跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 18:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳坤隆
研究生(外文):Kun-Lung Chen
論文名稱:含1-單取代Imidazole潛含性觸媒在環氧樹脂材料膠化之研究開發
論文名稱(外文):Investigation of the 1-Substituted Imidazole Derivatives as Thermal Latent Catalysts in the Crue of Epoxy Resins
指導教授:葉茂榮葉茂榮引用關係
指導教授(外文):Mou-Yung Yeh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系專班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:91
中文關鍵詞:潛含性觸媒咪唑環氧樹脂
外文關鍵詞:Latnt catalystsEpoxy resinImidazole
相關次數:
  • 被引用被引用:0
  • 點閱點閱:897
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
一般在封裝材料中常使用的觸媒,可分成imidazole系列、diazabicyclic系列 (DBU 和 DBN)和phenolic系列,或將不同系列的觸媒加以掺混,上述觸媒皆可使封裝材料得到良好的高分子材料物性,由於封裝材料屬於活性化合物 (B-stage compound),更由於上述觸媒反應性太強,造成封裝材料儲存及運送過程不易,須在較低溫條件下操作,因此,開發新型之潛含性觸媒,為業界所迫切之需求。
要成為潛含性觸媒所需具備有三個條件,一、在封裝過程溫度(100–175 oC)下能快速硬化。二、可使封裝材料無限期儲存壽命。三、對封裝材料不會有負面性質影響。目前所研發的潛含性觸媒,可分為熱裂解型(thermal latent catalysts)和陽離子型 (cationic latent catalysts) 。一般而言,純熱裂解型(thermal latent catalysts),被研究開發之分子種類較少,也較不易得到良好聚合物性。因此,文獻發表,以陽離子型 (cationic latent catalysts)居多,但陽離子型潛含性觸媒常與counterion (如BF4-, PF6-, AsF6-和SbF6-)來結合,以穩定潛含性觸媒。但進行聚合反應時,將釋放出其他酸性物種(如HBF4, HPF6, HAsF6 和 HSbF6)而危害電子線路。
因此,本論文主要是研究開發含有imidazole之潛含性觸媒,因imidazole具強催化性質,當分子裂解時,可釋放出imidazole分子,以得到良好聚合效果和物性,而裂解剩下之部份,亦為可參與高分子聚合反應之材料,不至殘留影響電子線路。新型含imidazole的潛含性觸媒,在室溫皆能安定存在,使封裝材料之儲存期限得以延長,當在高溫封裝壓模時,潛含性觸媒則因在高溫下不穩定,裂解進行催化反應,以達到聚合硬化之效果。
Three Types of catalysts were usually applied in the molding compound of electronic industries which contain a series of imidazole, diazabicyclic derivatives (DBU and DBU) and phenolic compounds. Sometimes, the mixture compounds of diazabicyclic derivatives and phenolic compounds also were applied in the manufacture production. Due to the strong reactivity of these catalysts, the molding compounds must be storage at low temperature to prolong the pot-life. As a result, the latent catalysts have attracted much attention to maintain the long pot-life and improve the physical properties.
A perfect latent catalyst for molding compound should have the following properties: (1) rapid cure at a moderately elevated temperature (100–175 oC), (2) indefinite storage life for the catalyzed resin, and (3) no adverse effect on the properties of the cured material. Two types of latent catalysts were investigated: one was the thermal catalyst and another was the cationic latent catalyst. A few of pure thermal latent catalysts were developed and reported in the recent research because the poor catalyzed reactivity. Most of cationic latent catalysts were published in recent year which the reactivity of cationic latent catalysts were enhanced by the nucleophilicity of couterion (BF4-, PF6-, AsF6- and SbF6-). When the acidic species (HBF4, HPF6, HAsF6 and HSbF6) would be released while the cruing polymerization. The acidic species would be damaged the electronic products.
In this dissertation, we focus to develop a series of 1-substituted imidazole derivatives catalysts which would be degraded in the molding temperature (100–175 oC) and released imidazole moiety to catalyze the polymerization. According to the imidazole catalysts are extensively utilized in the curing epoxy resins in the molding compounds to provide the good physical and mechanical properties. These designed 1-substituted catalysts are very stable at room temperature and prolong the pot-life of molding compounds.
第一章 緒 論 1
1-1 前言 1
1-2 電子封裝技術 1
1-3 封裝材料的組成 14
1-3-1環氧樹脂 16
1-3-2環氧樹脂的硬化劑主要分為三大類: 21
1-3-3觸媒 23
1-3-4填充料 27
1-3-5偶合劑 27
1-3-6脫模劑 27
1-3-7著色劑 28
第二章 結果與討論 29
2-1 環氧樹脂的選擇 29
2-2 Imidazole及其衍生物 30
2-3 新型潛含性觸媒分子之合成結果 34
2-4 黏度測試 42
2-5 差示熱分析測試(Differential Thermometry Analysis,TG/DTA) 58
2-6 活化能測試 74
2-7 玻璃轉移溫度(Tg)測試 77
第三章 結論 79
第四章 實驗部份 80
4-1 實驗用藥品 80
4-2 實驗使用儀器 82
4-3 合成步驟及光譜資料 83
參考文獻 89
Buchanan, R. C. In Ceramic materials for electronics; M. Dekker: New York, 1986.
Harper, C. A. In Electronic packaging and interconnection handbook, McGraw-Hill: New York, 1997.
Ginsberg, G. In Electronic equipment packaging technology; Van Nostrand Reinhold: New York, 1992.
Goosey, M. T. In Plastics for electronics; Kluwer Academic Publishers: Dordrecht, 1999.
Godovsky, Y. K. In Speciality polymers/polymer physics; Springer Verlag: Berlin, 1989.
Wong, C. P. In Polymers for electronic and photonic applications, Academic Press: Boston, 1993.
Kimura, H.; Matsumoto, A.; Hasegawa, K.; Ohtsuka, K.; Fukuda, A. J. Appl. Polym. Sci. 1998, 68, 1903.
Kim, Y. C.; Park, S. J.; Lee, J. R. Polym. J. 1997, 29, 759.
Park, S. J.; Kang, J. G.; Kwon, S. H. Maromol Mater Eng. 2004, 289, 413.
Lee, J. K.; Choi, Y. Marcromolecular Reserch. 2002, 10, 34.
Park, S. J.; Kim, T. J.; Lee, J. K. J Appl Polym Sci B: Polym Phys. 2000, 38, 2114.
Hale, A.; Macosko, C.W.; Bair, H. E. J Appl Polym Sci. 1989, 38, 1253.
Farkas, A.; Strohm, P.F. J Appl Polym Sci. 1968, 12, 159.
Wang, S.; Wong, C.P. 1999 International Symposium on Advanced Packagig Materials. 1999, 67.
Sharma, G. V. M.; Reddy, J. J.; Lakshmi, P. S.; Krishna, P. R. Tetrahedron Letters. 2004, 45, 6963.
Henry, R. A.; Dehn, W. M. J. Am. Chem. Soc. 1949, 71, 2297.
Davis, D. P.; Kirk, K. L.; Cohen, L. A. J. Heterocyclic. Chem. 1982, 19, 253.
Hanson, J. R. In Protecting Groups in Organic Synthesis, Sheffield Academic Press: Sheffield England, 1999.
Murata, S. Chem. Lett. 1983, 1819.
Kondratiev, V. N. In Bond Dissociation Energies, Inonization Potentials and Electron Affinities, Mauka Publishing House: Moscow, 1974.
Urdahl, R. S.; Bao, Y.; Jackson, W. M. Chem. Phys. Lett. 1991, 178, 425.
Briganti, F.; Pierattelli, R.; Scozzafava, A.; Supuran, C. T. Eur. J. Med. Chem. 1996, 31, 1001.
Coquart, B.; Prodhomme, J. C. J. Mol. Spectrosc. 1981. 87, 75.
Gingerich, K. A. J. Phys. Chem. 1969, 73, 2734.
Mccallum, J. S.; Liebeskind, L. S. Synthesis 1993, 819.
Greene, T. W.; Wuts, P. G. M. In Protective groups in organic synthesis; Wiley: New York, 1991.
Sloan, K. B.; Koch, S. A. M. J. Org. Chem. 1983, 48. 635.
Kwak, G. H.; Park, S. J.; Lee, J. R. J. Appl. Polym. Sci. 2001, 81, 646.
Park, S. J.; Seo, M. K.; Lee, J. R.; Lee, D. R. J. Polym. Sci. A: Polym. Chem. 2001, 39, 187.
Kissinger, H. E. Anal. Chem. 1957, 29, 1702.
Park, S. J.; Seo, M. K.; Lee, J. R.; Lee, D. R. J. Polym. Sci. A: Polym. Chem. 2001, 39, 187.
Kissinger, H. E. Anal. Chem. 1957, 29, 1702.
Tung. C. M.; Dynes, P. J. J. Appl. Polym. Sci. 1982, 27, 569.
Galego, N.; Gonzàlez, F. Polymer International. 1996, 40, 213.
Park, S. J.; Kim, T. J.; Kim, H. Y. Polymer international. 2002, 51, 386.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 61.蔡欣玲、陳梅麗、王瑋(1996)醫學中心護理人員工作壓力相關因素之探討,榮總護理,13(3),263-269。
2. 56.廖張京棣(1997)Nursing Specialist與Physician Assistant之功能區別,醫院,30(5),40-45。
3. 54.楊瓊珠(1991)北中南三區護士工作滿意程度及其影響因素之研究,公共衛生,17(4),334-349。
4. 51.黃璉華(1981)台北市公共衛生護士工作滿足感調查研究,公共衛生,17(4),443-451。
5. 48.舒曼姝、王琪珍(1993)某地區護理人員照顧癌症患者臨床工作壓力之探討,護理研究,1(4),351-358。
6. 62.劉長安、施婉華、曾貴英(1997)某醫學中心臨床護理人員工作滿意度情形及影響因素之探討,榮總護理,14(2),143-152。
7. 46.陸洛(1997)工作壓力之歷程:理論與研究的對話,中華心理衛生學刊,10(4),19-51。
8. 45.曾倫崇(1997)醫院門診工作人員工作滿意度之研究,醫院,30(4),38-46。
9. 32.郭春花(1992)臨床護理人力之培育,護理新象,2,7-21。
10. 67.戴玉慈、陳月枝(1998)進階護理人員的角色定位與功能,醫學教育,2,10-17。
11. 24.邱秀環(1987)醫院護理人員的工作滿足感,護理雜誌,34(2),71-83。
12. 21.林月桂(1991)台北市醫療院所護理人員工作滿意度之研究,公共衛生,18(3),262-273。
13. 17.吳建樑(2000)醫師助理制度之法律問題研究,醫事法學季刊,7(1),17-24。
14. 20.周惠千、馬鳳歧(1988)台北市一級教學醫院急診室護理人員工作壓力探討,護理雜誌,35(2),69-85。
15. 65.盧美秀、林佳靜、林秋芬、廖美南、張丹蓉(1999)發展專科護理師之可行性:德爾菲研究•我國專科護理師的培育及實務課程之探討,護理研究,7(4),10-32。