跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 18:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:要之勤
研究生(外文):Chih-Chin Yao
論文名稱:MgSiO3:Eu3+螢光粉體之製備及其光性質之研究
論文名稱(外文):Synthesis and Luminescence Properties of MgSiO3:Eu3+ Phosphors
指導教授:黃啟祥黃啟祥引用關係
指導教授(外文):Chii-Shyng Hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:76
中文關鍵詞:MgSiO3發光UV溶膠-凝膠法紅色螢光粉
外文關鍵詞:UVluminescenceMgSiO3redphosphorsol-gel method
相關次數:
  • 被引用被引用:8
  • 點閱點閱:622
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:0
  近紫外光(Near ultra-violet,NUV)搭配螢光粉的方法是目前白光發光二極體(White-light LED,WLED)發展的主要課題之一,其中所使用的螢光粉中,又以紅色光譜區效率最待提升。本研究採溶膠-凝膠法合成MgSiO3:Eu3+紅色螢光粉體,檢討熱處理條件及摻雜物添加量對合成粉體之微結構以及於383 nm近紫外光的激發光源下發光特性之影響。
  
  研究結果顯示,於800℃煆燒2 h合成之MgSiO3:Eu3+ 12 mole%螢光粉體,以613 nm為發射波長時,其吸收或激發波長介於350 ~ 420 nm。以383 nm為激發光源時,此合成之螢光粉體,其發射強度是隨煆燒溫度、持溫時間、Eu3+摻雜濃度以及鈉離子添加量等的增加而增加,且於800℃煆燒4 h及6 mole%鈉離子添加量有相對較強之發射強度。合成之MgSiO3:Eu3+ 12 mole%螢光粉體,其相對發射強度會受研磨處理而降低;此強度劣化現象可再藉適當之熱處理而回復其部分之發射強度。
 The development of white-light LED in near-UV region with phosphors is one of the significant topics recently. However, the efficiency improvement at red interval is specially emphasized. In this study, synthesis of MgSiO3:Eu3+ phosphor via sol-gel method was investigated. Effects of calcination conditions, contents of Eu3+ and Na+ on microstructure and photoluminescence (PL) properties by 383 nm pumping source of synthesized phosphors were also discussed.
  
 The results show the absorption or excitation wavelength of MgSiO3:Eu3+ 12 mole% phosphor is between 350 ~ 420 nm as the emission peak is at 613 nm. Relative emission intensity of MgSiO3: Eu3+ x mole% phosphors is increased with the increase of calcination temperature, holding time and the contents of Eu3+ and Na+ doped. The relative emission intensity of MgSiO3:Eu3+ 12 mole% phosphor decreases after grinding process, and the intensity can be recovered by post heat treatment at 800℃.
MgSiO3, red, phosphor, UV, luminescence, sol-gel method
中文摘要………………………………………………………………………Ⅰ
英文摘要………………………………………………………………………Ⅱ
誌謝……………………………………………………………………………Ⅲ
目錄……………………………………………………………………………Ⅳ
表目錄…………………………………………………………………………Ⅶ
圖目錄…………………………………………………………………………Ⅷ
第一章 緒論…………………………………………………………………1
第二章 理論基礎與文獻回顧………………………………………………5
2-1螢光材料分類………………………………………………………………5
2-2 無機螢光材料之組成……………………………………………………5
2-2-1 螢光材料之主體材料…………………………………………………5
2-2-2 螢光材料之摻雜物……………………………………………………6
2-3 稀土離子的特性…………………………………………………………7
2-3-1 稀土離子之電子躍遷…………………………………………………7
2-3-2 稀土離子的發光特性…………………………………………………7
2-4 螢光材料之發光機制……………………………………………………8
2-4-1 LaPorte選擇律………………………………………………………8
2-4-2 自旋選擇律……………………………………………………………8
2-4-3 螢光材料之激發與發射………………………………………………9
2-5 螢光體性質……………………………………………………………10
2-5-1 發光亮度與濃度效應………………………………………………10
2-5-2 電子雲擴張效應……………………………………………………11
2-5-3 晶格場理論…………………………………………………………11
2-5-4 史托克位移…………………………………………………………12
2-6 色彩簡介………………………………………………………………14
2-6-1 視覺敏感度…………………………………………………………14
2-6-2 CIE色度座標…………………………………………………………14
2-6-3 色溫…………………………………………………………………16
2-6-4 演色性與照明效率…………………………………………………16
2-7溶膠-凝膠法……………………………………………………………17
2-7-1溶膠-凝膠法反應機構………………………………………………17
2-7-2溶膠-凝膠法的原理……………………………………………………18
2-7-3 溶膠-凝膠法的優點………………………………………………19
2-8 擴散理論………………………………………………………………20
第三章 實驗方法及步驟……………………………………………………33
3-1 實驗用起始原料………………………………………………………33
3-2 實驗流程………………………………………………………………34
3-2-1 起始原料配比………………………………………………………35
3-2-2 混合、凝膠化及乾燥………………………………………………35
3-2-3 煆燒及研磨處理……………………………………………………35
3-3性質分析及實驗設備……………………………………………………36
3-3-1 X-RAY繞射儀…………………………………………………………36
3-3-2 熱重熱差分析………………………………………………………36
3-3-3傅立葉轉換紅外線吸收光譜儀………………………………………36
3-3-4場發射型掃瞄式電子顯微鏡…………………………………………36
3-3-5高解析穿透式電子顯微鏡……………………………………………36
3-3-6光致發光光譜儀………………………………………………………37
3-4 粉體粒度分佈之量測…………………………………………………37
3-5 發光特性之量測………………………………………………………37
第四章 結果與討論…………………………………………………………40
4-1 粉末之特性……………………………………………………………40
4-1-1 前驅物之熱重熱差分析……………………………………………40
4-1-2 粉末之FT-IR分析……………………………………………………40
4-1-3粉末之微結構…………………………………………………………40
4-2燒結條件對MgSiO3:Eu3+光致發光現象之影響……………………………41
4-2-1結晶化對MgSiO3:Eu3+激發與發射現象之影響………………………41
4-2-2 煆燒溫度對MgSiO3:Eu3+光致發光現象之影響……………………43
4-2-3 持溫時間對MgSiO3:Eu3+光致發光現象之影響……………………44
4-3 活化劑添加量對MgSiO3:Eu3+光致發光現象之影響…………………44
4-4 鈉離子添加量對MgSiO3:Eu3+螢光粉之影響…………………………45
4-4-1 鈉離子添加量對MgSiO3:Eu3+粒子型態之影響……………………45
4-4-2 鈉離子添加量對MgSiO3:Eu3+光致發光現象之影響………………46
4-5 研磨過程對MgSiO3:Eu3+螢光粉之影響………………………………46
4-5-1研磨過程對MgSiO3:Eu3+粒子型態之影響……………………………46
4-5-2研磨處理對MgSiO3:Eu3+光致發光現象之影響………………………47
4-5-3熱處理對研磨後之MgSiO3:Eu3+粒子型態之影響……………………47
4-5-4熱處理對研磨後之MgSiO3:Eu3+光致發光現象之影響………………47
第五章 結論…………………………………………………………………71
第六章 未來展望……………………………………………………………72
參考文獻………………………………………………………………………73
[1]楊素華, 螢光粉在發光上的應用, 科學發展, 57, 66 (2002)
[2]劉如熹, 紀喨勝, 紫外光發光二極體用螢光粉介紹, 全華科技圖書股份有限公司
(1993)
[3]日亞化學工業股份有限公司(日本), 發光裝置及顯示裝置, 中華民國專利公告號
383508 (1997); 日亞化學工業股份有限公司(日本), 發光裝置, 中華民國專利公告號
541722 (2002)
[4]http://www.bio.im.hiroshima-cu.ac.jp/~cie1/ , CIE Division 1 Vision and
Color
[5]CIE Division 1 Vision and Color, Activity Report (2004)
[6]工研院光電所, 白光LED技術研討會(二), 工研院光電所九十三年度經濟部工業局光電
技術人才培訓計畫講義(2004)
[7]C. C. Lin, “Pressure-Induced Polymorphism in Enstatite (MgSiO3) at Room
Temperature: Clinoenstatite and Orthoenstatite,” Journal of Physics and
Chemistry of Solids, 65, 913-921 (2004)
[8]D. Dobson, “Oxygen Ionic Conduction in MgSiO3 Perovskite,” Physics of The
Earth and Planetary Interiors 139, 55-64 (2003)
[9]X. J. Wang, D. Jia, and W. M. Yen, “Mn2+ Activated Green, Yellow, and Red
Long Persistent Phosphors,” Journal of Luminescence, 102-103, 34-37(2003)
[10]A. Douy, “Aqueous Syntheses of Forsterite (Mg2SiO4) and Enstatite
(MgSiO3),” Journal of Sol-Gel Science and Technology, 24, 221-228 (2002)
[11]X. Fan, M. Wang, Y. Yu, and Q. Wu, “Crystallization Process of MgSiO3 Gel
and Influence of Crystallization on Luminescence of Eu3+ Ions,” Journal
of Physics and Chemistry of Solids, 57, 1259-1262 (1996)
[12]X. Fan, M. Wang, and Z. Wang, “Spectroscopic Studies of Rare Earth Ions
in MgSiO3 Gel-Derived Crystals,” Materials Science and Engineering: B,
47, 252-256 (1997)
[13]G. Blasse and B.C. Grabmaier, “Luminescence Materials,” Springer-Verlag,
New York (1994)
[14]H. P. Kallmann and G. M. Spruch, Luminescence of Organic and Inorganic
Materials, John Wiley and Sons, Inc., New York (1962)
[15]R. C. Ropp, Luminescence and the Solid State, Amsterdam, Boston (1991)
[16]J. E. Yang, The Application and Investigation of Luminescence Materials in
Electronic Industry, Technical Report of ITRI, Hsinchu, Taiwan, (1992)
[17]M. D. Galanin, Luminescence Centers of Rare Earth Ions in Crystal
Phosphors, Nova Science Publishers, New York (1988)
[18]S. Cotton, Lanthanides and Actinides, Macmillan, London (1990)
[19]A. Meijerink, “Experimental Techniques,” Luminescence of Solids, D. R.
Vij (editor), Plenum Press, New York(1998)
[20]祝大昌譯, 分子發光分析法, 復旦大學出版社 (1985)
[21]H. Yamamoto, Physical Chemistry-6th, Oxford University Press, Tokyo (1998)
[22]B. E. Douglas, D. H. McDaniel, and J. J. Alexander, Concepts and Models of
Inorganic Chemistry-3rd, John Wiley and Sons, Inc., New York (1994)
[23]A. H. Kitai, Solid State Luminescence, Chapman and Hall, New York (1993)
[24]P. W. Atkins, Physical Chemistry-6th, Oxford University Press, Tokyo (1998)
[25]工研院, 材料產業暨稀土材料發展研討會論文集, 工研院編印 (1994)
[26]A. Beiser, Concepts of Modern Physics, McGraw-Hill Companies, Inc.,
International Edition (2003)
[27]D. L. Perry and S. L. Phillips, Handbook of Inorganic Compounds, CRC
Press, Boca Raton (1995)
[28]Phosphor Research Society, Phosphor Handbook, CRC Press, New York (1999)
[29]蘇鏘, 稀土元素, 清華大學出版社, 北京 (2000)
[30]R. W. G. Hunt, Measuring Colour, Fountain Press, England (1998)
[31]H. Rossotti, Colour, Princeton University Press, New Jersey (1983)
[32]許招庸, 現代照明實務, 全華科技圖書 (1998)
[33]W. A. Thornoton, “Luminosity and Color-Rendering Capability of White
Light,” Journal of the Optical Society of America, 6, 1155 (1971)
[34]T. Justel, H. Nikol, and C. Ronda, “New Developments in the Field of
Luminescent Materials for Lighting and Displays,” Angewandte Chemie
International Edition, 37, 3084 (1998)
[35]M. Koedam and J. Opstelten, “Measurement and Computer-Aided Optimization
of Spectral Power Distributions,” Lighting Research and Technology, 3,
205 (1971)
[36]B. Jirhennsons and M. E. Straumanis, Colloid Chemistry, McMillan Co., New
York (1962)
[37]陳慧英, “溶膠凝膠法在薄膜製備上之應用”, 化工技術, 80, 11 (1999)
[38]J. Livage and M. Henry, Ultrastructure Processing of Advanced Ceramics (J.
D. Mackenzie and D. R. Ulrich, eds.), John Wiley and Sons, Inc., New York
(1988)
[39]C. J. Binker and G. W. Scherer, “Sol-gel-Glass:I. Gelation and Gel
Structure,” Journal of Non-Crystalline Solids, 70, 301-322 (1985)
[40]D. C. Bradley, R. C. Mehrotra, and D. P. Gaur, Metal alkoxide, Academic
Press, London (1978)
[41]J. Zarzycki and J. Phalipon, “Synthesis of Glasses Form Gels:The Problem
of Monolithic Gels,” Journal of Materials Science, 17, 3371-3379 (1982).
[42] M. Yu, J. Lin, and S. B. Wang, “Sol-gel Derived Silicate Oxyapatite
Phosphor Films Doped with Rare Earth Ions,” Journal of Alloys and
Compounds, 344, 212-216 (2002)
[43]J. Banga, “Combustion Synthesis of Eu3+, Tb3+ and Tm3+ Doped Ln2O2S
(Ln=Y, La, Gd) Phosphors,” Journal of Luminescence, 106, 177-185 (2004)
[44]W. Di, “Preparation, Characterization and VUV Luminescence Property of
YPO4: Tb Phosphor for a PDP,” Optical Materials, 27, 1386-1390 (2005)
[45]A. R. Lakshmanan1, “Luminescence in CaSO4 : Dy Phosphor -Dependence on
Grain Agglomeration, Sintering Temperature, Sieving and Washing,” Journal
of Physics D: Applied Physics, 35, 386-396 (2002)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊