 427.
158.Giersig, M.; Liz-Marzán, L. M.; Ung, T.; Su, D.; Mulvaney, P. (1997)
Chemistry of nanosized silica coated metal particles: EM-Study. Ber.
Bunsenges. Phys. Chem. 101, 1617.
159.Li, T.; Moon, J.; Morrone, A. A.; Mecholsky, J. J.; Talhman, D. R.;
Adair, J. H. (1999) Preparation of Ag/SiO2 nanosize composites by a
reverse micelle and sol-gel technique. Langmuir 15, 4328.
160.Pastoriza-Santos, I.; Liz-Marzán, L. M. (1999) Formation and
stabilization of silver nanoparticles through reduction by N,N-
dimethylformamide. Langmuir 15, 948.
161.Rogach, A. L.; Nagesha, D. K.; Ostrander, J. W.; Giersig, M.; Kotov,
N. A. (2000) Raisin bun-type composite spheres of silica and
semiconductor nanocrystals. Chem. Mater. 12, 2676.
162.Correa-Duarte, M. A.; Giersig, M.; Liz-Marzán, L. M. (1998)
Stabilization of CdS semiconductor nanoparticles against
photodegradation by a silica coating procedure. Chem. Phys. Lett.
286, 497.
163.Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.;
Weiss, S.; Alivisatos, A. P. (2001) Synthesis and properties of
biocompatible water-soluble silica-coated CdSe/ZnS semiconductor
quantum dots. J. Phys. Chem. B 105, 8861.
164.Bruchez, Jr. M.; Moronne, M.; Gin, P. ; Weiss, S. ; Alivisatos, A. P.
(1998) Semiconductor nanocrystals as fluorescent biological labels.
Science 281, 2013.
165.Pastoriza-Santos, I.; Koktysch, D. ; Mamedov, A.; Kotov, N. A.; Liz-
Marzán, L. M. (1999) One-pot synthesis of Ag@TiO2 core-shell
nanoparticles and their layer-by-layer assembly. Langmuir 16, 2731.
166.Oldfield, G.; Ung, T.; Mulvaney, P. (2000) Au@SnO2 core-shell
nanocapacitors. Adv. Mater. 12, 1519.
167.Selvan, S. T.; Hayakawa, T.; Nogami, M.; Kobayashi, Y.; Liz-Marzán,
L. M.; Hamanaka, Y.; Nakamura, A. (2002) Sol-gel derived gold
nanoclusters in silica glass possessing large optical nonlinearities.
J. Phys. Chem. B 106, 10157.
168.Lee, M.; Choi, Y. S.; Kim, T. S. (1997) Third-order optical
nonlinearities of sol-gel-processed Au-SiO2 thin films in the surface
plasmon absorption region. J. Non-cryst. Solids 211, 143.
169.Debrus, S.; Lafait, J.; May, M.; Pincon, N.; Prot, D.; Sella, C.;
Venturini, J. (2000) Z-scan determination of the third-order optical
nonlinearity of gold:silica nanocomposites. J. Appl. Phys. 88, 4469.
170.Nogami, M.; Abe, Y.; Nakamura, A. (1995) Cu microcrystals in sol-gel
derived glasses. J. Mater. Res. 10, 2648.
171.Kundu, D.; Honma, I.; Osawa, T.; Komiyama, H. (1994) Preparation and
optical nonlinear property of sol gel-derived CuSiO2 thin films. J.
Am. Ceram. Soc. 77, 1110.
172.De, G.; Taper, L.; Catalano, M.; Battaglin, G. ; Caccavale, F. ;
Gonella, F. ; Mazzoldi, P. ; Haglund, R., Jr. (1996) Formation of
copper and silver nanometer dimension clusters in silica by the sol-
gel process. Appl. Phys. Lett. 68, 3820.
173.Isobe, T.; Takeuchi, K.; Senna, M. (1996) Effects of mechanical
pretreatment of precursor sols and gels on the formation of NiO/SiO2
composites with a controlled microstructure. J. Non-cryst. Solids
194, 58.
174.Zhou, Q. F.; Zhang, Q. Q.; Zhang, J. X.; Zhang, L. Y.; Yao, X. (1997)
Preparation and optical properties of TiO2 nanocrystalline particles
dispersed in SiO2 nano-composites. Mater. Lett. 31, 39.
175.Lu, S. G.; Yu, Y. J.; Mak, C. L. ; Wong, K. H.; Zhang, L. Y.; Yao, X.
(2003) Nonlinear optical properties in CdS/silica nanocomposites.
Microelectron. Eng. 66, 171.
176.Reisfeld, R. (2002) Nanosized semiconductor particles in glasses
prepared by the sol–gel method: their optical properties and
potential uses. J. Alloys Compounds. 341, 56.
177.Lifshitz, E.; Dag, I.; Litvin, I.; Hodes, G.; Gorer, S.; Reisfeld,
R.; Zelner, M.; Minti, H. (1998) Optical properties of CdSe
nanoparticle films prepared by chemical deposition and sol–gel
methods. Chem. Phys. Lett. 288, 188.
178.Martucci, A.; Guglielmi, M.; Urabe, K. (1998) Influence of the host
matrix on the microstructure of sol-gel films doped with CdS and PbS
Q-dots. J. Sol-Gel Sci. Technol. 11, 105.
179.Zelner, M.; Minti, H.; Reisfeld, R.; Cohen, H.; Feldman, Y.; Cohen,
S. R.; Tenne, R. (2001) Preparation and characterization of CdTe
nanoparticles in zirconia films prepared by the sol gel method. J.
Sol-Gel Sci. Technol. 20, 153.
180.Sashchiuk, A.; Lifshitz, E.; Reisfeld, R.; Saraidarov, T.; Zelner,
M.; Willenz, A. (2002) Optical and conductivity properties of PbS
nanocrystals in amorphous zirconia sol-gel films. J. Sol-Gel Sci.
Technol. 24, 31.
181.Cairns, D. B.; Armes, S. P.; Bremer, L. G. B. (1999) Synthesis
and characterization of submicrometer-sized polypyrrole-polystyrene
composite particles. Langmuir 15, 8052.
182.Lu, C.; Pelton, R. (2002) Preparation and characterization of
polystyrene-poly(p-acetoxystyrene) and polystyrene-poly(p-
vinylphenol) composite latex particles. Colloids Surf. A 201, 161.
183.Min, K.; Hu, J.; Wang, C.; Elaissari, A. (2002) Surface modification
of polystyrene latex particles via atom transfer radical
polymerization. J. Polym. A: Polym. Chem. 40, 892.
184.Pichot, C.; Elaïssari, A. ; Duracher, D. ; Meunier, F. ; Sauzedde, F.
(2001) Hydrophilic stimuli-responsive particles for biomedical
applications. Macromol. Symp. 175, 285.
185.Huang, H.; Kowalewski, T.; Remsen, E. E.; Gertzmann, R.; Wooley, K.
L. (1997) Hydrogel-coated glassy nanospheres: a novel method for the
synthesis of shell cross-linked knedels. J. Am. Chem. Soc. 119, 1653.
186.Joensson, J. E.; Hassander, H.; Toernell, B. (1994) Polymerization
conditions and the development of a core-shell morphology in PMMA/PS
latex particles. 1. influence of initiator properties and mode of
monomer addition. Macromolecules 27, 1932.
187.Iijima, M. ; Nagasaki, Y. ; Okada, T. ; Kato, M. ; Kataoka, K. (1999)
Core-polymerized reactive micelles from heterotelechelic
amphiphilic block copolymers. Macromolecules 32, 1140.
188.McCaughey, B.; Hampsey, J. E.; Wang, D.; Lu, Y. (2004) Self-assembled
organic/inorganic nanocomposites. In: Nalwa, H. S., ed. Encyclopedia
of Nanoscience and Nanotechnology. California:American Scientific
Publishers, Vol. 9, pp.529-559.
189.Ferreira, M.; Zucolotto, V.; Ferreira, M.; Oliveira, O. N.; Jr.
(2004) Layer-by-layer and Langmuir-Blodgett films from
nanoparticles and complexes. In: Nalwa, H. S., ed. Encyclopedia of
Nanoscience and Nanotechnology. California:American Scientific
Publishers, Vol. 4, pp.441-465.
190.Ariga, K. (2004) Layer-by-layer nanoarchitectonics. In: Nalwa, H.
S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:
American Scientific Publishers, Vol. 4, pp.467-480.
191.Langmuir, I. (1916) The constitution and fundamental properties of
solids and liquids: Part 1. solids. J. Am. Chem. Soc. 38, 2221.
192.Blodgett, K. B. (1934) Monomolecular films of fatty acids on glass.
J. Am. Chem. Soc. 56, 495.
193.Iler, R. K. (1966) Multilayers of colloidal particles. J. Colloid
Interface Sci. 21, 569.
194.Decher, G.; Hong, J. D.; Schmitt, J. (1992) Build-up of ultrathin
multilayer films by a self-assembly process, III. Consecutively
adsorption of anionic and cationic polyelectrolytes on charged
surfaces. Thin Solid Films 210/211, 831.
195.吳建成、陳東煌 (2005) 逐層自組裝奈米結構多層膜,化工資訊與商情 3月:
64.
196.Dirix, Y.; Bastiaansen, C.; Caseri, W.; Smith, P. (1999) Oriented
pearl-necklace arrays of metallic nanoparticles in polymers: a new
route toward polarization-dependent color filters. Adv. Mater. 11,
223.
197.Quaroni, L.; Chumanov, G. (1999) Preparation of polymer-coated
functionalized silver nanoparticles. J. Am. Chem. Soc. 121, 10642.
198.Horswell, S. L.; Kiely, C. J.; O'Neil, I. A.; Schiffrin, D. J. (1999)
Alkyl isocyanide-derivatized platinum nanoparticles. J. Am. Chem.
Soc. 121, 5573.
199.Gianini, M.; Caseri, W. R.; Suter, U. W. (2001) Polymer
nanocomposites containing superstructures of self-organized platinum
colloids. J. Phys. Chem. B 105, 7399.
200.Dai, J.; Bruening, M. L. (2002) Catalytic nanoparticles formed by
reduction of metal ions in multilayered polyelectrolyte films
NanoLetters 2, 497.
201.Watanabe, S.; Regen, S. L. (1994) Dendrimers as building blocks for
multilayer construction J. Am. Chem. Soc., 116, 8855.
202.Bethell, D.; Brust, M.; Schiffrin, D. J.; Kiely, C. (1996) From
monolayers to nanostructured materials: an organic chemist's view of
self-assembly J. Electroanalytical Chem., 409, 137.
203.Werne, T. V.; Patten, T. E. (1999) Preparation of structurally well-
defined polymer-nanoparticle hybrids with controlled/living radical
polymerizations. J. Am. Chem. Soc. 121, 7409.
204.Prucker, O.; Rühe, J. (1998) Mechanism of radical chain
polymerizations initiated by azo compounds covalently bound to the
surface of spherical particles. Macromolecules 31, 602.
205.Husseman, M.; Malmström, E. E.; McNamara, M.; Mate, M.; Mecerreyes,
D.; Benoit, D. G.; Hedrick, J. L.; Mansky, P.; Huang, E.; Russell, T.
P.; Hawker, C. J. (1999) Controlled synthesis of polymer brushes
by "living" free radical polymerization techniques. Macromolecules
32, 1424.
206.Zhou, Q.; Wang, S.; Fan, X.; Advincula, R.; Mays, J. (2002) Living
anionic surface-initiated polymerization (LASIP) of a polymer on
silica nanoparticles. Langmuir 18, 3324.
207.Fleming, M. S.; Mandal, T. K.; Walt, D. R. (2001) Nanosphere-
microsphere assembly: methods for core-shell materials preparation.
Chem. Mater. 13, 2210.
208.Luna-Xavier, J. L.; Bourgeat-Lami, E.; Guyot, A. (2001) The role of
initiation in the synthesis of silica/poly(methyl methacrylate)
nanocomposite latex particles through emulsion polymerization.
Colloid Polym. Sci. 279, 947.
209.Percy, M. J.; Armes, S. P. (2002) Surfactant-free synthesis of
colloidal poly(methyl methacrylate)/silica nanocomposites in the
absence of auxiliary comonomers. Langmuir 18, 4562.
210.Mori, H.; Seng, D. C.; Zhang, M.; Müller, A. H. E. (2002) Hybrid
nanoparticles with hyperbranched polymer shells via self-condensing
atom transfer radical polymerization from silica surfaces. Langmuir
18, 3682.
211.Stejskal, J.; Kratochvíl, P.; Armes, S. P.; Lascelles, S. F.; Riede,
A.; Helmstedt, M.; Proke , J.; K ivka, I. (1996) Polyaniline
dispersions: 6. stabilization by colloidal silica particles.
Macromolecules 29, 6814.
212.Lascelles, S. F.; McCarthy, S. F.; Butterworth, M. D.; Armes, M. D.
(1998) Effect of synthesis parameters on the particle size,
composition and colloid stability of polypyrrole-silica nanocomposite
particles. Colloid Polym. Sci. 276, 893.
213.Lvov, Y.; Ariga, K.; Onda, M.; Ichinose, I.; Kunitake, T. (1997)
Alternate assembly of ordered multilayers of SiO2 and other
nanoparticles and polyions. Langmuir 13, 6195.
214.Dresco, P. A.; Zaitsev, V. S.; Gambino, R. J.; Chu, B. (1999)
Preparation and properties of magnetite and polymer magnetite
nanoparticles. Langmuir 15, 1945.
215.Shafi, K. V. P. M.; Ulman, A.; Dyal, A.; Yan, X.; Yang, N. L.;
Estournès, C.; Fournès, L.; Wattiaux, A.; White, H.; Rafailovich, M.
(2002) Magnetic enhancement of -Fe2O3 nanoparticles by sonochemical
coating. Chem. Mater. 14, 1778.
216.Jones, F.; Cölfen, H.; Antonietti, M. (2000) Iron oxyhydroxide
colloids stabilized with polysaccharides. Colloid Polym. Sci. 278,
491.
217.Gonsalves, K. E.; Li, H.; Santiago, P. (2001) Synthesis of acicular
iron oxide nanoparticles and their dispersion in a polymer matrix. J.
Mater. Sci. 36, 2461.
218.Mamedov, A. A.; Kotov, N. A. (2000) Free-standing layer-by-layer
assembled films of magnetite nanoparticles. Langmuir 16, 5530.
219.Xia, H.; Wang, Q. (2002) Ultrasonic irradiation: a novel approach to
prepare conductive polyaniline/nanocrystalline titanium oxide
composites. Chem. Mater. 14, 2158.
220.Pastoriza-Santos, I.; Koktysh, D. S.; Mamedov, A. A.; Giersig, M.;
Kotov, N. A.; Liz-Marzán, L. M. (2000) One-pot synthesis of Ag@TiO2
core-shell nanoparticles and their layer-by-layer assembly. Langmuir
16, 2731.
221.Hu, K.; Brust, M.; Bard, A. J. (1998) Characterization and surface
charge measurement of self-assembled CdS nanoparticle films. Chem.
Mater. 10, 1160.
222.Rogach, A. L.; Kotov, N. A.; Koktysh, D. S.; Susha, A. S.; Caruso, F.
(2002) II–VI semiconductor nanocrystals in thin films and colloidal
crystals. Colloid Surf. Sci. A 202, 135.
223.Farmer, S. C.; Patten, T. E. (2001) Photoluminescent polymer/quantum
dot composite nanoparticles. Chem. Mater. 13, 3920.
224.Pavel, F. M.; Mackay, R. A. (2000) Reverse micellar synthesis of a
nanoparticle/polymer composite. Langmuir 16, 8568.
225.Hong, X.; Li, J.; Wang, M.; Xu, J.; Guo, W.; Li, J.; Bai, Y.; Li, T.
(2004) Fabrication of magnetic luminescent nanocomposites by a layer-
by-layer self-assembly approach. Chem. Mater., 16, 4022.
226.Susha, A. S.; Caruso, F.; Rogach, A. L.; Sukhorukov, G. B.;
Kornowski, A.; Möhwald, H.; Giersig, M.; Eychmüller, A.; Weller, H.
Formation of luminescent spherical core-shell particles by the
consecutive adsorption of polyelectrolyte and CdTe(S) nanocrystals on
latex colloids. Colloid Surf. Sci. A 163, 39.
227.Gill, L. (2004) Biodoped sol-gel polymer nanocomposites. In: Nalwa,
H. S., ed. Encyclopedia of Nanoscience and Nanotechnology.
California:American Scientific Publishers, Vol. 1, pp.269-292.
228.He, X.; Lin, X.; Wang, K.; Chen, L.; Wu, P.; Yuan, Y. (2004)
Biocompatiable core-shell nanoparticles for biomedicine. In: Nalwa,
H. S., ed. Encyclopedia of Nanoscience and Nanotechnology.
California:American Scientific Publishers, Vol. 1, pp.235-253.
229.Battati, S.; Pioselli, B.; Campanini, B.; Viappiani, C.; Mozzarelli,
A. (2004) Protein-doped nanoporous silica gels. In: Nalwa, H. S.,
ed. Encyclopedia of Nanoscience and Nanotechnology. California:
American Scientific Publishers, Vol. 9, pp.81-103.
230.Ahn, C. H.; Choi, J. W.; Cho, H. J. (2004) Nanomagnetics for
biomedical applications. In: Nalwa, H. S., ed. Encyclopedia of
Nanoscience and Nanotechnology. California:American Scientific
Publishers, Vol. 6, pp.815-821.
231.Tartaj, P. (2004) Nanomagnets for biomedical applications. In:
Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology.
California:American Scientific Publishers, Vol. 6, pp.823-842.
232.Berry, C. C.; Curtis, A. S. G. (2003) Functionalisation of magnetic
nanoparticles for applications in biomedicine. J. Phys. D: Appl.
Phys. 36, R198.
233.Shinkai, M. (2002) Functional magnetic particles for medical
application. J. Biosci. Bioeng. 94, 606.
234.Wang, J.; Pamidi, P. V. A. (1997) Sol-gel-derived gold composite
electrodes. Anal. Chem. 69, 4490.
235.Sampath, S.; Lev, O. (1997) 3D organized self-assembled monolayer
electrodes: A novel biosensor configuration. Adv. Mater. 9, 410.
236.Wang, B.; Li, B.; Deng, Q.; Dong, S. (1998) Amperometric glucose
biosensor based on sol-gel organic-inorganic hybrid material. Anal.
Chem. 70, 3170.
237.Wang, B.; Li, B.; Wang, Z.; Xu, G.; Wang, Q.; Dong, S. (1999) Sol-gel
thin-film immobilized soybean peroxidase biosensor for the
amperometric determination of hydrogen peroxide in acid medium.
Anal. Chem. 71, 1935.
238.Kadnikova, E. N.; Kostic, N. M. (2002) Oxidation of ABTS by hydrogen
peroxide catalyzed by horseradish peroxidase encapsulated into sol–
gel glass.: Effects of glass matrix on reactivity. J. Mol. Catal. B
18, 39.
239.Liu, Z.; Liu, B.; Kong, J.; Deng, J. (2000) Probing trace phenols
based on mediator-free alumina sol-gel-derived tyrosinase biosensor.
Anal. Chem. 72, 4707.
240.Yamanaka, S. A.; Dunn, B.; Valentine, J. S.; Zink, J. I. (1995)
Nicotinamide adenine dinucleotide phosphate fluorescence and
absorption monitoring of enzymic activity in silicate sol-gels for
chemical sensing applications. J. Am. Chem. Soc. 117, 9095.
241.Williams, A. K.; Hupp, J. T. (1998) Sol-gel-encapsulated alcohol
dehydrogenase as a versatile, environmentally stabilized sensor for
alcohols and aldehydes. J. Am. Chem. Soc. 120, 4366.
242.Ji, Q.; Lloyd, C. R.; Ellis, W. R.; Jr., Eyring, E. M. (1998) Sol-gel-
encapsulated Heme proteins. evidence for CO2 adducts. J. Am. Chem.
Soc. 120, 221.
243.Aylott, J. W.; Richardson, D. J.; Russell, D. A. (1997) Optical
biosensing of gaseous nitric oxide using spin-coated sol-gel thin
films. Chem. Mater. 9, 2261.
244.Barker, S. L. R.; Kopelman, R.; Meyer, T. E.; Cusanovich, M. A.
(1998) Fiber-optic nitric oxide-selective biosensors and nanosensors.
Anal. Chem. 70, 971.
245.Wu, S.; Ellerby, L. M.; Cohan, J. S.; Dunn, B.; El-Sayed, M. A.;
Valentine, J. S.; Zink, J. I. (1993) Bacteriorhodopsin encapsulated
in transparent sol-gel glass: a new biomaterial. Chem. Mater. 5, 115.
246.Bronshtein, A.; Aharonson, N.; Avnir, D.; Turniansky, A.; Altstein,
M. (1997) Sol-gel matrixes doped with atrazine antibodies: atrazine
binding properties. Chem. Mater. 9, 2632.
247.Gill, I.; Ballesteros, A. (1998) Encapsulation of biologicals within
silicate, siloxane, and hybrid sol-gel polymers: An efficient and
generic approach. J. Am. Chem. Soc. 120, 8587.
248.Reetz, M. T. (1997) Entrapment of biocatalysts in hydrophobic sol-gel
materials for use in organic chemistry. Adv. Mater. 9, 943.
249.Reetz, M. T.; Zonta, A.; Simpelkamp, J.; Könen, W. (1996) In situ
fixation of lipase-containing hydrophobic sol–gel materials on
sintered glass—highly efficient heterogeneous biocatalysts. Chem.
Commun. 1397.
250.Obert, R.; Dave, B. C. (1999) Enzymatic conversion of carbon dioxide
to methanol: enhanced methanol production in silica sol-gel matrices.
J. Am. Chem. Soc. 121, 12192.
251.Shabat, D.; Grynszpan, F.; Saphier, S.; Turniansky, A.; Avnir, D.;
Keinan, E. (1997) An efficient sol-gel reactor for antibody-catalyzed
transformations. Chem. Mater. 9, 2258.
252.Sonti, S. V.; Bose, A. (1995) Cell separation using protein: a coated
magnetic nanoclusters. J. Colloids Interface Sci. 170, 575.
253.Gupta, A. K., Gupta, M. (2005) Synthesis and surface engineering of
iron oxide nanoparticles for biomedical applications. Biomaterials
26, 3995.
254.Chan, W. C. W.; Nie, S. (1998) Quantum dot bioconjugates for
ultrasensitive nonisotopic detection. Science 281, 2016.
255.Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P.
(1998) Semiconductor nanocrystals as fluorescent biological labels.
Science 281, 2013.
256.Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.;
Mirkin, C. A. (1997) Selective colorimetric detection of
polynucleotides based on the distance-dependent optical properties of
gold nanoparticles. Science 277, 1078.
257.Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. (2000) Scanometric DNA
array detection with nanoparticle probes. Science 289, 1757.
258.Park, S. J.; Taton, T. A.; Mirkin, C. A. (2002) Array-based
electrical detection of DNA with nanoparticle Probes. Science 295,
1503.
259.Cao, Y. W. C.; Jin, R.; Mirkin, C. A. (2002) Nanoparticles with raman
spectroscopic fingerprints for DNA and RNA detection. Science 297,
1536.
260.Liao, M. H.; Chen, D. H. (2002) Preparation and characterization of a
novel magnetic nano-adsorbent. J. Mater. Chem. 12, 3654.
261.Liao, M. H.; Chen, D. H. (2002) Fast and efficient
adsorption/desorption of protein by a novel magnetic nano-adsorbent.
Biotechnol. Lett. 24, 1913.
262.Liao, M. H.; Wu, K. Y.; Chen, D. H. (2003) Fast removal of basic dyes
by a novel magnetic nano-adsorbent. Chem. Lett. 32, 488.
263.Liao, M. H.; Chen, D. H. (2004) Fast adsorption of crystal violet on
polyacrylic acid-bound magnetic nanoparticles. Sep. Sci. Technol. 39,
1563.
264.陳育裕 (1998) 鐵氧超微磁粉之製備研究,國立成功大學化學工程研究所碩士論
文。
265.黃忠良 (1999) 磁性陶瓷,臺南:復漢。
266.鄭振東 (1999) 實用磁性材料,臺北:全華。
267.Chikazumi, S. 著,張煦、李學養 譯 (1982) 磁性物理學,臺北:聯經。
268.馬振基 (2003) 奈米材料科技原理與應用,臺北:全華。
269.Cullity, B. D. (1972) Introduction to magnetic materials. California:
Addison-Wesley.
270.Sorensen, C. M. (2001) Magnetism. In:Klabunde, K. J., ed. Nanoscale
Materials in Chemistry. New York:Wiley Interscience, pp.169-222.
271.Poole Jr., C. P.; Owens, F. J. (2003) Introduction to nanotechnology.
Hoboken:John Wiley & Sons.
272.Pieter, B. R.; Williams, R. A.; Webb, C. (1992) Magnetic carrier
technology. In:Williams, R. A., ed. Colloid and Surface Engineering:
Applications in the process industries. Oxford:Butterworth-
Heinemann, pp.248-286.
273.Davies, M. J.; Bruce, I. J.; Smethurst, D. E. (1994) Magnetic solid
phase supports for affinity purification of nucleic acids. In: Pyle D
L, ed. Separations for Biotechnology 3. Cambridge: The Royal Society
of Chemistry, pp. 152-158.
274.Ennis, M. P.; Wisdom, G. B. (1991) A magnetizable solid phase for
enzyme extraction. Appl. Biochem. Biotechnol. 30: 155.
275.Häfeli, U.; Schütt, W.; Teller, J.; Zborowski, M. (1997) Scientific
and Clinical Applications of Magnetic Carriers. New York: Plenum
Press.
276.Hirschbein, B. L.; Brown, D. W.; Whitesides, G. M. (1982) Magnetic
separations in chemistry and biochemistry. Chemtech 12: 172.
277.Setchell, C. H. (1985) Magnetic separations in biotechnology-A
review. J. Chem. Tech. Biotechnol. 35B: 175.
278.Roath, S. (1993) Biological and biomedical aspects of magnetic fluid
technology. J. Magn. Magn. Mater. 122: 329.
279.Šafařík, I. (1995) Removal of organic polycyclic compounds from water
solutions with a magnetic chitosan based sorbent bearing copper
phthalocyanine dye. Wat. Res. 29: 101.
280.Oyama, K.; Kihara, K. (1984) A new horizon for enzyme technology.
Chemtech 14: 100.
281.Denizli, A.; Tanyolaç, D.; Salih, B.; Özdural, A. (1998) Cibacron
blue F3GA-attached polyvinylbutyral microbeads as novel magnetic
sorbents for removal of Cu(II), Cd(II) and Pb(II) ions. J.
Chromatogr. A 793: 47.
282.Denizli, A.; Say, R. (2001) Preparation of magnetic dye affinity
adsorbent and its use in the removal of aluminium ions. J. Biomater.
Sci. Polymer Edn. 12: 1059.
283.Bolto, B. A. (1982) Novel water treatment processes which involve
polymers. In: Cooper A R, ed. Polymeric Separation Media. New York:
Plenum Press, pp. 211.
284.Akgöl, S.; Kaçar, Y.; Denizli, A.; Arica, M. Y. (2001) Hydrolysis of
sucrose by invertase immobilized onto novel magnetic polyvinylalcohol
microspheres. Food Chem. 74: 281.
285.Bahar, T.; Celebi, S. S. (1999) Immobilization of gluocoamylase on
magnetic poly(styrene) particles. J. Appl. Polym. Sci. 72: 69.
286.Garcia, A.; Oh, S.; Engler, C. R. (1989) Cellulase immobilization on
Fe3O4 and characterization. Biotechnol. Bioeng. 33: 321.
287.Halling, P. J.; Dunnill, P. (1980) Magnetic supports for immobilized
enzymes and bioaffinity adsorbents. Enzyme Microb. Technol. 2: 2.
288.Horák, D.; Rittich, B.; Šafář, J.; Španová, A.; Lenfeld, J.; Beneš,
M. J. (2001) Properties of RNase A immobilized on magnetic poly(2-
hydroxyethyl methacrylate) microspheres. Biotechnol. Prog. 17: 447.
289.Kondo, A.; Fukuda, H. (1997) Preparation of thermo-sensitive magnetic
hydrogel microspheres and application to enzyme immobilization. J.
Ferment. Bioeng. 84: 337.
290.Liu, C.; Honda, H.; Ohshima, A.; Shinkai, M.; Kobayashi, T. (2000)
Development of chitosan-magnetite aggregates containing Nitrosomonas
europaea cells for nitrification enhancement. J. Biosci. Bioeng. 89:
420.
291.Rudge, S. R.; Kurtz, T. L.; Vessely, C. R.; Catterall, L. G.;
Williamson, D. L. (2000) Preparation, characterization, and
performance of magnetic iron-carbon composite microparticles for
chemotherapy. Biomaterials 21, 1411.
292.Rudge, S.; Peterson, C.; Vessely, C.; Koda, J.; Stevens, S.;
Catterall, L. (2001) Adsorption and desorption of chemotherapeutic
drugs from a magnetically targeted carrier. J. Control. Release 74,
335.
293.Widder, D. J.; Senyei, A. E.; Ranney, D. F. (1979) Magnetically
responsive microspheres and other carriers for the biophysical
targeting of antitumor agents. Adv. Pharmacol. Chemother. 16, 213.
294.Ghassabian, S.; Ehtezazi, T.; Forutan, S. M.; Mortazavi, S. A. (1996)
Dexamethasone-loaded magnetic albumin microspheres: Preparation and
in vitro release. Int. J. Pharm. 130: 49.
295.Gupta, P. K.; Hung, C. T. (1989) Magnetically controlled targeted
micro-carrier systems. Life Sci. 44: 175.
296.Löster, K.; Seidel, S.; Kirstein, D.; Schneider, F.; Noll, F. (1992)
Novel antibody coating of a magnetizable solid phase for use in
enzyme immunoassays. J. Immunol. Methods 148: 41.
297.Matsunaga, T.; Kawasaki, M.; Yu, X.; Tsujimura, N.; Nakamura, N.
(1996) Chemiluminescence enzyme immunoassay using bacterial magnetic
particles. Anal. Chem. 68: 3551.
298.Richardson, J.; Hawkins, P.; Luxton, R. (2001) The use of coated
paramagnetic particles as a physical label in a magneto-immunoassy.
Biosens. Bioelectron. 16: 989.
299.Schütt, W.; Grüttner, C.; Häfeli, U.; Zborowski, M.; Teller, J.;
Putzar, H.; Schümichen, C. (1997) Applications of magnetic targeting
in diagnosis and therapy – possibilities and limitations: a mini-
review. Hybridoma 16: 109.
300.Krogh, T. N.; Berg, T.; Højrup, P. (1999) Protein analysis using
enzymes immobilized to paramagnetic beads. Anal. Biochem. 274: 153.
301.Miyabayashi, A.; O’Shannessy, D. (1989) Operational characteristics
of a new enzyme electrode based on electromagnetic entrapment of the
biocatalyst bound to magnetic particles. Biotechnol. Appl. Biochem.
11: 379.
302.Varlan, A. R.; Suls, J.; Jacobs, P.; Sansen, W. (1995) A new
technique of enzyme entrapment for planar biosensors. Biosens.
Bioelectron. 10: 15.
303.Wang, J.; Xu, D.; Polsky, R. (2002) Magnetically-induced solid-state
electrochemical detection of DNA hybridization. J. Am. Chem. Soc.
124: 4208.
304.Yang, M.; Li, H. L. (2001) Determinationn of trace hydrazine by
differential pulse voltammetry using magnetic microspheres. Talanta
55: 479.
305.Hilger, I.; Fruhauf, K.; Andra, W.; Hiergeist, R.; Hergt, R.; Kaiser,
W. A. (2002) Heating potential of iron oxides for therapeutic
purposes in interventional radiology. Acad. Radiol. 9, 198.
306.Jordan, A.; Wust, P.; Scholz, R.; Tesche, B.; Fahling, H.; Mitrovics,
T.; Vogl, T.; Cervos-Navarro, J.; Felix, R. (1996) Cellular uptake of
magnetic fluid particles and their effects on human adenocarcinoma
cells exposed to AC magnetic fields in vitro. Int. J. Hyperthermia
12, 705.
307.Moroz, P.; Jones, S. K.; Gray, B. N. (2002) Magnetically metiated
hyperthermia : current status and future directions. Int. J.
Hyperthermia 18, 267.
308.Brigger, D. C.; Couvreur, P. (2002) Nanoparticles in cancer therapy
and diagnosis. Adv. Drug Del. Rev. 54, 631.
309.Halavaara, J.; Tervahartiala, P.; Isonieme, H.; Hockerstedt, K.
(2002) Efficacy of sequential use of supermagnetic iron oxide and
gadolinium in liver MR imaging. Acta Radiologica 43, 180.
310.Van-Beers, B. E.; Pringot, J.; Gallez, B. (1995) Iron oxides as
contrast agents for MRI of the liver. J. Radiol. 76, 991.
311.Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. (2000)
Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal
superlattices. Science 287, 1989.
312.Suslick, K. S.; Fang, M.; Hyeon, T. (1996) Sonochemical synthesis of
iron colloids. J. Am. Chem. Soc. 118, 11960.
313.Si, S.; Kotal, A.; Mandal, T. K. ; Giri, S. ; Nakamura, H. ; Kohara,
T. (2004) Size-controlled synthesis of magnetite nanoparticles in the
presence of polyelectrolytes. Chem. Mater. 16, 3489.
314.Ding, Y.; Hu, Y.; Jiang, X. D.; Zhang, L. Y.; Yang, C. Z. (2004)
Polymer-monomer pairs as a reaction system for the synthesis of
magnetic Fe3O4-polymer hybrid hollow nanospheres. Angew. Chem., Int.
Ed. 43, 6369.
315.Tong, X. D.; Sun, Y. (2003) Application of magnetic agarose support
in liquid magnetically stabilized fluidized bed for protein
adsorption. Biotechnol. Progr. 19, 1721.
316.Hong, X.; Guo, W.; Yuang, H.; Li, J. ; Liu, Y. M. ; Ma, L. ; Bai, Y.
B. ; Li, T. J. (2004) Periodate oxidation of nanoscaled magnetic
dextran composites. J. Magn. Magn. Mater. 269, 95.
317.Jiang, W. Q.; Yang, H. C.; Yang, S. Y. ; Horng, H. E. ; Huang, J. C.;
Chen, Y. C.; Hong, C. Y. (2004) Preparation and properties of
superparamagnetic nanoparticles with narrow size distribution and
biocompatible. J. Magn. Magn. Mater. 283, 210.
318.Honda, H.; Kawabe, A.; Shinkai, M.; Kobayashi, T. (1998) Development
of chitosan-conjugated magnetite for magnetic cell separation. J.
Ferment. Bioeng. 86, 191.
319.許克瀛 (2003) 單一散度高分子螯合顆粒之製備,私立中原大學化學工程研究所
博士論文。
320.Faust, S. D.; Aly, O. M. (1987) Adsorption processes for water
treatment. Boston:Butterworths, pp.16-21.
321.Kapteijn, F.; Marin, G. B.; Moulijn, J. A. (1993) Catalytic reaction
engineering. In:Moulijn, J. A.; van Leeuwen, P. W. N. M.; van
Santen, R. A., ed. Catalysis: an integrated approach to homogeneous,
heterogeneous and industrial catalysis. Amsterdam:Elsevier, pp.251-
306.
322.陳妙琪 (2003) 複合鍍TiO2-Ni光觸媒之製造與特性分析,國立交通大學材料科
學與工程研究所博士論文。
323.Chen, X. G.; Park, H. J. (2003) Chemical characteristics of O-
carboxymethyl chitosans related to the preparation conditions.
Carbohyd. Polym. 53, 355.
324.Kondo, A.; Fukuda, H. (1997) Preparation of thermo-sensitive magnetic
hydrogel microspheres and application to enzyme immobilization. J.
Ferment. Bioeng. 84, 337.
325.Janolino, V. G.; Swaisgood, H. E. (1992) A spectrophotometric assay
for solid phase primary amino groups. Appl. Biochem. Biotechnol. 36,
81.
326.Tutem, E.; Apak, R.; Unal, G. F. (1998) Adsorptive removal of
chlorophenols from water by bituminous shale. Water Res. 32, 2315.
327.Ho, Y. S.; Wase, D. A. J.; Forster, C. F. (1996) Kinetic studies of
competitive heavy metal adsorption by sphagnum moss peat. Environ.
Technol. 17, 71.
328.Weber, W. J., Jr.; Morriss, J. C.; Sanitary, J. (1963) Kinetics of
adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ.
Eng. 89, 31.
329.Juang, R. S.; Wu, F. C.; Tseng, R. L. (1997) The ability of activated
clay for the adsorption of dyes from aqueous solutions. Environ.
Technol. 18, 525.
330.Stumm, W.; Morgan, J. J. (1981) Aquatic chemistry: an introduction
emphasizing chemical equilibria in natural waters. New York:J. Wiley
& Sons, pp.99-100.
331.Chandrasekhar, V. ; Athimoolam, A. ; Srivatsan, S. G. ; Sundaram, P.
S.; Verma, S.; Steiner, A.; Zacchini, S.; Butcher, R. (2002)
Pyrazolylcyclotriphosphazene containing pendant polymers: synthesis,
characterization, and phosphate ester hydrolysis using a Cu(II)-
metalated cross-linked polymeric catalyst. Inorg. Chem. 41, 5162.
332.Chang, Y. C.; Chen, D. H. (2005) Preparation and adsorption
properties of monodisperse chitosan-bound Fe3O4 magnetic
nanoparticles for removal of Cu(II) ions J. Colloid Interface Sci.
283, 446.
333.Bajpai, A. K. (2000) Adsorption of bovine serum albumin onto glass
powder surfaces coated with polyvinyl alcohol. J. Appl. Polym. Sci.
78, 933.
334.Chang, Y. C.; Chen, D. H. (2005) Adsorption kinetics and
thermodynamics of acid dyes on a carboxymethylated chitosan-
conjugated magnetic nano-adsorbent Macromol. Biosci. 5, 254.
335.Kannan, N.; Sundaram, M. M. (2001) Kinetics and mechanism of removal
of methylene blue by adsorption on various carbons: a comparative
study. Dyes Pigments 51, 25.
336.Bertini, I.; Luchinat, C.; Rosi, M.; Sgamelloti, A.; Tarantelli, F.
(1990) pKa of zinc-bound water and nucleophilicity of hydroxo-
containing species. Ab initio calculations on models for zinc
enzymes. Inorg. Chem. 29, 1460.
337.Chandrasekhar, V.; Athimoolam, A.; Srivatsan, S. G.; Sundaram, P. S.;
Verma, S.; Steiner, A.; Zacchini, S.; Butcher, R. (2002)
Pyrazolylcyclotriphosphazene containing pendant polymers: synthesis,
characterization, and phosphate ester hydrolysis using a Cu(II)-
metalated cross-linked polymeric catalyst. Inorg. Chem. 41, 5162
338.Srivatsan, S. G.; Verma, S. (2001) Nucleobase-containing metallated
polymeric resins as artificial phosphodiesterases: Kinetics of
hydrolysis, pH dependence, and catalyst recycling. Chem. Eur. J. 7,
828.
339.Bodsgard, B. R.; Burstyn, J. N. (2001) Silica-bound copper(II)
triazacyclononane: a robust material for the heterogeneous hydrolysis
o
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top