跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 03:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張歐穰
研究生(外文):Jang Chang-Ou
論文名稱:應用於可見光下分解水之In1-xNixMO4(M=Nb,Ta;x=0,0.1,0.3)光觸媒之製備與特性研究
論文名稱(外文):Synthesis and properties of In1-xNixMO4 ( M = Nb, Ta ; x = 0, 0.1, 0.3 ) photocatalysts applied under visible light for water splitting
指導教授:黃啟祥黃啟祥引用關係
指導教授(外文):Chi-Shiang Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:70
中文關鍵詞:InNiTaO4光觸媒含浸法可見光分解水
外文關鍵詞:InNiTaO4photocatalystimpregnation methodwater splittingvisible light
相關次數:
  • 被引用被引用:7
  • 點閱點閱:798
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  晶體為wolframite結構之InTaO4光觸媒粉末可在可見光的波長下受光激發而將水分解為氫氣與氧氣。為改善此晶體結構的觸媒特性,本研究藉由固態法與含浸法製備�狟鑞i的In1-xNixTaO4光觸媒粉末,並檢討其微結構與分解水之效率。
  In1-xNixTaO4光觸媒粉末在可見光的照射之下,其分解水之效率,會隨著煆燒持溫時間的增加而增加、隨著分解水反應溫度之增加而增加、隨著分解水反應時間的增加而降低;在起始的三到五個小時內有最佳分解效率。整體而言,含浸法製備之光觸媒粉末比固態法有較佳之分解水效率。在40℃下反應5個小時後,以含浸法製備之In1-xNixTaO4粉末可分解水產生110μmole之氣體,此為本研究中最佳之數據。
  經由X光繞射分析,得知以含浸法�狟鑞i之In1-xNixTaO4粉末比固態法有較多�狟曭摸i進入晶格並取代In,此結果應是導致含浸法粉末有較佳分解水效率之主要因素。
 An InTaO4 photocatalyst with wolframite structure can split water into oxygen and hydrogen under visible light irradiation. In order to improve the catalytic properties of this catalyst, In1-xNixTaO4 photocatalysts were synthesized by solid state method and impregnation method. The microstructure and efficiency of water-splitting of these photocatalysts were investigated.
 The efficiency of water-splitting of In1-xNixTaO4 photocatalysts under visible light irradiation increases as increasing soaking time of calcinations and increasing reaction temperation, decreases as continuous reaction time of water-splitting, and shows better efficiency at beginning 5 h. In this research, photocatalysts prepared by impregnation show better efficiency than by solid state method one. The best result of gas evolved from water-splitting is 110μmole of In1-xNixTaO4 photocatalysts synthesized by impregnation method react under visible light irradiation at 40℃ for 5 h.
 By the x-ray diffraction analysis, we know that there are more Ni doped into In1-xNixTaO4 and substituted In site when prepared by impregnation method than by solid state method. This may leads to better efficiency of water-splitting of photocatalysts prepared by impregnation method.
中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅱ
目錄……………………………………………………………………Ⅲ
表目錄…………………………………………………………………VII
圖目錄…………………………………………………………………VIII
第一章 緒論……………………………………………………………1
第二章 理論基礎與文獻回顧…………………………………………6
2-1 觸媒特質……………………………………………………………6
2-2 光觸媒特質…………………………………………………………6
2-3 光觸媒分類…………………………………………………………7
2-3-1 紫外光光觸媒……………………………………………………7
2-3-1-1二氧化鈦光觸媒(TiO2)……………………………………8
2-3-1-2 氧化鋅光觸媒(ZnO)………………………………………8
2-3-1-3 硫化鎘光觸媒(CdS)………………………………………9
2-3-1-4 Sr2M2O7(M = Nb, Ta)光觸媒………………………………9
2-3-2 可見光光觸媒……………………………………………………9
2-3-2-1 改質二氧化鈦光觸媒(modified TiO2)……………………9
2-3-2-2 NiM2O6(M = Ta, Nb)光觸媒………………………………10
2-3-2-3 改質硫化鋅光觸媒(modified ZnS)…………………………10
2-3-2-4 改質氧化鎢光觸媒(modified WO3)………………………10
2-3-2-5 TaON光觸媒……………………………………………………10
2-4 光觸媒作用機制……………………………………………………10
2-4-1 半導體特性………………………………………………………10
2-4-2光觸媒作用原理與過程…………………………………………11
2-4-3光觸媒材料的設計………………………………………………11
2-4-4 摻雜過渡金屬離子於光觸媒的特性……………………………13
2-5 比表面積與觸媒效率之關係………………………………………13
2-6 助觸媒(co-catalyst)………………………………………………14
2-7 近代製備微粒觸媒之研究…………………………………………15
2-7-1 固相法……………………………………………………………15
2-7-2 含浸法……………………………………………………………15
第三章 實驗方法及步驟………………………………………………19
3-1 實驗用起始原料……………………………………………………19
3-2 合成粉末之命名……………………………………………………20
3-3 光觸媒粉末之製……………………………………………………20
3-3-1 InMO4(M=Nb, Ta)光觸媒粉末之製備………………………20
3-3-2 In0.9Ni0.1MO4光觸媒粉末之製備………………………………21
3-4粉末性質檢測及分析方法…………………………………………22
3-5 觸媒分解特性的量測………………………………………………25
第四章 結果與討論……………………………………………………34
4-1 粉末之結晶相分析…………………………………………………34
4-1-1 InMO4(M = Nb, Ta)相鑑定……………………………………34
4-1-2 In1-xNixTaO4光觸媒粉末………………………………………34
4-1-3 結晶粒徑(crystallite size)……………………………………35
4-1-4 繞射峰繞射角度之變化與晶格常數之改變……………………36
4-2 粒子型態分析………………………………………………………37
4-3 比表面積分析………………………………………………………37
4-4 吸收光譜測試………………………………………………………38
4-5 氣象層析檢測………………………………………………………38
4-6 水分解測試…………………………………………………………39
4-6-1 反應溫度對觸媒效率之影響……………………………………40
4-6-2 �狟鑞i的量對觸媒粉末分解效率之影響………………………40
4-6-3 製備方法對光觸媒粉末分解效率之影響………………………41
第五章 結論……………………………………………………………64
參考文獻………………………………………………………………66
[1] K. Honda, A. Fujishima, “Electrochemical photolysis of water at a semiconductor
  electrode”, Nature, 238, 37-38 (1972).
[2] N. Serpone, “Brief introductory remarks on heterogeneous photocatalysis”, Solar
  Energy Materials and Solar Cells, 38, 369-379 (1995).
[3] M. I. Litter, “Review Heterogeneous photocatalysis transition metal ions in
  photocatalytic systems”, Applied Catalysis B: Environmental, 23, 89-114 (1999).
[4] 謝永旭, “光催化處理程序”, 工業污染防治, 56, 173-191 (1995).
[5] A. Mills and S. Le Hunte, “An overview of semiconductorphotocatalysis”,
  Journal of Photochemistry and Photobiology A: Chemistry, 108, 1-35 (1997).
[6] Zou ZG, Ye JH, Sayama K, Arakawa H, “Direct splitting of water under visible
  light irradiation with an oxide semiconductor photocatalyst”, Nature, 414, 625-627
  (2001).
[7] 賴政國, “生化消毒劑之淺談比較”, 核生化防護季刊, 76(5) (2003).
[8] 王志光, “以二氧化鈦為主的可見光觸媒發展與基本原理”, 工業材料雜誌,
  201, 155-163 (2003)
[9] 羅靖堯, “利用超臨界流體製備氧化鋅奈米粒子及其抗菌能力研究”,
  成功大學碩士論文92年畢業
[10] Gouv�鎙 Carlos A. K., Wypych, Fernando, Moraes Sandra G., Dur�鴨 Nelson,
  Peralta-Zamora Patricio, “Semiconductor-assisted photodegradation of lignin,
  dye, and kraft effluent by Ag-doped ZnO“, Chemosphere, 40(4), 427-432
  (2000).
[11] Ashokkumar M., “An overview on semiconductor particulate systems for
  photoproduction of hydrogen”, International Journal of Hydrogen energy, 23(6),
  427-438 (1998)
[12] Liu Bi-Jin, Torimoto Tsukasa, Yoneyama Hiroshi, “Photocatalytic reduction of
  CO2 using surface-modified CdS photocatalysts in organic solvents”, Journal of
  Photochemistry and Photobiology A: Chemistry, 113(1), 93-97 (1998)
[13] Akihiko Kudo, Hideki Kato, Seira Nakagawa, “Water Splitting into H2 and O2
  on New Sr2M2O7 ( M = Nb and Ta ) Photocatalysts with Layered Perovskite
  Structures: Factors Affecting the Photocatalytic Activity”, Journal of
  physical chemistry B, 104(3), 571-575 (2000)
[14] R. Asaha, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-Light
  Photocatalysis in Nitrogen-Doped Titanium Oxides”, Science, 293(5528),
  (2001).
[15] Takeshi Morikawa, Ryoji Asahi, Koyu Aoki, Takeshi Ohwaki, Kenichi Suzuki,
  Hideyuki Masaki, Yasunori Taga, “Nitrogen-Doped Titanium Dioxide
  Photocatalyst for Visible Light Applications”, JFCA.
[16] Clemens Burda, Yongbing Lou, Xiaobo Chen, Anna C. S. Samia, John Stout,
  James L. Gole, “Enhanced Nitrogen Doping in TiO2 Nanaparticles”, Nano
  letters, 3 (8), 1049-1051 (2003).
[17] S. Mozia, M. Tomaszewska, B. Kosowska, et al., “Decomposition of nonionic
  surfactant on a nitrogen-doped photocatalyst under visible-light irradiation”,
  applied catalysis B-Environmental, 55 (3), 195-200 (2005).
[18] H. Irie, Y. Watanabe , K. Hashimoto, “Carbon-doped anatase TiO2 powders as a
  visible-light sensitive photocatalyst”, Chemistry letters, 32 (8), 772-773 (2003).
[19] T. Ohno , T. Tsubota, M. Toyofuku , et al., “Photocatalytic activity of a TiO2
  photocatalyst doped with C4+ and S4+ ions having a rutile phase under visible
  light”, Catalysis letters, 98 (4), 255-258 (2004).
[20] Liu HY, Gao L, “S-doped rutile TiO2 visible-light activated photocatalyst by in
  situ wet chemical synthesis method”, Journal of inorganic materials, 20 (2),
  470-474 (2005).
[21] Y. Sakatani , H. Ando , K. Okusako , et al., “Metal ion and N co-doped TiO2 as
  a visible-light photocatalyst”, Journal of materials research, 19 (7), 2100-2108
  (2004).
[22] Jinhua Ye, Zhigang Zou, Akiyuki Matsushita, “A novel series of water splitting
  photocatalysts NiM2O6 ( M = Nb, Ta ) active under visible light”, International
  Journal of Hydrogen Energy, 28, 651-655 (2003).
[23] A. Kudo, M. Sekizawa, “Photocatalytic H2 evolution under visible light
  irradiation on Ni-doped ZnS photocatalyst”, Chemical communications, 15,
  1371-1372 (2000).
[24] Hwang DW, Kim J, Park TJ, et al., “Mg-doped WO3 as a novel photocatalyst for
  visible light-induced water splitting”, Catalysis letters, 80 (1-2), 53-57 (2002).
[25] G. Hitoki, T. Takata, JN. Kondo, et al., “An oxynitride, TaON, as an efficient
  water oxidation photocatalyst under visible light irradiation (lambda <= 500
  nm)”, Chemical communications, 16, 1698-1699, (2002).
[26] M. Hara, J. Nunoshige, T. Takata, et al., “Unusual enhancement of H-2 evolution
  by Ru on TaON photocatalyst under visible light irradiation”, Chemical
  communications, 24, 3000-3001 (2003).
[27] S. Ito, KR. Thampi, P. Comte, et al., “Highly active meso-microporous TaON
  photocatalyst driven by visible light”, Chemical communications, 2, 268-270
  (2005).
[28] Zou ZG, Ye JH, Sayama K, Arakawa H, “Photocatalytic hydrogen and oxygen
  formation under visible light irradiation with M-doped InTaO4 ( M = Mn, Fe, Co,
  Ni and Cu ) photocatalysts”, Journal of Photochemistry and Photobiology A:
  Chemistry, 148, 65-69 (2002).
[29] H. Reiche, W. W. Dunn, A. J. Bard, “Heterogeneous photocatalytic and
  photosynthetic deposition of copper on Titanium dioxide and tungsten(VI) oxide
  powders”, Journal of physical chemistry, 83, 2248 (1979).
[30] N. Buhler, K. Meier, J. F. Reber, “Photochemical hydrogen production with
  cadmium sulfide suspensions”, Journal of physical chemistry, 88, 3261 (1984).
[31] P. Maruthamuthu, M. Ashokkumar, “Doping effects of transition metal ions on
  the photosensitization of WO3 particles ”, Solar Energy Materials, 17, 433
  (1988).
[32] P. Maruthamuthu, M. Ashokkumar, “Hydrogen generation using Cu(II)/WO3
  and oxalic acid by visible light”, International Journal of Hydrogen Energy, 13,
  677 (1988).
[33] P. Maruthamuthu, M. Ashokkumar, “Hydrogen production with visible light
  using metal loaded-WO3 and MV2+ in aqueous medium”, International Journal
  of Hydrogen Energy, 14, 275 (1989).
[34] T. Sakata, K. Hashimoto, T. Kawai, “Catalytic properties of ruthenium oxide on
  n-type semiconductors under illumination”, Journal of physical chemistry, 88,
  5214 (1984).
[35] M. Taquikhan, R. C. Bhardwaj, C. Bhardwaj, “Photodecomposition of H2S by
  silver doped cadmium sulfide and mixed sulfides with ZnS ”, International
  Journal of Hydrogen Energy, 13, 7 (1988).
[36] D. H. M. W. Thewissen, A. H. A. Tinnemans, M. E. Reinten, K. Timmer,
  A. Mackor, Nouveau Journal de Chimie, 7, 191 (1983).
[37] Y. Nosaka, Y. Ishizuka, H. Miyama, Berichte der Bunsen-Gesellschaft fur
  Physikalische Chemie, 90, 1199 (1986).
[38] J. Kobayashi, K. Kitaguchi, H. Tanaka, H. Tsuiki, A. Ueno, Journal of the
  Chemical Society. Faraday Transactions I, 83, 1395 (1987)
[39] A. Sobczynski, A. J. Bard, A. Champion, M. A. Fox, T. Mallouk, S. E. Webber,
  J. M. White, “Photoassisted hydrogen generation: platinum and cadmium sulfide
  supported on separate particles”, Journal of physical chemistry, 91, 3316 (1987).
[40] Zou ZG, Ye JH, Arakawa H, “Effect of Ni substitution on the structure and
  photocatalytic activity of InTaO4 under visible light irradiation”, Journal of
  Materials Research, 17(6), 1419 (2002)
[41] http://www.chemtech.com.tw/Column.php?mode=detail&id=75
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top