跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/19 19:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張義泉
研究生(外文):I-Chuan Chang
論文名稱:具界面活性擬樹枝狀聚乙烯亞胺之合成與製備燃料電池觸媒之應用
論文名稱(外文):Synthesis of Surface Active Pseudo-Dendritic Polyethylenimine and Application for Preparing Catalyst Layer for Fuel Cell
指導教授:郭炳林郭炳林引用關係
指導教授(外文):Pin-Ling Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:101
中文關鍵詞:鉑奈米粒子鉑擔體觸媒擬樹枝狀界面活性劑
外文關鍵詞:surfactantplatium catalystpseudo-dendritic
相關次數:
  • 被引用被引用:3
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
  本研究以正十二烷胺(dodecylamine)與aziridine進行反應,製備在末端含有不同ethyleimine (EI)官能基團的擬樹枝狀界面活性劑,並探討其在燃料電池之鉑擔體觸媒的應用。首先以核磁共振儀(1H-與13C-NMR)、紅外線光譜儀(FTIR)與胺基滴定法確定所合成擬樹枝狀界面活性劑其EI數為7與14;並藉由熱重分析儀(TGA)及界劑在水溶液中的表面張力、螢光吸收強度來鑑定界劑本身性質及在水溶液中的行為,結果顯示,所合成擬樹枝狀界面活性劑在水溶液中均是先擴散至空氣/水界面,待濃度增加後才在水溶液中形成聚集體。觀察其對水溶液表面張力下降能力差異不大,顯示接枝超過7枝時,親水性差異不大;在水溶液中易形成聚集體的程度為:C12(EI)14>C12(EI)7;以紫外線可見光光譜儀探討其對銅離子(Cu2+)與鉑離子(Pt4+)之螯合能力,對Cu2+的螯合能力C12(EI)14>C12(EI)7。

  以C12(EI)7為保護劑製備鉑粒子與鉑擔體觸媒研究中,利用穿透式電子顯微鏡評估界劑濃度對還原後鉑粒子之粒徑大小及分布的影響,之後配合X光繞射儀測定所製備鉑擔體觸媒的觸媒粒徑與結晶情況,由結果得:隨著保護劑濃度增加,可有效使鉑粒子粒徑減小;接著以電化學CV曲線及i-t曲線探討界劑濃度及熱處理時間對鉑擔體觸媒的影響。由數據顯示:隨著保護劑濃度增加鉑觸媒效能在[N]/[Pt] = 20時有一最佳表現;而鉑擔體觸媒以280℃進行熱處理,當熱處理5小時可得觸媒最佳表現。
 In this study, hyperbranched ethyleneimine (EI) groups were introduced into dodecylamine by a cationic polymerization with aziridine. The EI numbers (n) of these pseudo-dendritic surfactant were determined by 1H- and 13C-NMR to be 7 and 14, and were characterized by FT-IR. Potentiometric titration shows that nearly 24.62 % and 43.2 % of tertiary amine are obtained for C12(EI)7 and C12(EI)14, respectively. This result shows that those surfactants are nearly dendritic. Then, the measurements of surface tension and the ratio (I1/I3) of intensities of the fluorescence of pyrene for surfactant solutions were used to interpret their behaviors in water. From the experimental results of the surface tension and I1/I3, it is clear that the surfactant monomers in the aqueous solution transfer to the air/water interface before forming monomer aggregates. The degree for these surfactants to reduce the surface tension in aqueous solution is C12(EI)14≒C12(EI)7. The eases for these surfactants to form aggregates in aqueous solution is C12(EI)14>C12(EI)7. The chelating ability of these surfactants towards copper ion (Cu2+) has been examined by UV-vis spectroscopy and result C12(EI)14>C12(EI)7.

 Colloidal platinum nanoparticles were prepared by chemical reduction method with stabilizer C12(EI)7. The architectural effects in particle on the nanoparticle size, size distribution and agglomeration behavior were determined from transmission electron microscopic (TEM) analyses. Different phenomena of the surfactant-protected platinum ion nanoparticles at various surfactant concentrations were observed. When the surfactant concentration were increased the platinum particle size were decreased, displayed the N atom can protect platinum in fource.

 Carbon supported Pt catalysts were prepared by using stabilizer C12(EI)7. By altering [N]/[Pt] ratio and heat-treated time, we confer the morphology and Pt nanoparticles distribution to use TEM、XRD、CV and i-t curves. When the [N]/[Pt] ratio were increased the Pt catalysts efficacy increased either before [N]/[Pt] = 20. When the [N]/[Pt]>20, the Pt catalysts efficacy were decreased because some stabilizer were remained. At [N]/[Pt] = 20, increasing heat-treated time, the Pt catalysts efficacy increased before heat-treated 5 hours. After 5 hours, the Pt catalysts efficacy were decreased due to the Pt particles size increased.
中文摘要
英文摘要
誌謝
總目錄
圖目錄
第一章 緒論 1
第二章 原理 3
 2.1 奈米粒子之簡介 3
 2.2 奈米粒子穩定化理論 7
 2.3 燃料電池 14
2.4 觸媒製備 17
2.5 觸媒及效能分析 19
第三章 實驗設備與步驟 28
3.1 實驗藥品與儀器設備 28
3.2 擬樹枝狀界劑之合成 30
3.3 擬樹枝狀界劑之鑑定 31
3.4 擬樹枝狀界劑之溶液行為 34
3.5 鉑奈米粒子與鉑觸媒之製備與粒徑分析 36
3.6 擔體觸媒與電極特性分析 38
第四章 結果與討論 40
4.1擬樹枝狀界面活性劑特性分析 40
4.2擬樹枝狀界劑之溶液行為探討 51
4.3鉑奈米粒子之製備 61
4.4鉑擔體觸媒之製備 67
4.5觸媒電化學效能分析 76
第五章 結論 83
參考文獻 85
1. Schmidt, T. J.; Noeske, M.; Gasteiger, H. A.; Behm, R. J.; Britz, P.; Brijoux, W.; Bonnemann, H. Langmuir, 13, 2591, 1997.
2. Gotz, M.; Wendt, H. Electrochim. Acta, 145, 3637, 1998.
3. Schmidt, T. J.; Noeske, M.; Gasteiger, H. A.; Behm, R. J.; Britz, P.; Brijoux, W.; Bonnemann, H. J. Electrochem. Soc, 145, 925, 1998.
4. Chechik, V.; Crooks, R. M. J. Am. Chem. Soc. 122, 1243, 2000.
5. Bonnemann, H.; Brijoux, W. Metal cluster in Chemistry; vol. 2 Wiley-VCH, Weinheim, 1999.
6. Toshima, N.; Wang, Y. Langmuir, 10, 4574, 1994.
7. Toshima, N.; Hirakawa, K. Appl. Surf. Sci., 121/122, 534, 1997.
8. Chen, D. H.; Wu, S. H. Chem. Mater. 12, 1355, 2000.
9. Sun, S.; Murry, C. B.; Weller, D.; Folks, L.; Moser, A. Science, 287, 1989, 2000.
10. Suslick, K. S.; Fang, M.; Hyeon, T. J. Am. Chem. Soc. 118, 119600, 1996.
11. 蘇品書,超微粒子材料技術,復漢出版社(1989).
12. 莊萬發,超微粒子理論應用,復漢出版社(1995).
13. Fendler, J. H.; “Nanopraticles and nanostructured films: preparation, characterization and applications” Wiley-VCH, Weinhein, 1998.
14. Henglein, A. “Atomic and molecular clusters in membrane mimetic chemistry” Chem. Rev. 87, 877, 1987.
15. Toshima, N.; Hirakawa, K. Polymer, 31, 1127, 1999.
16. Toshima, N.; Yonezawa, T. New J. Chem. 1179, 1998.
17. Bonnemann, H.; Brijoux, W.; Brinkmann, R.; Dinjus, E.; Joussen, T.; Korall, B. Angew. Chem. Int. Ed. Engl. 30, 1344, 1991.
18. Reetz, M.T.; Helbig, W. J. Am. Chem. Soc. 30, 7401, 1994.
19. Schmid, G.; Peschel, S. New J. Chem. 22, 669, 1998.
20. Rodriguez, A.; Amiens, C.; Chaudret, B.; Casanove, M. J.; Lecante, P.; Bradley, J. S. Chem. Matter. 8, 1978, 1996.
21. Graffet, E.; Tchikart, M.; ElKedim, O.; Rahouadj, R. “Nanostructural materials formation by mechanical alloying: Morphologic analysis based on transmission and scanning electron microscopic observations” Mater. Charact. 36,185, 1996.
22. Amulyavichus, A.; Daugvila, A.; Davidonis, R.; Sipavichus, C. Fiz. Met. Metalloved. 85, 111, 1998.
23. Toshima, N.; Yonezawa, T. New J. Chem. 1179, 1998.
24. Reetz, M.T.; Helbig, W. J. Am. Chem. Soc. 30, 7401, 1994.
25. Reetz, M. T.; Helbig, W.; Quaiser, S. A. “Electrochemical Preparation of Nanostructureal Bimetallic Clusters” Chem. Mater. 7, 2227 ,1995
26. Reetz, M. T.; Quaiser, S.A. “A New Method for the Preparation of Nanostructured Metal Clusters” Angew. Chem. Int. Ed. Engl. 34, 2240, 1995
27. Yonezawa, T.; Sato, T.; Kurada, S.; Kuge, K. J. Chem. Soc. Faraday Trans. 87, 1905, 1991.
28. Han, M.Y.; Quek, C. H. “Photochemical Synthesis in Formamide and Room-Temperature Coulomb Staircase Behavior of Size-Controlled Gold Nanoparticles ” Langmuir. 16, 362, 2000.
29. Okitsu, K.; Bandow, H.; Maeda, Y.; Nagata, Y. “Sonochemical Preparation of Ultrafine Palladium Particles” Chem. Mater. 8, 315, 1996.
30. Okitsu, K.; Mizukoshi, Y.; Bandow, H.; Maede, Y.; Yamamoto, T. A.; Nagata, Y. “Formation of noble metal particles by ultrasonic irradiation” Ultrasonics Sonochemistry. 3, 249, 1996.
31. Bradley, J. S.; Hill, E.W.; Klein, C.; Chaudret, B.; Duteil, A. J. Chem. Mater. 5, 254, 1993.
32. Pan, C.; Dassenoy, F.; Casanove, M. J.; Philippot, K.; Amiens, C.; Lrvsnyr, P.; Moddry, S.; Chaudret, B. J. Phys. Chem. B. 103, 10098, 1999.
33. Zhao, M.; Crooks, R. M. Angew. Chem. Int. Ed. Engl. 38, 364, 1999.
34. Floriano, P. N.; Noble, C. O.; Schoonmaker, J. M.; Poliakoff, E. D.; McCarley, R. L. J. Am. Chem. Soc. 123, 10545, 2001.
35. Esumi, K.; Suzuki, A.; Yamahira, A.; Torigoe, K. Langmuir. 16, 2604, 2000.
36. Zheng, J.; Stevenson, M. S.; Hikida, Van Patten, P. G J. Phys. Chem. B. 106, 1252, 2002.
37. Wnag, Y.; Toshima, N. J. Phys. Chem. B. 101, 5301, 1997.
38. Silvert, P. Y.; Vijayakrishnan, V.; Vibert, P.; Herrera-Urbina, R.; Elhsissen, K.T. Nanostructured materials. 7, 611, 1996.
39. Nalwa, H.S. Handbook of Nanostructured materials and Nanotechnology; vol.1, chap. 1, Academic press, 2000.
40. Sangregorio, C.; Galeotti, M.; Barde, U.; Baglioni, P. Langmuir. 12, 5800, 1996.
41. Gaffet, E.; Tachikart, M.; ElKedim, O.; Rahousdj, R. “Electrochemical Preparation of Nanosturctural Bimetallic Clusters”, Chem. Mater. 7, 2227, 1995.
42. Bonnemann, H.; Richards, R.M. Eur. J. Inorg. Chem. 2455, 2001.
43. Faraday, M. P. Trans. R. Soc. London. 147, 145, 1957.
44. Turkevich, J.; Kim, G. Science. 169, 873, 1970.
45. Turkevich, J.; Stevenson, P. C.; Hiller, J. Disc. Faraday Soc. 11, 55, 1951.
46. Turkevich, J. Gold Bull, 18, 86, 1985.
47. Zeng, D.; Hampden-Smith M. J. Chem Mater. 5, 681, 1993.
48. (a) Schlesinger, H. I.; Brown, H. C.; Finholt, A. E.; Gilbreath, J. R.; Hockstrue, H. R.; Hyde, E. K. J. Am. Chem Soc. 75, 215, 1953. (b) Brown, H. C.; Brown, C. A. J. Am. Chem Soc. 84, 1493, 1962.
49. (a) Glavee, G. N.; Klabunda, K. J.; Sorensen, C. M.; Hadjapanayis, G. C. Langmuir, 8, 771, 1992. (b) Glavee, G. N.; Klabunda, K. J.; Sorensen, C. M.; Hadjapanayis, G. C. Inorg. Chem. 32, 474, 1993.
50. Schmid, G. “Clusters and Colloids: from theory to applications” VCH, Weinfeim, 1994.
51. Crooks, R. M. ; Zhao, M. ; Li S. ; Chechik, V. ; Yeung, L. K. “Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis” ACCOUNTS OF CHEMICAL RESEARCH 34 (3): 181, 2001
52. Turro, N. J.; Geiger, M. W.; Hautala, R. R.; Schore, N. E. “Fluorescent Probes for Micellar Systems. In Micellization, Solublization and Microemulsions” Plenum Press, New York, 75-86,1977.
53. Mukerjee, P.; Mysels, K. J. Critical Micelle Concentrations of Aqueous Surfactant Systems; NSTOS-NBS 36, National Bureau of Standards, US Government Printing Office, Washington, D. C.,1971.
54. Turro, N. J.; Baretz, B. H.; Kuo, P. L. “Photoluminescence probes for the investigation of interaction between sodium dodecylsulfate and water-soluble polymer” Macromolecules 17,1321, 1984.
55. Goddard, E. D.; Turro, N. J.; Kuo, P. L. “Fluorescence probes for critical micelle concentration determination” Langmuir, 1, 352 1985.
56. Khuanga, U.; Selinger, B. K.; Mcdonald, R. Aust. J. Chem.29,1. 1976,
57. Kuo, P. L.; Okamoto M.; Turro, N. J. “Photochemical methods for characterizing the nature of polymer aggregates in aqueous solutions and on a silica surface” J. Phys. Chem.91, 2934, 1987.
58. Turro, N. J. “Modern Molecular Photochemistry” Benjamin/Cummings Pub. Co. Menlo Park, 103, 1978.
59. Forster, T. Angew. Chem. 8, 333, 1969.
60. Birks, J. B. “Photophysics of Aromatic Molecules” Wiley, Interscience, 1970.
61. Kalyanasundaram, K.; Thomas, J. K. “Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems” J. Am. Chem. Phys. 76, 340, 1982.
62. Tachiya, M. “Kinetics of quenching of luminescent probes in micelle systems. II” J. Chem. Phys.76, 340, 1982.
63. A. J. Appleby, and F. R. Folkes, “Fuel Cell Handbook” Van Nostrand Reinhold, New York 1989.
64. 黃鎮江,燃料電池,8-5頁
65. T. Freelink, W. Visscher, and J.A.R.van Veen, Surf. Sci., 335, 353, 1995.
66. D. H. Jung, C. H. Lee, and C. S. Kim,J. Power Sources,17, 169, 1998.
67. M. Forsyth, S. D. Thompson, L. R. Jordan, “Platinum electrodeposition for polymer electrolyte membrane fuel cells” Electrochimica Acta 46, 1657, 2001.
68. S. A. Lee, K. W. Park, J. H. Choi, B. K. Kwon, Y. E. Sung “Nanoparticle Synthesis and Electrocatalytic Activity of Pt Alloys for Direct Methanol Fuel Cells”, Journal of The Electrochemical Society, 149, A1299, 2002.
69. M. Gotz, H. Wendt ”Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFC soperated on methanol or reformate gas”, Electrochimica Acta, 43, 3637, 1998.
70. M. J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, L. Daza “Development and performance characterization of new electrocatalysts for PEMFC” Journal of Power Sources, 106, 206, 2002.
71. M. Kishida, K. Umakoshi, J. Ishiyama, H. Nagata, K. Wakabayashi “Hydrogenation of carbon dioxide over metal catalysts prepared using microemulsion”, Catalysis Today, 355, 1996.
71. G. Neri, C. Milone, A. Donato, L. Mercadante, A. M. Visce “Selective Hydrogenation of Citral over Pt-Sn Supported on Activated Carbon”, J. Chem Tech. Biotechnol. 60, 83, 1994
72. G. Neri, C. Milone, S. Galvagno, A. P. J. Pijpers, J. Schwank “Characterization of Pt-Sn/carbon hydrogenation catalysts”, Applied Catalysis A:General 227, 105, 2002.
73. A. Honji, T. Mori, and Y. Hishinuma “Platinum Dispersed on Carbon Catalyst for a Fuel Cell:A Preparation with Sorbitan Monolaurate” J. Electrochem. Soc. 137, 2084, 1990.
74. S. Wasmus, W. Vielstcich “Methanol oxidation at carbon supported Pt and Pt-Ru electrodes: an on line MS study using technical electrodes” Journal of Applied Electrochemistry 23, 120, 1993.
75. J. B. Goodenough, A. Hamnett, B. J. Kennedy, R. Manoharan and S. A. Weeks “Porous Carbon Anodes For The Direct Methanol Fuel Cell-Ⅰ. The Role Of The Reduction Method For Carbon Supported Platinum Electrodes”, Electrochimica Acta, 35, 199, 1990.
76. A. Pozio, R. F. Silva, M. D. Francesco, F. Cardellini, L. Giorgi, “A novel route to prepare stable Pt-Ru/C electrocatalysts for polymer electrolyte fuel cell”, Electrochimica Acta 48, 255, 2002.
77. A. S. Arico, Z. Poltarzewski, H. Kim, A. Morana, N. Giordano, V. Antonucci, “Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells”, Journal of Power Sources 55, 159, 1995.
78. H. E. Van Dam and H. Van Bekkum “Preparation of Platium of Activated Carbon”, Journal of Catalysis 131, 335, 1991.
79. R. Pattabiraman “Preparation of Highly Dispersed Platinum Catalysts for Methanol Fuel Cells”, Bulletin of Electrochemistry 352, 1993.
80. 汪建民,材料分析,中國材料科學學會,2004
81. 胡啟章,電化學原理與方法,五南出版社,2002
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top