跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 15:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉柏毅
研究生(外文):Po-Yi Yeh
論文名稱:金屬基材於液態無鉛銲錫中之溶解行為
論文名稱(外文):The Dissolution Behavior of Metal Substrates in Molten Lead-Free Solders.
指導教授:林光隆
指導教授(外文):K. L. Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:99
中文關鍵詞:溶解界面反應無鉛銲錫介金屬化合物錫鋅銲錫界面反應
外文關鍵詞:DissolutionInterfacial ReactionSn-Zn Solderlead-free solderIntermetallic CompoundIMC
相關次數:
  • 被引用被引用:4
  • 點閱點閱:420
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
  本研究係探討金屬基材在熔融銲錫合金中的溶解行為。銲錫在電子構裝技術裡被廣泛的使用在電子元件之接點處,而金屬基材則當作潤濕層以供接合。在迴銲、波銲、浸鍍等過程中,金屬層與熔融銲錫接觸,金屬層會發生溶解的行為,並與銲錫發生界面反應生成介金屬化合物,達到潤濕與接合的目的。若金屬的溶解速率太快,則會生成大量介金屬化合物,造成銲點的可靠度、機械強度、電傳導率等性質變差。
  
  此外,因環保的問題愈來愈受重視,含鉛銲錫是有害的,故本研究探討銅、銀金屬基材於Sn、Sn-3.5Ag、Sn-4Ag-0.5Cu、Sn-8.6Zn 及Sn-8.55Zn-0.5Ag-0.1 Al-0.5Ga 等無鉛銲錫中的溶解行為並與傳統Sn-37Pb 銲錫比較。

  其溶解數據分析結果顯示,銅、銀基材在300oC、350oC、400oC於Sn、Sn-37Pb、Sn-3.5Ag、Sn-4Ag-0.5Cu 均呈現線性的溶解行為;基材於Sn-8.6Zn 及Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga 之初期反應,也呈現線性的溶解行為,在浸漬時間增加後,其呈現拋物線的溶解行為。

  各溫度下,銅基材於各銲錫中的溶解速率遞減順序為Sn > SnAg >SnAgCu > SnPb >> SnZn SnZnAgAlGa ≒ ;而銀基材於各銲錫溶解速率則為Sn > SnAg > SnPb > SnAgCu > SnZn SnZnAgAlGa ≒ ,且基材溶解速率與浸漬溫度成正比。而銅、銀基材於Sn-8.6Zn 及Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga 溶解的活化能值大於基材於其他銲錫(Sn、Sn-37Pb、Sn-3.5Ag、Sn-4Ag-0.5Cu)中。

  基材溶解速率的差異原因可由界面介金屬化合物型態和基材於熔融銲錫中之溶解度及熔融銲錫其中之基材金屬濃度來加以解釋。銅、銀基材於熔融錫鋅系銲錫合金(Sn-8.6Zn 及Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga) 溶解速率相當慢的原因,為其界面型態的不同,Cu-Zn,Ag-Zn 介金屬化合物以層狀的型態存在於固液界面,為有效的擴散阻礙層,可阻擋基材的溶解;而銅、銀基材在Sn、
SnAg、SnAgCu、SnPb 的溶解速率較於錫鋅系銲錫快,則是因為其介金屬化合物Cu-Sn,Ag-Sn 呈現較薄的扇貝狀型態,使得基材能夠經由溝槽快速的擴散進入銲錫中。而基材於Sn、SnAg、SnAgCu、SnPb的溶解速率差異,可由銲錫對基材溶解度及基材於銲錫中的濃度解釋得知,當基材於銲錫中的溶解度越大及基材於其中濃度越低,則溶解速率越快;反之則越慢。銀基材於400oC,溶解速率劇增的原因為固液界面的Ag-Zn 介金屬化合物呈現珊瑚礁狀的型態所致,此提供了銀基材快速擴散進入銲錫的路徑。
Abstract
 The present work focused on the dissolution behavior between metal substrates and molten solders. This study investigated the dissolution
behavior of Cu and Ag substrates in molten Sn-4.0Ag-0.5Cu, Sn-8.6Zn and Sn-8.55Zn -0.5Ag-0.1Al-0.5Ga lead-free solders as well as in Sn-37Pb solder for comparison at 300, 350, and 400oC.

 Results show that the dissolution behavior of Cu and Ag substrates in Sn、Sn-37Pb、Sn-3.5Ag、Sn-4Ag-0.5Cu follows linear kinetics. The early
stages of dissolution of Cu and Ag substrates in Sn-8.6Zn and Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga follow linear kinetics too. As dipping process surpasses the early stage, the dissolution behavior follows parabolic kinetics.

 The dissolution rate of Cu in molten solders decreases in the order of Sn, SnAg, SnAgCu, Sn-Pb, Sn-Zn based solders (Sn-8.6Zn and Sn-
8.55Zn-0.5Ag-0.1Al-0.5Ga), and that of Ag decreases as Sn, SnAg, Sn-Pb, SnAgCu, and then Sn-Zn based solders at 300, 350, and 400oC.The activation energy of dissolution of Cu and Ag in Sn-8.6Zn and Sn-8.55Zn-0.5Ag-0.1Al-0.5Ga solders are higher than in the others (Sn、
Sn-37Pb、Sn-3.5Ag、Sn-4Ag-0.5Cu).

 The distinct order of dissolution rate can be rationalized by interfacial IMC morphologies, the solubility of substrates in solders, and the
substrate concentration in solders. As interfacial reaction occurs between
Sn-Zn based solders and substrates (Cu and Ag), it gives rise to the formation of Cu-Zn and Ag-Zn IMCs respectively. The morphologies of
Cu-Zn and Ag-Zn (AgZn and Ag5Zn8) IMCs are compact layers. This compact layer can be viewed as a diffusion barrier which slows down the
dissolution of substrates. With regard to the interfacial reactions between
Cu and Ag as well as solders, Cu-Sn and Ag-Sn IMCs are formed
respectively. The morphologies of Cu-Sn and Ag-Sn IMCs are scallop. The grooves, which exist in the scallop, act as a fast dissolution path for
substrates. The different order of dissolution rate in Sn、Sn-37Pb、 Sn-3.5Ag、Sn-4Ag-0.5Cu can be attributed to the difference between
solubility and substrate concentration in the solders. At 400oC, the coral reef structure of Ag-Zn IMCs results in the enhancement in dissolution rate of Ag in Sn-Zn based solders.
總目錄
第壹章 緒論................................................ 1
1-1 電子構裝技術簡介....................................... 1
1-2 無鉛銲錫之規範......................................... 3
1-3 無鉛銲錫之性質......................................... 3
1-3-1 純錫 (Sn) ........................................... 5
1-3-2 錫銀共晶銲錫 (Sn-3.5Ag)............................. 10
1-3-3 錫銀銅銲錫 (Sn-XAg-YCu)............................. 10
1-3-4 共晶錫鋅銲錫 (Sn-9Zn) .............................. 11
1-3-5 錫鋅系列銲錫........................................ 11
1-4 金屬基材於液態銲錫中之溶解行為........................ 14
1-4-1 金屬基材於錫鉛銲錫之溶解行為........................ 14
1-4-2 金屬基材於無鉛銲錫的溶解行為........................ 16
1-5 研究目的.............................................. 19
第二章 實驗方法與步驟..................................... 21
2-1 實驗構想.............................................. 21
2-2 實驗材料的準備........................................ 21
2-2-1 無鉛銲錫的配製...................................... 21
2-2-2 金屬基材前處理...................................... 21
2-3 基材溶解量的量測...................................... 24
2-4 基材與銲錫界面反應的觀察.............................. 30
第三章 結果與討論......................................... 31
3-1 溶解速率之分析........................................ 31
3-2 銅基材之溶解速率...................................... 31
3-2-1 銅基材之溶解速率分析................................ 31
3-2-2 銅基材溶解之活化能.................................. 36
3-2-3 銅溶解速率差異原因.................................. 36
3-3 銀基材之溶解速率...................................... 41
3-3-1 銀基材之溶解速率分析................................ 41
3-3-2 銀基材溶解之活化能.................................. 49
3-3-3 銀溶解速率差異原因.................................. 49
3-4 銅基材在液態銲錫溶解之界面反應與分析.................. 53
3-4-1 銅基材與純Sn 之界面反應............................. 55
3-4-2 銅基材與SnAg 之界面反應............................. 55
3-4-3 銅基材與SnAgCu 之界面反應........................... 58
3-4-4 銅基材與SnPb 之界面反應............................. 58
3-4-5 銅基材與SnZn 之界面反應............................. 58
3-4-6 銅基材與SnZnAgAlGa 之界面反應....................... 68
3-5 銀基材在液態銲錫溶解之界面反應與分析.................. 71
3-5-1 銀基材與純Sn 之界面反應............................. 71
3-5-2 銀基材與SnAg 之界面反應............................. 71
3-5-3 銀基材與SnAgCu 之界面反應........................... 71
3-5-4 銀基材與SnPb 之界面反應............................. 75
3-5-5 銀基材與SnZn 之界面反應............................. 75
3-5-6 銀基材與SnZnAgAlGa 之界面反應....................... 78
3-6 金屬基材溶解於液態銲錫之界面關係總結.................. 78
3-6-1 金屬基材溶解於液態銲錫時各界面之關係................ 83
3-6-2 銅、銀金屬基材溶解於Sn、SnAg、SnAgCu、SnPb 之界面... 83
3-6-3 銅、銀金屬基材溶解於SnZn、SnZnAgAlGa 之界面......... 83
第肆章 結論............................................... 88
參考文獻.................................................. 89
致 謝..................................................... 98
自 述..................................................... 99
參考文獻
1. J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI
Technology: Fundamentals, Practice and Modeling, Prentice Hall,
Inc., New Jersey, 2001, Chap. 2.
2. D. P. Seraphim, R. C. Lasky, and Che-Yu Li, Principles of
Electronic Packaging, McGraw-Hill, Inc., 1989, p. 3.
3. Deborah D. L. Chung, Material for Electronic Packaging,
Butterworth-Heinemann, 1995, pp. 3-4.
4. T. B. Massalski, Binary Alloy Phase Diagrams, William W. Scott,
Vol. 2, 1986, p. 1848.
5. Z. Miric and A. Grusd, Soldering & Surface Mount Technology,
Lead-free alloys, Vol. 10, 1998, p.19.
6. United States Environmental Protection Agency, “Emergency
Planing and Community Right-to-Know Act-Section 313:
Guidance for Reporting Releases and Other Waste Management
Quantities of Toxic Chemicals: Lead and Lead Compounds”,
USEPA 260-B-01-027, 2001.
7. Official Journal of the European Union, “Directive 2002/95/EC of
the European parliament and of the Council of 27 January 2003:
on the Restriction of the Use of Certain Hazardous Substances in
Electrical and electronic equipment”, 2003.
8. N. C. Lee, “Getting Reading for Lead-free Solder”, Soldering &
Surface Mount Technology, Vol. 9, 1997, pp. 65-69.
9. C. Lea. A, Scientific Guide to Surface Mount Technology,
Electrochemical Publication Ltd., GB-Port Erin, British Isles,
1989, pp. 378-379.
10. W. R. Lewis, Notes on Soldering, Tin Research Institute. 1961,
p61.
11. H. H. Manko, Solders and Soldering Third Edition, McGraw-Hill
Book Company, New York, p. 63.
12. A. G. Robert. and E.F. Morris, “Growth of η-phase Scallops and
Whisker in Liquid Tin-Solid Copper Reaction Couples”, JOM, Vol.
53, No. 6, 2001, pp.33-38.
13. K. N. Tu, “Cu/Sn interfacial Reactions: Thin-film Case versus
Bulk Case”, Materials Chemistry and Physics, Vol. 46, No. 2-3,
1998, pp. 217-223.
14. T. B. Massalski, Binary Alloy Phase Diagrams, William W. Scott,
Vol. 1, 1986, p. 71.
15. W. Yang and R. W. Messler, “Microstructure Evolution of Eutectic
Sn-Ag Solder Joints”, Journal of Electron. Mater., Vol. 23, No. 8,
1994, pp. 765-772.
16. M. Harada and R. Satoh, “Mechanical Characteristics of
96.5Sn/3.5Ag solder in Microbonding”, IEEE Trans. On Comp.,
Pac and Manu. Tech., Vol. 13, No. 4, 1990, pp. 736-742.
17. P. Biocca, “Global Update on Lead-Free Solders”, Surface Mount
Technology, Vol. 13, No. 6, 1999, p. 3.
18. T. Laine-Ylijoki, H. Steen and A. Forsten, “Development and
Validation of a Lead-Free Alloy for Solder Paste Application”,
IEEE Trans. On Comp., Pac and Manu. Tech., Part C, Vol. 20, No.
3, 1997, pp. 194-198.
19. V. I. Igoshev, J. I. Kleiman, D. Shangguan, S. Wong, and U.
Michon, “Fracture of Sn-3.5Ag solder Alloy under Creep”,
Journal of Electron. Mater., Vol. 29, No. 12, 2000, pp. 1356-1361.
20. J. Glazer, “Metallurgy of Low Temperature Pb-free Solders for
Electronic Assembly”, International Materials Reviews, Vol. 40,
No.2, 1995, pp.65-93.
21. D. R. Flanders, E. G. Jacobs, and R.F. Pinizzotto, “Activation
Energies of Intermetallic Growth of Sn-Ag Eutectic Solder on
Copper Substrates”, J. Electron. Mater., Vol. 26, No.7, 1997
pp.883-887.
22. K. S. Kim, S. H. Huh and K. Suganuma, “Effects of Fourth
Alloying Additive on Microstructures and Tensile Properties of
Sn-Ag-Cu Alloy and Joints with Cu”, Microelectronics Reliability,
Vol. 43, No. 2, 2003, pp. 259-267.
23. T. B. Massalski, Binary Alloy Phase Diagrams, William W. Scott,
Vol. 2, 1986, p. 2086.
24. de Kluizenaar, and E. E., “Surface Oxidation of Molten Soft
Solder: an Auger Study”, Journal of Vacuum Science &
Technology A: Vacuum, Surfaces, and Films, Vol. 1, No. 3, 1983,
pp. 1480-1485.
25. M. McCormack, and S. Jin, “Progress in the Design of New
Lead-Free Solders”, JOM, Vol. 45, No. 7, 1993, pp. 36-40.
26. S. Vaynman and M. E. Fine, “Development of Flux for Lead-Free
Solders Contain Zinc”, Scripta Materialia, Vol. 41, No. 12, 1999,
pp. 1269–1271.
27. K. Suganuma, K. Niihara, T. Shoutoku and Y. Nakamura,
“Wetting and interfacial microstructure between Sn-Zn binary
alloys and Cu”, Journal of Material Research, Vol. 13, No. 10,
1998, pp. 2859-2865.
28. K. L. Lin and C. L. Shih, “Wetting Interaction Between Sn-Zn-Ag
Solders and Cu”, J. Electron. Mater., Vol.32, No.2, 2003, pp.
95-100.
29. J. M. Song, G. F. Lan, T. S. Lui, and L. H. Chen, “Microstructure
and Tensile Properties of Sn-9Zn-xAg Lead-Free Solder Alloys”,
Scripta Materialia, Vol. 48, No. 8, 2003, pp. 1047-1051.
30. K. L. Lin. and T. P. Liu, “High Temperature Oxidation of a
Sn-Zn-Al Solder”, Oxid. Met., Vol. 50, No. 3-4, 1998, pp.255-267.
31. J.M. Song, N.S. Liu and K.L. Lin, “Microstructure, Thermal and
Tensile Properties of Sn-Zn-Ga Alloys”, Mat. Trans., Vol. 45, No.
3, 2004, pp. 776-782.
32. S. C. Cheng and K. L. Lin, “Microstructure and Mechanical
Properties of the Sn-8.55Zn-1Ag-XAl solder alloys”, Mat. Trans.,
submitted.
33. S. C. Cheng and K. L. Lin, “The Thermal Property of Lead-Free
Sn-8.55Zn-1Ag-XAl Solder Alloys and Their Wetting Interaction”,
J. Electron. Mater., Vol.31, No. 9, 2002, pp.940-945.
34. C. W. Huang and K. L. Lin, “Microstructures and Mechanical
Properties of Sn–8.55Zn–0.45Al–XAg Solders”, J. Material
Research, Vol. 18, No. 7, 2003, pp. 1528-1534.
35. C. W. Huang and K. L. Lin, “Wetting Properties of and Interfacial
Reactions in Lead-free Sn-Zn Based Solders on Cu and Cu Plated
with an Electroless Ni-P/Au Layer”, Mat. Trans., Vol. 45, No. 2,
2004, pp. 588-594.
36. K. L. Lin, K. I. Chen, and P. C. Shi, “A Potential Drop-In
Replacement for Eutectic Sn-Pb Solder - The Sn-Zn-Ag-Al-Ga
Solder”, J. Electron. Mater., Vol.32, No. 12, 2003, pp. 940-945.
37. K. L. Lin and K. I. Chen, “The Microstructures and Mechanical
Properties of the Sn-Zn-Ag-Al-Ga Solder Alloys-the Effect of Ga”,
J. Electron. Mater., Vol. 32, No. 10, 2003, pp. 1111-1116.
38. N. S. Liu and K. L. Lin, “Microstructure and Mechanical
Properties of Low Ga Content Sn–8.55Zn–0.5Ag–0.1Al–xGa
Solders”, Scripta Materialia, Vol. 52, No. 5, 2005, pp. 369-374.
39. A. Rahn, The Basics of Soldering, John Wiely & Sons, New York,
1993.
40. H. H. Manko, Solders and Soldering Third Edition, McGraw-Hill
Book Company, New York, p. 158.
41. B. A. Cook, I. E. Anderson, J. L. Harringa, and R. L. Terpstra,
“Effect of Heat Treatment on the Electrical Resistivity of
Near-Eutectic Sn-Ag-Cu Pb-Free Solder Alloys”, J. Electron.
Mater., Vol. 31, No. 11, 2002, pp. 1190-1194.
42. H. P. R. Frederikse, R. J. Fields, and A. Feldman, “Thermal and
Electrical Properties of Copper-Tin and Nickel-Tin Intermetallics”,
Journal of Apply Physics, Vol. 72, No. 7, 1992, pp. 2879-2882.
43. W. G. Bader, “Dissolution of Au, Ag, Pd, Pt, Cu and Ni in a
Molten Tin-Lead Solder”, Welding Research Supplement, 1969,
pp. 551-557.
44. M. A. H. Howes and Z. P. Saperstein, “The Reaction of Lead-Tin
Solders with Copper Alloys”, Welding Research Supplement,
1969, pp. 80-85.
45. Y. Shoji, S. Uchida, and T. Ariga, “Dissolution of Copper Cylinder
in Molten Tin under Dynamic Conditions”, Welding Research
Supplement, 1981, pp. 19-24.
46. M. N. Islam, Y.C. Chan , A. Sharif, and M.O. Alam,
“Comparative Study of the Dissolution Kinetics of Ni and
Electroless Ni-P by the Molten Sn3.5Ag0.5Cu Solder Alloy”,
Microelectronics Reliability, Vol. 43, No. 12, 2003, pp.
2031-2037.
47. A. Sharif, Y.C. Chan, “Dissolution Kinetics of BGA Sn-Pb and
Sn-Ag Solders with Cu Substrates During Reflow”, Materials
Science and Engineering B, Vol. 106, No. 2, 2004, pp. 126–131.
48. M. O. Alam, Y. C. Chan, K. N. Tu, “Effect of 0.5wt% Cu
Addition in Sn-3.5Ag% Solder on the Dissolution Rate of Cu
Metallization”, Journal of Applied Physics, Vol. 94, No. 12, 2003,
pp. 7904-7909.
49. V. I. Dybkov, “Interaction of Iron-Nickel Alloys with Liquid
Aluminum Part 1 Dissolution Kinetics”, J. Materials Science, Vol.
28, 1993, pp. 6371-6380.
50. H. H. Manko, Solders and Soldering Third Edition, McGraw-Hill
Book Company, New York, p. 63.
51. M. Abtew, and G. Selvaduray, “Lead-Free Solders in
Microelectronics”, Materials Science and Engineering R, Vol. 27,
No. 5-6, 2000, pp. 95-141.
52. C. A. Harper, Electronic Packaging and Interconnection
Handbook, McGraw-Hill, Inc., 1991, Chap. 10.
53. T. B. Massalski, Binary Alloy Phase Diagrams, William W. Scott,
Vol. 1, 1986, p. 965.
54. M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen, “New
Pb-free Solder Alloy with Superior Mechanical Properties”, Appl.
Phys. Lett., Vol. 63, No. 1, 1993, pp.15-17.
55. C. M. Miller, I. E. Anderson, and J. F. Smith, “A Viable Tin-Lead
Solder Substitute: Sn-Ag-Cu”, J. Electron. Mater., Vol. 23, No.7,
1994, pp.595-601.
56. M. Nishiura, A. Nakayama, S. Sakatani, Y. Kohara, K. Uenishi,
and K. F. Kobayashi, “Mechanical Strength and Microstructure of
BGA Joints Using Lead-Free Solders”, Mat. Trans., Vol. 43, No. 8,
2002, pp. 1802-1807.
57. B. J. Lee, N. M. Hwang, and H. M. Lee, “Prediction of Interface
Reaction Products Between Cu and Various Solder Alloys by
Thermodynamic Calculation”, Acta Mater., Vol. 45, No. 5, 1997,
pp. 1867-1874.
58. T. B. Massalski, Binary Alloy Phase Diagrams, William W. Scott,
Vol. 1, 1986, p. 981
59. A. Sharif, Y.C. Chan, R. A. Islam, “Effect of Volume in
Interfacial Reaction between Eutectic Sn-Pb Solder and Cu
Metallization in Microelectronic Packaging”, Materials Science
and Engineering B : Solid-State Materials for Advanced
Technology, Vol. 106, No. 2, 2004, pp. 120–125.
60. M. M. Antonijevic, Z. D. Jankovic, and M. D. Dimitrijevic,
“Kinetic of Chalcopyrite Dissolution by Hydrogen Peroxide in
Sulphuric Acid”, Hydrometallurgy, Vol. 71, No. 3-4, 2004, pp.
329-334.
61. K. –W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello,
and C. A. Handwerker, “Experimental and Thermodynamic
Assessment of SnAgCu Solder Alloys”, J. Electron. Mater. Vol. 29,
No. 10, 2000, pp. 1122-1136.
62. B. Prinze, A. Ueberschaer, and W.Iwanowski, “Copper Solubility
in Tin-Lead Soft Solder Alloys”, Metall, Vol. 44, No. 9, 1990, pp.
857-861.
63. Y. W. Yen and S. W. Chen, “Phase Equilibria of Ag-Sn-Cu Ternary
System”, J. Material Research, Vol. 19, No. 8, 2004, pp.
2298-2305.
64. B. J. Lee, N. M. Hwang, H. M. Lee, “Prediction of Interface
Reaction Products Between Cu and Various Solder Alloys by
Thermodynamic Calculation”, Acta Mater., Vol. 45, No. 5, 1997,
pp. 1867-1874
65. H. H. Manko, Solders and Soldering Third Edition, McGraw-Hill
Book Company, New York, p. 149.
66. T. H. Chuang, H.M. Wu, M.D. Cheng, S.Y. Chang, and S.F. Yen,
“Mechanisms for Interfacial Reactions between Liquid Sn-3.5Ag
Solders and Cu Substrates”, J. Electron. Mater., Vol. 33, No. 1,
2004, pp. 22-27.
67. D. Q. Yu, C. M. L. Wu, C. M. T. Law, L. Wang, and J. K. Lai,
“Intermetallic Compounds Growth between Sn-3.5Ag Lead-Free
Solder and Cu Substrate by Dipping Method”, Journal of Alloys
and Compounds, Vol. 392, No. 1-2, 2005, pp. 192-199.
68. H. K. Kim, and K. N. Tu, “Kinetic analysis of the soldering
reaction between eutectic SnPb alloy and Cu accompanied by
ripening”, Physical Review B, Vol. 53, No. 23, 1996, pp.
16027-16034.
69. R. Hultgren, P. D Desai, D. T. Hawkins, M. Gleioser, and K. K.
Kelley, Selected Values of Thermodynamic Properties of Binary
Alloys, Metals Park, OH: ASM, 1973, pp. 115-121.
70. R. Hultgren, P. D Desai, D. T. Hawkins, M. Gleioser, and K. K.
Kelley, Selected Values of Thermodynamic Properties of Binary
Alloys, Metals Park, OH: ASM, 1973, pp. 228-233.
71. R. Hultgren, P. D Desai, D. T. Hawkins, M. Gleioser, and K. K.
Kelley, Selected Values of Thermodynamic Properties of Binary
Alloys, Metals Park, OH: ASM, 1973, pp. 795-800.
72. R. Hultgren, P. D Desai, D. T. Hawkins, M. Gleioser, and K. K.
Kelley, Selected Values of Thermodynamic Properties of Binary
Alloys, Metals Park, OH: ASM, 1973, pp. 810-822.
73. J. M. Song, and K. L. Lin, “Double Peritectic Behavior of Ag-Zn
Intermetallics in Sn-Zn-Ag Solder Alloys”, Journal of Materials
Research, Vol. 19, No. 9, pp. 2719-2724.
74. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleioser, and K. K.
Kelley, Selected Values of Thermodynamic Properties of Binary
Alloys, Metals Park, OH: ASM, 1973, pp.103-111.
75. K. L. Lin , P. C. Liu and J. M. Song, ”Wetting Interaction between
Pb-free Sn-Zn Series Solders and Cu, Ag Substrates.”, The 54th
Electronic Components and Technology Conference, Las Vegas,
USA, June 1-4, 2004
76. G. P. Vassilev, E. S. Dobrev, S. K. Evtimova, and J. C. Tedenac,
“Studies of the Phase Equilibria in the Ag-Sn-Zn System”, Journal
of Alloys and Compounds, Vol. 327, No. 1-2, 2001, pp. 285-291.
77. D. Ma, W. D. Wang, and S. K. Lahiri, “Scallop Formation and
Dissolution of Cu-Sn Intermetallic Compound During Solder
Reflow”, Journal of Applied Physics, Vol. 91, No. 5, 2002, pp.
3312-3317.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top