跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/19 14:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳誠專
研究生(外文):Cheng-Chuan Chen
論文名稱:利用微流體晶片進行類固醇藥物篩選
論文名稱(外文):Microfluidic Chip System for Estrogen Related Drug Screening
指導教授:陳淑慧陳淑慧引用關係
指導教授(外文):Shu-Hui Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:153
中文關鍵詞:微流體晶片類固醇藥物篩選線上濃縮
外文關鍵詞:On-line concentrationDrug ScreeningEstrogenMicrofluidic Chip
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
  類固醇為調控生理活性之重要物質,其中包含人體的生長、發育、行為舉止及組織細胞修復的調控。類固醇相關之生理現象乃藉由與雌激素接受器特異性鍵結作用而促進,在探討雌激素接受器及與類固醇藥物之相互結合作用時,建立快速分析之平台乃是相當重要的課題,雖然現今已有許多分析類固醇藥物作用的方法被建立,但只有少數分析技術為可被廣泛應用之快速生物分析。
  由於微流體晶片電泳分析技術具有快速、微型化、易操作、高整合性及樣品用量少等優點,使得此技術在近幾年已成為相當強大的分析工具之一。本研究中著重在利用微流體晶片探討類固醇藥物與接受器蛋白之親和性鍵結作用,並開發快速自動進樣微量分析之方法。在以晶片式電泳探討此鍵結作用時,其分離選擇性及偵測靈敏度為相當重要的一部分,故本研究中使用微胞動電力管柱層析分離(MEKC)結合線上濃縮技術(on-line concentration)以有效提高分離效率及偵測靈敏度。此線上濃縮技術乃採用高導電之樣品溶液搭配低導電度之微胞分離緩衝液,藉由電場差異性而達到樣品濃縮之目的;其中分離緩衝液中含有界面活性劑(膽酸鈉鹽)、環糊精和有機溶劑,這些添加物可提高類固醇藥物及雌激素蛋白接受器分析物之分離選擇性。本研究利用FITC 17β-Estradiol為螢光探針應用於類固醇藥物親和力分析,以電泳晶片建立類固醇藥物之快速篩選平台。
 Estrogens are important biologically active substances associate with the growth, development, behavior and regulation of reproductive tissues in all vertebrates. Many of the effects of estrogens are mediated through binding to Estrogen Receptor. Thus it is important to develop a high-throughput analysis device for Estrogen Receptor binding of ligands and interaction determination. Various methods have been developed to assay these interactions, but only some of these are sufficiently convenient for high-throughput analysis.
 In recent years, microchip electrophoresis has been one of the most powerful analytical tools because of its short analysis time, miniaturization, feasibility, integration, and small sample volumes. We demonstrate a rapid analysis method on auto sampling microfluidic chips to study estrogen binding assay. In addition, selectivity and detection sensitivity represent two of the most important features governing the analysis of estrogenic molecules. The on-line sample concentration method in microfluidic chip was established on micellar electrokinetic chromatography (MEKC) mode. It based on manipulation of high conductivity sample matrix combined with anionic surfactant (Sodium Cholate detergent), β cyclyodextrin, and organic modifiers in separation buffer. MEKC Stacking resulted in focusing and separation of the moderately hydrophobic classes of steroid, and estrogen receptor protein. With this powerful separation method, the bioanalytical assay for screening estrogenic drug standards by using the fluorescent probe (FITC labeled 17β-Estradiol) was established.
中文摘要……………………………………I
英文摘要……………………………………III
主文目錄……………………………………V
縮寫檢索表…………………………………X
圖目錄………………………………………XI
表目錄………………………………………XIV


第一章 序論
1.1 前言……………………………………………………1
1.2 類固醇的生理調控……………………………………2
1.3 親和性作用力…………………………………………3
1.4 雌激素(Estrogens)與雌激素接受器(Estrogen
Receptor)……………………………………………4

第二章 利用晶片式電泳分析雌激素與雌激素接受器
2.1 前言………………………………………………6
2.2 毛細管電泳的發展………………………………7
2.3 毛細管電泳原理…………………………………8
2.3.1 電泳現象…………………………………8
2.3.2 界面電位及電滲流………………………9
2.4 電泳分離模式…………………………………11
2.4.1 微胞電動力毛細管層析法(MEKC)……12
2.4.1.1 MEKC分離機制…………………13
2.4.2 電泳線上濃縮技術……………………15
2.4.2.1 微胞電動層析樣品堆積………16
2.4.2.2 MEKC線上濃縮原理……………17
2.4.2.3 高鹽類濃度樣品基質濃縮技術21
2.5 微流體晶片式電泳儀…………………………22
2.5.1 微晶片電泳儀的優點與應用…………23
2.5.2 微流體晶片設計………………………24
2.5.3 微流體晶片電泳儀裝置………………30
2.6 實驗部分
2.6.1 微晶片管道前處理……………………33
2.6.2 藥品與試劑……………………………33
2.6.3 螢光染料標示蛋白質樣品準備………35
2.6.4 緩衝溶液及樣品溶液配置……………36
2.6.4.1 分離緩衝液配置………………36
2.6.4.2 樣品反應溶液配置……………37
2.6.5 微晶片電泳進樣及分離條件…………38
2.7 結果與討論
2.7.1 樣品進樣方式對雌激素分析的影響…38
2.7.2 緩衝溶液成份對雌激素分析的影響…39
2.7.2.1 界面活性劑SC濃度的影響……39
2.7.2.2 環糊精(β-CD)添加的影響……40
2.7.2.3 有機溶劑修飾的影響…………41
2.7.3 F-E2線上濃縮偵測……………………42
2.7.4 雌激素接受器線上濃縮偵測…………43
2.7.5 雌激素接受器鍵結前後之電泳遷移變化
…………………………………………44
2.8 小結……………………………………………46

第三章 類固醇藥物與雌激素接受器親和性作用力探討
3.1 實驗目的………………………………………47
3.2 親和性毛細管電泳原理(ACE) ………………47
3.3 實驗架構………………………………………49
3.4 分析物簡介……………………………………49
3.5 鍵結親和力推算方法…………………………50
3.6 實驗部分
3.6.1 微晶片前處理…………………………52
3.6.2 藥品與試劑……………………………52
3.3.2.1 分離緩衝液成分………………52
3.6.2.2 分析物成分……………………53
3.6.3 樣品溶液配置…………………………54
3.6.4 實驗操作條件…………………………55
3.7 結果與討論
3.7.1 線上偵測F-E2和Hr-ER之鍵結錯合物…56
3.7.2 分離鍵結錯合物之異構物……………57
3.7.3 E2定量競爭性反應……………………58
3.7.4 人類重組與核萃取雌激素接受器結合
力之比較………………………………59
3.7.5 類固醇相似藥物對鍵結錯合物之競爭
性反應…………………………………60
3.7.6 類固醇相似藥物之親和力比較………61

第四章 晶片溫控裝置與半電壓驅動進樣法之應用
4.1 目的……………………………………………64
4.2 焦耳熱效應……………………………………64
4.2.1 微晶片電泳控溫裝置…………………65
4.2.2 溫控裝置應用於微電泳分析…………65
4.3 結合壓力推動及電壓驅動進樣模式…………66
4.3.1 進樣方式對濃縮效率之比較…………67
4.3.2 半電壓驅動進樣法應用於ER親和性電
泳研究…………………………………69

第五章 總結與未來展望
5.1 結論……………………………………………70
5.2 未來展望………………………………………72

參考文獻…………………………………………………73
1. D. L. Nelson, M. M. Cox, Lehninger Principles
of Biochemistry, W. H. Freeman, 4th Edition,
465 (2004)

2. S. Jones, J. M. Thornton, Proc. Natl. Acad.
Sci. USA., 93, 13 (1996)

3. G. G. J. M. Kuiper, E. Enmark, M. Pelto-
Huikko, S. Nilsson, and J. A. Gustafsson,
Proc. Natl. Acad. Sci. U. S. A, 93, 5925
(1996)

4. E. Enmark, M. Pelto-Huikko, K. Grandien, S.
Lagercrantz, G. Fried, M. Nordenskjold, and J-
Å Gustafsson, J. Clin. Endocrinol. Met., 82,
4258 (1997)

5. S. Ogawa, S. Inoue, T. Watanabe, H. Hiroi, A.
Orimo, T. Hosoi, Y.Ouchi, and M. Muramatsu,
Biochem. Biophys. Res. Com., 243, 122 (1998)

6. A. H. Taylor and F. Al-Azzawi, J. Mol.
Endocrinol., 24, 145 (2000)

7. T. C. Bøg-Hansen, Anal. Biochem., 56, 480
(1973)

8. N. H. Heegaard, P. Lundahl, E. Greijer,
Quantitative Analysis of
Biospecific Interactions, Harwood Academic
Publishers, Amsterdam, 1 (1998)

9. S. Nakamura, T. Wakeyama, J. Biochem. Tokyo,
49, 733 (1961)

10. M. Szylit, Ann. Biol. Clin. 29, 215 (1971)

11. K. Takeo, S. Nakamura, Arch. Biochem.
Biophys., 153, 1 (1972)

12. S. J. Gerbrandy, A. Doorgeest,
Phytochemistry, 11, 2403 (1972)

13. R. A. Alberty, E. L. King, J. Am. Chem., 73,
517 (1951)

14. M. Macheboeuf, P. Rebryrotte, J. M. Dubert,
M. Brunerie, Bull. Soc. Chem. Biol., 35, 334
(1953)

15. S. Nakamura, T. Ueta, Nature, 182, 875 (1958)

16. A. Kohlarush, Ann. Phys. Chem., 62, 209
(1987)

17. S. Terabe, I. K. Otsuka, A. Tsuchiyu, T.
Ando, Anal. Chem., 56, 111 (1984)

18. CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI),
59, 363 (2001)

19. P. Camilleri, Capillary Electrophoresis, CRC
press, Boca Raton, FL. (1993)

20. H. Shintani, J. Polonsky, Handbook of
Capillary Electrophoresis Applications,
Blackie, Lodon (1997)

21. M. G. Khaledi, High Performance Capillary
Electrophoresis: theory, techniques and
applications, John Wiley & Sons, New York,
NY (1998)

22. C. E. Lin, C. C. Chen, H. W. Chen, H. C.
Huang, C. H. Lin, Y. C. Liu, J. Chromatogr.
A, 910, 165 (2001)

23. F. E. P. Mikkers, F. M. Everaerts, J.
Chromatogr., 169, 1 (1979)

24. S. E. Moring, J. C. Colburn, P. D. Grossman,
H. H. Lauer, LC-GC Intl., 3, 46 (1990)

25. R. L. Chien, D. S. Burgi, Anal. Chem., 64,
489A (1992)

26. R. L. Chien, D. S. Burgi, Anal. Chem., 63,
2042 (1991)

27. R. L. Chien, D. S. Burgi, J. Microcol., 3,
199 (1991)

28. R. L. Chien, D. S. Burgi, Anal. Biochem.,
202, 306 (1992)

29. J. P. Quirino, S. Terabe, J. Chromatogr. A,
781, 119 (1997)

30. J. P. Quirino, S. Terabe, J. Chromatogr. A,
791, 255 (1997)

31. J. P. Quirino, S. Terabe, Anal. Chem., 70,
149 (1998)

32. J. P. Quirino, S. Terabe, J. Chromatogr. A,
798, 251 (1998)

33. J. P. Quirino, S. Terabe, Anal. Chem., 70,
1893 (1998)

34. J. P. Quirino, S. Terabe, J. Chromatogr. B,
714, 29 (1998)

35. J. P. Quirino, S. Terabe, Science, 282, 465
(1998)

36. R. L. Chien, D. S. Burgi, Anal. Biochem.,
202, 306 (1992)

37. J. P. Quirino, S. Terabe, J. Chromatogr. A,
781, 119 (1997)

38. J. P. Quirino, S. Terabe, J. Chromatogr. A,
791, 255 (1997)

39. J. P. Quirino, S. Terabe, Anal. Chem., 70,
149 (1998)

40. J. Palmer, N. J. Munro, J. P. Landers, Anal.
Chem., 71, 1679 (1999)

41. Y. H. Lin, G. B. Lee, C. W. Li, G. R. Huang,
Y. H. Chen, K. C. Young, T. T. Chang, Micro-
Tas 2000, Netherlands, May (2001)

42. S. C. Jacobson, R. Hergenroder, L. B.
Koutny, R. J. Warmack, J. M. Ramsey, Anal.
Chem., 66, 1107 (1994)

43. S. C. Jacobson, R. Hergenroder, L. B.
Koutny, R. J. Warmack, J. M. Ramsey, Anal.
Chem., 66, 2369 (1994)

44. S. H. Chen,Y. H. Lin, L. Y. Wang, C. C. Lin,
G. B. Lee, Anal. Chem.,74, 5146 (2002)

45. C. C. Lin, G. B. Lee, S. H. Chen,
Electrophoresis, 23, 3550 (2002)

46. E. Garcia, J. R. Kirkham, A. V. Hatch, K. R.
Hawkins, P. Yager, Lab on a Chip, 4, 78
(2004)

47. E. Alvira, J. A. Mayoral, J. I. Garcia,
Chem. Phys. Lett., 245, 355 (1995)

48. F. W. Lichtenthaler, S. Immel,
Statch/Staerhe, 48, 145 (1996)

49. N. H. Heegard, R. T. Kennedy,
Electrophoresis, 20, 3122 (1999)

50. H. H. Yarabe, E. Billiot, I. M. Warner, J.
Chromatogr. A, 875, 179 (2000)

51. Z. E. Rassi, J. Chromatogr. A, 875, 207
(2000)

52. S. Fanali, J. Chromatogr. A, 792, 127 (1997)

53. B. Koppenhoefer, X. F. Zhu, A. Jakob, S.
Wuerthner, B. C. Lin, J. Chromatogr. A, 875,
135 (2000)

54. S. Fanali, J. Chromatogr. A, 875, 89 (2000)

55. S. Fanali, Z. Aturki, C. Desiderio,
Enantiomer, 4, 229 (1999)

56. R. Kuhn, Electrohporesis, 20, 2605 (1999)

57. R. Vespalec, P. Boèek, Electrophoresis, 20,
2579 (1999)

58. V. kasièka, Electrophoresis, 20, 3084 (1999)

59. Y. H. Chu, X. Zang, J. Tu, J. Chin. Chem.
Soc., 45, 713 (1998)

60. M. Rosanne, D. Guijt-van, F. Johannes,
Electrophoresis, 21, 3905 (2000)

61. J. Matthews, T. Celius, R. Halgren, T.
Zacharewski, Journal of Steroid
Biochemistry & Molecular Biology, 74, 223
(2000)

62. S. H. Kim, A. Tamrazi, K. E. Carlson, J. R.
Daniels, I. Y. Lee, J. A. Katzenellenbogen,
J. Am. Chem. Soc., 126, 4754 (2004)

63. The Endocrine Society, 138, 863 (1997)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top