跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:45cf:c86b:e393:b18b) 您好!臺灣時間:2025/01/13 08:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林崇文
研究生(外文):Chung-Wen Lin
論文名稱:釩及鋅對水稻根部細胞訊息傳遞影響之探討
論文名稱(外文):The effect of vanadate and zinc on rice root cell signal transduction
指導教授:黃浩仁
指導教授(外文):Hao-Jen Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生命科學系碩博士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:59
中文關鍵詞:蛋白質去磷酸酶活性氧化物質訊息傳遞途徑
外文關鍵詞:vanadatereactive oxygen speciessignal transduction pathwayprotein tyrosine phosphatasezinc
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
  釩及鋅是動物及植物生長所需之必要元素,然而在水稻中關於釩及鋅所造成的逆境訊息傳遞之研究卻甚為匱乏。過去研究發現,在植物組織中若累積過量的重金屬,常會導致活性氧化物質 (reactive oxygen species, ROS) 大量產生,而重金屬產生的逆境訊息,常會利用MAPK (mitogen-activated protein kinase) 作為訊息傳遞物質。本研究主要探討蛋白質酪胺酸去磷酸酶 (protein tyrosine phosphatase, PTP) 抑制劑-釩及鋅在水稻根部細胞訊息傳遞途徑中所扮演的角色。當以高濃度 (20 mM) 的釩處理水稻植株時,會造成明顯的根部細胞死亡現象以及抑制根的生長。而分別用釩及鋅處理水稻植株時,則會明顯的引發MBP (myelin basic protein) 激酶活性。進一步以蛋白質免疫沉澱實驗分析,證實受釩及鋅所誘發之分子量40與42 kDa的MBP激酶為MAPKs。若以sodium benzoate,一種ROS清除劑做前處理,結果發現釩所造成的細胞死亡會受到抑制,而釩與鋅所誘發的MAPKs活性也有被抑制的現象。另外,利用蛋白質去磷酸酶抑制劑-cantharidin及endothall處理,也會對於釩及鋅所誘發的MAPKs活性產生抑制的情況。綜合以上研究結果,我們推論ROS及蛋白質去磷酸酶皆參與釩及鋅所誘發的MAPKs訊息傳遞途徑。經由序列比對分析,我們在水稻中發現四個蛋白質酪胺酸去磷酸酶,它們皆帶有一段高度保留性的活化區。除此之外,在組織特異性分析中,OsPTP1會在根、葉及穗狀花序中表現,而且其表現量不會受到釩或鋅逆境影響。在本研究中亦利用pyronitrophenyl phosphatase (pNPP) 為受質,探討OsPTP1的酵素活性。
  Vanadium and zinc have been reported to be essential nutrition elements in animals and plants, however, the vanadium and zinc stress signal transduction pathways in rice are poorly investigated. Previous studies reported that the excess accumulation of heavy metal often accompanies with the reactive oxygen species (ROS) overproduced, and the transduction of metal stress signals may through the MAPKs (mitogen-activated protein kinases). This study is set to clarify the role of protein tyrosine phosphatase (PTP) inhibitors, vanadium and zinc, on rice root signal transduction pathways. We show that higher concentration (20 mM) of vanadium reduced rice root cell viability and suppressed the root growth. Vanadium and zinc elicited a remarkable increase of MBP kinases activities. By immunoblot analysis, we suggest that 40 and 42 kDa MBP kinases activated by vanadium and zinc are MAPKs. The ROS scavenger, sodium benzoate, was able to effectively prevent vanadium caused cell death and reduced the activities of vanadium- and zinc-induced MAPKs. The protein phosphatase inhibitors, cantharidin and endothall, were also able to prevent vanadium- and zinc-induced MAPks activation. Thus, we suggest that ROS and protein phosphatase may function in the vanadium- and zinc-triggered MAPK signalling pathway in rice roots. With the BLAST (basic local alignment search tool) analysis, we identify four tyrosine-specific PTPs in rice genome. Each contains a predicted catalytic domain containing sequence motifs characteristic of tyrosine-specific PTPs. The tissue specific expression analysis shows that OsPTP1 was expressed in rice root, leaf, and panicle, and the transcription of OsPTP1 in rice root was not been affected by vanadium and zinc. The pyronitrophenyl phosphatase (pNPP) was used as substrate and the phosphatase activity of OsPTP1 was measured in the present study.
中文摘要 i
Abstract ii
Abbreviations iii

Introduction 1
The effect of vanadium in eukaryotes 1
Cytotoxicity of vanadium on plants 2
Cytotoxicity of zinc on plants 3
Vanadium and zinc induce reactive oxygen species (ROS) generation in eukaryotes 4
MAPK signal transduction pathways in eukaryotes 5
MAPKs involve in vanadium and zinc stress signal transduction pathways 5
Protein phosphatases in eukaryotes 6
Protein tyrosine phosphatases in eukaryotes 7
Protein tyrosine phosphatases in plants 8
The effect of vanadium and zinc on PTP activites 9
Aims of this study 9

Materials and Methods 10
Plant materials 10
Evaluation of cell death using Evans blue assay 10
Root length determination 11
Reactive oxygen species generation determination 11
Preparation of homogenates 11
Immunoblot analysis 12
In gel kinase activity assay 13
Immunoprecipitation assay 13
Preparation of total RNA 14
Identification and expression plasmids construction 15
Over expression of the GST fusion protein in E.coli 15
GST-fusion protein purification 16
Protein tyrosine phosphatase activity assay 16
Satistical analyses 17

Results 18
The effect of vanadate on the root growth of rice seedling 18
The effect of zinc on the root growth of rice seedling 18
The effect of vanadate on rice root cell viability 18
The induction of MAPKs activities by vanadate and zinc 19
The reactive oxygen species (ROS) scavenger, sodium benzoate, reduced vanadate induced rice root cell death 20
The effect of protein phosphatases on vanadate- and zinc-induced MAPKs
activities 20
Molecular cloning and identification of the Oryza sativa protein tyrosine
phosphatase 21
Expression of the OsPTP1 gene 22
The OsPTP1 gene encodes a non-function tyrosine-specific PTP 22

Discussion 24
References 29
Agrawal GK, Iwahashi H, Rakwal R. 2003. Rice MAPKs. Biochemical and Biophysical Research Communications 302, 171-180.

Alia KVSKP, Saradhi PP. 1995. Effect of zinc on free radicals and proline in brassica and cajanus. Phytochemistry 39, 45-47.

Allan AC, Fluhr R. 1997. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9, 1559-1572.

Alonso A, Sasin J, Bottini N, Friedberg I, Freidberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T. 2004. Protein tyrosine phosphatase in the human genome. Cell 117, 699-711.

Andreeva AV, Kutuzov MA. 1999. RdgC/PP5-related phosphatases: novel components in signal transduction. Cellular Signalling 11, 555-562.

Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373-399.

Arnon DI, Wessel G. 1953. Vanadium as an essential element for green plants. Nature 172, 1039-1040.

Asai T, stone JM, Heard JE, Kovtun Y, Yorgey P. 2000. Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12, 1823-1836.

Aubrecht J, Narla RK, Ghosh P, Stanek J, Uckun FM. 1999. Molecular genotoxicity profiles of apoptosis-inducing vanadocene complexes. Toxicology and Applied Pharmacology 154, 228-235.

Bogre L, Ligterink W, Meskiene I, Barker PJ, Heberie-Bors E, Huskisson NS, Hirt H. 1997. Wounding induces the rapid and transient activation of a specific MAP kinase pathway. Plant Cell 9, 75-83.

Bowman BJ, Slayman CW. 1979. The effects of vanadate on the plasma membrane ATPase of Neurospora crassa. Journal of Biological Chemistry 254, 2928-2934.

Cakmak I. 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist 146, 185-205.

Cantley LC, Resh MD, Guidotti G. 1978. Vanadate inhibits the red cell (Na+, K+) ATPase from the cytoplasmic side. Nature 272, 552-554.

Charbonneau H, Tonks NK, Walsh KA, Fischer EH. 1988. The leukocyte common antigen (CD45): A putative receptor-like protein tyrosine phosphatase. Proceedings of the National Academy of Sciences, USA 85, 7182-7186.

Cheng HF, Tao M. 1989. Purification and characterization of a phosphotyrosyl-protein phosphatase from wheat seedlings. Biochimica et Biophysica Acta 998, 271-276.

Chernoff J. 1999. Protein tyrosine phosphatases as negative regulators of mitogenic signaling. Journal of Cellular Physiology 180, 173-181.

Cohen P. 1989. Structure and regulation of protein phosphatases. Annual Review of Biochemistry 58, 453-508.

Coulston L, Dandona P. 1980. Insulin-like effect of zinc on adipocytes. Diabetes 29, 665-667.

Cruz TF, Morgan A, Min W. 1995. In vitro and in vivo antineoplastic effects of orthovanadate. Molecular and Cellular Biochemistry 153, 161-166.

Cuypers A, Vangronsveld J, Clijsters H. 2001. The redox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgaris. Plant Physiology and Biochemistry 39, 657-664.

Dangl JL, Jones JDG. 2001. Plant pathogens and integrated defense responses to infection. Nature 411, 826-33.

Daniels WM, Hendricks J, Salie R, van Rensburg SJ. 2004. A mechanism for zinc toxicity in neuroblastoma cells. Metabolic Brain Disease 19, 79-88.

den Hertog J. 1999. Protein-tyrosine phosphatases in development. Mechanisms of Development 85, 3-14.

Ding M, Li JJ, Leonard SS, Ye JP, Shi X, Colburn NH, Castranova V, Vallyathan V. 1999. Vanadate-induced activation of activator protein-1: role of reactive species. Carcinogenesis 20, 663-668.

Ebbs SD, Kochian LV. 1997. Toxicity of zinc and copper to Brassica species: Implications for phytoremediation. Journal of Environmental Quality 26, 776-781.

El-Ghamery AA, El-Kholy MA, Abou El-Yousser MA. 2003. Evaluation of cytological effects of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L. Mutation Research 537, 29-41.

Erdodi F, Toth B, Hirano K, Hirano M, Hartshorne DJ, Gergely P. 1995. Endothall thioanhydride inhibits protein phosphatases-1 and -2A in vivo. Americal Journal of Physiology 269, 1176-1184.

Foulkes JG, Erikson E, Erikson R. 1983. Separation of multiple phosphotyrosyl- and phosphoseryl-protein phosphatases from chicken brain. Journal of Biological Chemistry 258, 431-438.

Foyer CH, Lelandais M, Kunert KJ. 1994. Photooxidative stress in plants. Physiologia Plantarum 92, 696–717.

Fukunaga K, Kobayashi T, Tamura S, Miyamoto E. 1993. Dephosphorylation of autophosphorylated Ca2+/calmodulin-dependent protein kinase II by protein phosphatase 2C. Journal of Biological Chemistry 268, 133-137.

Furukawa J, Yokota H, Tanoi K, Ueoka S, Matsuhashi S, Ishioka NS, Watanabe S, Uchida H, Tsuji A, Ito T, Mizuniwa T, Osa A, Sekine T, Hashimoto S, Nakanishi TM. 2001. Vanadium uptake and an effect of vanadium treatment on 18F-labeled water movement in a cowpea plant by positron emitting tracer imaging system (PETIS). Journal of Radioanalytical and Nuclear Chemistry 249, 495-498.

Guan KL, Dixon JE. 1990. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249, 553-556.

Guo YL, Roux SJ. 1995. Partial purification and characterization of an enzyme from pea nuclei with protein tyrosine phosphatase activity. Plant Physiology 107, 167-175.

Gupta R, Luan S. 2003. Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. Plant Physiology 132, 1149-1152.

Gustin MC, Albertyn J, Alexander M, Davenport K. 1998. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews 62, 1264-1300.

Hall JL. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany 53, 1-11.

Honkanen RE. 1993. Cantharidin, another natural toxin that inhibits the activity of serine/threonine protein phosphatases types 1 and 2A. FEBS letters 330, 283-286.

Huang C, Ding M, Li J, Leonard SS, Rojanasakul Y, Castranova V, Vallyathan V, Ju G, Shi X. 2001. Vanadium-induced nuclear factor of activated T-cells activation through hydrogen peroxide. Journal of Biological Chemistry 276, 22397-22403.

Huang Y, Li H, Gupta R, Morris PC, Luan S, Kieber JJ. 2000. ATMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiology 122, 1301-1310.

Huang C, Zhang Z, Ding M, Li J, Ye J, Leonard SS, Shen HM, Butterworth L, Lu Y, Costa M, Rojanasakul Y, Castranova V, Vallyathan V, Shi X. 2000. Vanadate induces p53 transactivation through hydrogen peroxide and causes apoptosis. Journal of Biological Chemistry 275, 32516-32522.

Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K. 2000. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant Journal 24, 655-665.

Ichimura K, Tena G, Henry Y, Zhang Z, Hirt H, Wilson C, Morris P, Mundy J, Innes R, Ecker J, et al. 2002. Mitogen-activated protein kinse cascade in plants: a new nomenclature. Trends in Plant Science 7, 301-308.

Ingram JL, Rice AB, Santos J, Van Houten B, Bonner JC. 2003. Vanadium-induced HB-EGF expression in human lung fibroblasts is oxidant dependent and requires MAP kinases. American Journal of Physiology. Lung Cellular and Molecular Physiology 284, L774-L782.

Iten M, Hoffmann T, Grill E. 1999. Receptors and signalling components of plant hormones. Journal of Receptor and Signal Transduction Research 19, 41-58.

Jaspers I, Samet JM, Erzurum S, Reed W. 2000. Vanadium-induced kappaB-dependent transcription depends upon peroxide-induced activation of the p38 mitogen-activated protein kinase. American Journal of Respiratory Cell and Molecular Biology 23, 95-102.

Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H. 1996. Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proceedings of the National Academy of Sciences, USA 93, 11274-11279.

Kabata-Pendias A, Pendias H. 1989. Trace Elements in the Soil and Plants. Florida: CRC Press,

Kalyani P, Vijaya S, Ramasarma T. 1992. Characterization of oxygen free radicals generated during vanadate-stimulated NADH oxidation. Molecular and Cellular Biochemistry 111, 33-40.

Kao TW. 2004. Molecular cloning and characterization of genes and promoter for plants stress signaling transduction in Phalaenopsis amabilis. MS thesis, National Cheng Kung University, Taiwan, ROC.

Kawai M, Uchimiya H. 2000. Coleoptile senescence in rice (Oryza Sativa L.) Annals of Botany 86, 405-414.

Kazlauskas A, Feng GS, Pawson T, Valius M. 1993. The 64-kDa protein that associates with the platelet-derived growth factor receptor beta subunit via Tyr-1009 is the SH2-containing phosphotyrosine phosphatase Syp. Proceedings of the National Academy of Sciences, USA 90, 6939-6943.

Kerk D, Bulgrien J, Smith DW, Barsam B, Veretnik S, Gribskov M. 2002. The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiology 129, 908-925.

Kim EY, Koh JY, Kim YH, Sohn S, Joe E, Gwag BJ. 1999. Zn2+ entry produces oxidative neuronal necrosis in cortical cell cultures. European Journal of Neuroscience 11, 327-334.

Kondoh M, Tasaki E, Araragi S, Takiguchi M, Higashimoto M, Watanabe Y, Sato M. 2002. Requirement of caspase and p38MAPK activation in zinc-induced apoptosis in human leukemia HL-60 cells. European Journal of Biochemistry 269, 6204-6211.

Låg M, Refsnes M, Lilleaas EM, Holme JA, Becher R, Schwarze PE. 2005. Role of mitogen activated protein kinases and protein kinase C in cadmium-induced apoptosis of primary epithelial lung cells. Toxicology 211, 253-264.

Låg M, Westly S, Lerstad T, Bjørnsrud C, Refsnes M, Schwarze PE. 2002. Cadmium-induced apoptosis of primary epithelial lung cells: involvement of Bax and p53, but not of oxidative stress. Cell Biology and Toxicology 18, 29-42.

Lechleider RJ, Sugimoto S, Bennett AM, Kashishian AS, Cooper JA, Shoelson SE, Walsh CT, Neel BG. 1993. Activation of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009, on the human platelet-derived growth factor receptor. Journal of Biological Chemistry 268, 21478-21481.

Ledbetter JA, Tonks NK, Fischer EH, Clark EA. 1988. CD45 regulates signal transduction and lymphocyte activation by specific association with receptor molecules on T or B cells. Proceedings of the National Academy of Sciences, USA 85, 8628-8632.

Leonard SS, Harris GK, Shi X. 2004. Metal-induced oxidative stress and signal transduction. Free Radical Biology and Medicine 37, 1921-1942.

Luan S. 2000. Protein phosphatases: structure, regulation, and function. Advances in Botanical Research Incorropating Advances in Plant Pathology 32, 67-107.

Luan S. 2003. Protein phosphatases in plants. Annual Review of Plant Biology 54, 63-92.

Luan S, Li W, Rusnak F, Assmann SM, Schreiber SL. 1993. Immunosuppressants implicate protein phosphatase regulation of K+ channels in guard cells. Proceedings of the National Academy of Sciences, USA 90, 2202-2206.

Macara IG. 1980. Vanadate—an element in search of a role. Trends in Biochemical Sciences 5, 92-94.

MacKintosh C, Lyon GD, MacKintosh RW. 1994. Protein phosphatase inhibitors activate anti-fungal defense responses of soybean cotyledons and cell cultures. Plant Journal 5, 137-147.

MacKintosh C, MacKintosh RW. 1994. Inhibitors of protein kinases and phosphatases. Trends in Biochemical Science 19, 444-448.

Matsubara T, Musat-Marcu S, Misra HP, Dhalla NS. 1995. Protective effect of vanadate on oxyradical-induced changes in isolated perfused heart. Molecular and Cellular Biochemistry 153, 79-85.

Maze P. 1936. The role of special elements (boron, copper, zinc, manganese, etc.) in plant nutrition. Annual Review of Biochemistry 5, 525-538.

Mizoguchi T, Ichimura K, Shinozaki K. 1997. Environmental stress response in plants : the role of mitogen-activated protein kinases. Trends in Biotechnology 15, 15-19.

Møller IM. 2001. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Physiology and Plant Molecular Biology 52, 561-591.

Morinville A, Maysinger D, Shaver A. 1998. From Vanadis to Atropos: vanadium compounds as pharmacological tools in cell death signalling. Trends in Pharmacological Sciences 19, 452-460.

Morris PC. 2001. MAP kinase signal transduction pathways in plants. New Phytologist 151, 67-89.

Nakagami H, Pitzschke A, Hirt H. 2005. Emerging MAP kinase pathways in plant stress signalling. Trends in Plant Science 10, 339-346.

National Research Council. 1980. Mineral Tolerance of Domestic Animals. National Academic of Sciences, Washington, D.C, 534-552.

Neel BG, Tonks NK. 1997. Protein tyrosine phosphatases in signal transduction. Current Opinion in Cell Biology 9, 193-204.

Nriogo JO. 1979. Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279, 409-411.

Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. 2001. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews 22, 153-183.

Powell MJ, Davies MS, Francis D. 1986. The influence of zinc on the cell cycle in the root meristem of a zinc-tolerant and non-tolerant cultivar of Festuca rubra L. New Phytologist 102, 419-428.

Rakwal R, Agrawal GK, Agrawal VP. 2001. Jasmonate, salicylate, protein phosphatase 2A inhibitors and kinetin up-regulate OsPR5 expression in cut-responsive rice (Oryza sativa). Journal of Plant Physiology 158, 1357-1362.

Ray RS, Roy S, Ghosh S, Kumar M, Chatterjee M. 2004. Suppression of cell proliferation, DNA protein cross-links, and induction of apoptosis by vanadium in chemical rat mammary carcinogenesis. Biochemica et Biophysica Acta 1675, 165-173.

Rehder D. 1992. Structure and function of vanadium compounds in living organisms. Biometals 5, 3-12.

Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, Ed 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Samet JM, Silbajoris R, Wu W, Graves LM. 1999. Tyrosine phosphatases as targets in metal-induced signaling in human airway epithelial cells. American Journal of Respiratory Cell and Molecular Biology 21, 357-364.

Sauter M. 1997. Differential expression of a CAK (cdc2-activating kinase)-like protein kinase, cyclins and cdc2 genes from rice during the cell cycle and in response to gibberellin. Plant Journal 11, 181-190.

Scandalios JG. 1993. Oxygen stress and superoxide dismutases. Plant Physiology 101, 7-12.

Schaeffer HJ, Weber MJ. 1999. Mitogen-activated protein kinase: specific messages from ubiquitous messengers. Molecular and Cellular Biology 19, 2435-2444.

Schillace RV, Scott JD. 1999. Organization of kinases, phosphatases, and receptor signaling complexes. Journal of Clinical Investigation 103, 761-765.

Schwarz K, Milne DB. 1971. Growth effects of vanadium in the rat. Science 174, 426-428.

Seo S, Okamoto M, Seto H, Ishizuka K, Sano H, Ohashi Y. 1995. Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 270, 1988-1992.

Serra MA, Sabbioni E, Marchesini A, Pintar A, Valoti M. 1989-1990. Vanadate as an inhibitor of plant and mammalian peroxidases. Biological Trace Element Research 23, 151-164.

Serra MA, Pintar A, Casella L, Sabbioni E. 1992. Vanadium effect on the activity of horseradish peroxidase, catalase, glutathione peroxidase, and superoxide dismutase in vitro. Journal of Inorganic Biochemistry 46, 161-174.

Shechter Y, Goldwaser I, Mironchik M, Fridkin M, Gefel D. 2003. Historic perspective and recent developments on the insulin-like actions of vanadium; toward developing vanadium-based drugs for diabetes. Coordination Chemistry Reviews 237, 3-11.

Shenolikar S, Nairn AC. 1991. Protein phosphatases: recent progress. Advances in Second Messenger and Phosphoprotein Research 23, 1-121.

Shi X, Dalal NS. 1993. Vanadate-mediated hydroxyl radical generation from superoxide radical in the presence of NADH: Haber-Weiss vs Fenton mechanism. Archives of Biochemistry and Biophysics 307, 336-341.

Shi X, Wang P, Jiang H, Mao Y, Ahmed N, Dalal N. 1996. Vanadium(IV) causes 2’-deoxyguanosine hydroxylation and deoxyribonucleic acid damage via free radical reactions. Annals of Clinical and Laboratory Science 26, 39-49.

Smith RD, Walker JC. 1996. Plant protein phosphatases. Annual Review of Plant Physiology and Plant Molecular Biology 47, 101-125.

Stemmer P, Klee CB. 1991. Serine/threonine phosphatases in the nervous system. Current Opinion in Neurobiology 1, 53-64.

Stohs SJ, Bagchi D. 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine 18, 321-336.

Stone JM, Walker JC. 1995. Plant protein kinase families and signal transduction. Plant Physiology 108, 451-457.

Suzuki K, Yano A, Shinshi H. 1999. Slow and prolonged activation of the p47 protein kinase during hypersensitive cell death in a culture of tobacco cells. Plant Physiology 119, 1465-1472.

Tena G, Asai T, Chiu WL, Sheen J. 2001. Plant mitogen-activated protein kinase signaling cascades. Current Opinion in Plant Biology 4, 392-400.

Thompson HJ, Chasteen ND, Meeker LD. 1984. Dietary vanadyl(IV) sulfate inhibits chemically-induced mammary carcinogenesis. Carcinogenesis 5, 849-851.

Usami S, Banno H, Ito Y, Nishihama R, Machida Y. 1995. Cutting activates a 46-kilodalton protein kinase in plants. Proceedings of the National Academy of Sciences, USA 92, 8660-8664.

Valle BL, Falchuk KH. 1993. The biochemical basis of zinc physiology. Physiological Reviews 73, 79-118.

Wang JF, Liu Z. 1999. Effect of vanadium on the growth of soybean seedlings. Plant and Soil 216, 47-51.

Wang L, Medan D, Mercer R, Overmiller D, Leornard S, Castranova V, Shi X, Ding M, Huang C, Rojanasakul Y. 2003. Vanadium-induced apoptosis and pulmonary inflammation in mice: role of reactive oxygen species. Journal of Cellular Physiology 195, 99-107.

Weast RC. 1984. CRC Handbook of chemistry and physics, 64th edn. Boca Raton, CRC Press.

Weckx JEJ, Clijsters HMM. 1997. Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiology and Biochemistry 35, 405-410.

Welch RM. 1973. Vanadium uptake by plants. Plant Physiology 51, 828-832.

Welch RM, Edward WD, Huffman JR. 1973. Vanadium and plant nutrition. Plant Physiology 52, 183-185.

Widmann C, Gibson S, Jarpe MB, Johnson GL. 1999. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiological Reviews 79, 143-180.

Wojtaszek P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochemical Journal 322, 681-692.

Xu JR. 2000. MAP kinases in fungal pathogens. Fungal Genetics and Biology 31, 137-152.

Xu Q, Fu HH, Gupta R, Luan S. 1998. Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-responsive gene in Arabidopsis. Plant Cell 10, 849-857.

Ye J, Ding M, Leonard SS, Robinson VA, Millecchia L, Zhang X, Castranova V, Vallyathan V, Shi X. 1999. Vanadate induces apoptosis in epidermal JB6 P+ cels via hydrogen peroxide-mediated reactions. Molecular and Cellular Biochemistry 202, 9-17.

Yeh CM, Hung WC, Huang HJ. 2003. Copper treatment activates mitogen-activated protein kinase signalling in rice. Physiologia Plantarum 119, 392-399.

Yeh CM, Hsiao LJ, Huang HJ. 2004. Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice. Plant and Cell Physiology 45, 1306-1312.

Yin X, Davison AJ, Tsang SS. 1992. Vanadate-induced gene expression in mouse C127 cells: role of oxygen derived active species. Molecular and Cellular Biochemistry 115, 85-96.

Yousefi S, Green DR, Blaser K, Simon HU. 1994. Protein-tyrosine phosphorylation regulates apoptosis in human eosinophils and neutrophils. Proceedings of the National Academy of Sciences, USA 91, 10868-10872.

Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K. 2001. Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant and Cell Physiology 42, 1012-1016.

Zhang S, Klessig DF. 1997. Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9, 809-824.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top