跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/19 04:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林松榆
研究生(外文):Son-Yu Lin
論文名稱:聚芴系共聚物合成及在發光二極體之應用
論文名稱(外文):Synthesis of polyfluorene copolymers and their applications in PLED
指導教授:許聯崇
指導教授(外文):S. L. C. hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:90
中文關鍵詞:聚芴光激光電激光有機發光二極體共軛高分子塞吩
外文關鍵詞:polyfluorenepledelectroluminescencephotoluminescenceconjugated polymerthiophene
相關次數:
  • 被引用被引用:2
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
  Polyfluorene是發藍光的材料,具有高量子效率(光激發光和電激發光;PL & EL)、良好的熱穩定性、抗氧化能力、溶解度及易調整發光波長等特性,缺點是會有聚集還有分子間激發態(excimer)發光的問題產生,影響發光光色。我選擇兩種堅硬且低能階差的thiophene以及benzothiadiazole單體與fluorene共聚合後,利用Yamamoto的聚合方法,將fluorene單體分別與thiophene及benzothiadiazoe單體共聚合出poly(9,9-dioctyl-2,7-fluorene)(PDOF)、poly (9,9-dioctylfluorene- co-3-octylthiophene)( PFT )及poly( 9,9-dioctylfluorene-co-2,1,3-benzo- thiadiazole)(PFB)三種不同結構之可溶性共軛高分子,結構已由FTIR及1H-NMR圖譜鑑定。

  經由光激光(PL)光譜分析,發現共聚合物波長確實產生紅移現象,且未發現明顯由excimer所造成的影響,並經TGA及DSC分析發現,PFB的玻璃轉移溫度有上升,但PFT與PFB共聚物的熱裂解溫度反而下降。最後製作出雙層元件:ITO/PEDOT/Polymer/Ca-Al,在電場的作用下,進行電激光(EL)光譜與輝度量測(I-V-B)分析。
Abstract
 Polyfluorene and its derivatives(PFs) have the advantages of high efficient blue emission in both photoluminescence and electroluminescence, high thermal stability, good oxidative resistance, good solubility, and tunability of emission wavelength. However, the main drawbacks of (PFs), such as aggregation and/or excimers formation in the solid state, limit their uses in polymer light emitting diode(PLED). In this study, I copolymerized dioctylfluorene with octylthiophene or benzothiadiazole moieties, which have rigid backbone and lower band gap. Three kinds of soluble random conjugated copolymers comprised of dioctylfluorene and octylthiophene or benzothiadiazole were synthesized by Nickel-catalyzed Yamamoto coupling reaction. They are poly(9,9-dioctyl-2,7-fluorene)(PDOF), poly (9,9-dioctylfluorene-co-3- octyl-thiophene)(PFT) and poly(9,9-dioctyl-fluorene-co-benzothiadiazole) (PFB). All of the polymers were characterized by FT-IR and 1H-NMR.

 With the advantage of this research approach, I didn’t find aggregation or excimers formation by photoluminescence spectrometer analysis. I did find the red-shift in their photoluminescence spectra. By TGA and DSC analysis, I found that the glass transition temperature(Tg) of PFB increased, but the thermal degradation temperatures(T5d) of copolymers PFT and PFB decreased. Finally, I have fabricated a double layer device, ITO/ PEDOT/Polymer/Ca-Al, and measured their EL spectra and luminance parameters.
總目錄
摘要..........................................................................................................Ⅰ
Abstract.....................................................................................................Ⅱ
總目錄......................................................................................................Ⅲ
圖目錄......................................................................................................Ⅶ
表目錄......................................................................................................Ⅸ
Scheme目錄.............................................................................................Ⅹ
第一章 緒論..............................................................................................1
1-1. 前言................................................................................................1
1-2. 研究動機與目的............................................................................6
第二章 文獻回顧......................................................................................8
2-1. 共軛高分子聚合............................................................................8
2-2. 光激光與電激光原理..................................................................12
2-3. 分子間激發態..............................................................................16
2-4. 材料發光波長之調整..................................................................18
2-5. 發光元件之性質..........................................................................23
第三章 實驗製備及分析裝置................................................................26
3-1. 實驗藥品及儀器..........................................................................26
3-1-1. 藥品......................................................................................26
3-1-2. 儀器......................................................................................27
3-2. 材料及元件製備..........................................................................29
3-2-1. 單體合成..............................................................................29
3-2-1-1. 2,1,3-Benzothiadiazole合成.............................................29
3-2-1-2. 4,7-Dibromo-2,1,3-benzothiadiazole合成(DBBT)..........29
3-2-2. 高分子及其共聚合物合成..................................................30
3-2-2-1. Poly(9,9-dioctyl-2,7-fluorene)(PDOF).............................30
3-2-2-2. Poly(9,9-dioctylfluorene-co-3-octylthiophene)(PFT)......30
3-2-2-3. Poly(9,9-dioctylfluorene-co-2,1,3-benzothiadiazole)
(PFB) ................................................................................30
3-2-3. 發光二極體元件製備..........................................................33
3-2-3-1. ITO玻璃蝕刻...................................................................33
3-2-3-2. ITO玻璃清洗...................................................................33
3-2-3-3. 氧電漿處理.....................................................................38
3-2-3-4. 高分子塗佈.....................................................................38
3-2-3-5. 蒸鍍電極.........................................................................38
3-3. 分析儀器原理..............................................................................39
3-3-1. 紅外線光譜儀分析(FT-IR) .................................................39
3-3-2. 核磁共振光譜分析(NMR) ..................................................39
3-3-3. 凝膠滲透層析儀(GPC) .......................................................43
3-3-4. 熱重損失分析(TGA) ...........................................................44
3-3-5. 微差掃抽熱分析(DSC) .......................................................44
3-3-6. 環伏測量分析(CV) .............................................................45
3-3-7. 紫外光-可見光光譜吸收分析(UV-vis)...............................45
3-3-8. 螢光光譜分析(PL) ..............................................................45
3-3-9. 輝度量測分析(I-V-B)...........................................................46
3-3-10. 電激光光譜分析(EL).........................................................46
3-3-11. 高解析度場發射掃瞄式電子顯微鏡(HR FE-SEM).........47
3-3-12. 原子力顯微鏡(AFM).........................................................47
3-3-13. 元素分析儀(EA)................................................................49
第四章 結果與討論................................................................................50
4-1. 合成及結構鑑定分析..................................................................50
4-1-1. 單體之合成及結構鑑定分析..............................................50
4-1-2. 共軛高分子之合成及結構鑑定分析..................................51
4-1-2-1. 合成.................................................................................51
4-1-2-2. 傅立業紅外線光譜之分析( FT-IR )...............................51
4-1-2-3. 核磁共振光譜之分析( 1H-NMR )..................................54
4-2. 熱性質分析..................................................................................58
4-3. 環伏( CV )量測分析....................................................................62
4-4. 吸收( UV-Vis )光譜分析.............................................................66
4-5. 光激光( PL )光譜分析.................................................................68
4-5-1. 溶液態PL光譜分析.............................................................68
4-5-2. 薄膜態PL光譜分析.............................................................74
4-6. 電激光( EL )光譜分析................................................................76
4-7. 元件特性測試分析......................................................................76
第五章 結論............................................................................................86
第六章 參考文獻....................................................................................87






















圖目錄
圖1-1 常見的共軛高分子結構................................................................2
圖1-2 Anthracene、PEDOT與PSS結構................................................4
圖2-1 分子能階示意圖..........................................................................13
圖2-2 電激光原理圖..............................................................................15
圖2-3 化學結構影響發光波長的情形..................................................19
圖2-4 (a)電洞傳輸層及(b)電子傳輸層材料..........................................25
圖3-1 4,7-dibromo-2,1,3-Benzothiadiazole合成流程圖........................31
圖3-2 PDOF聚合流程圖........................................................................34
圖3-3. Ca-Al之EDS分析圖表..............................................................40
圖3-4 元件製作流程圖..........................................................................41
圖3-5 元件結構示意圖..........................................................................42
圖3-6 AFM裝置及其分析原理示意圖..................................................48
圖4-1 (a)PDOF,(b)PFT,(c)PFB之FT-IR分析圖譜.........................53
圖4-2 PDOF之1H-NMR分析圖譜.........................................................55
圖4-3 PFT之1H-NMR分析圖譜...........................................................56
圖4-4 PFB之1H-NMR分析圖譜............................................................57
圖4-5 (a)PDOF與(b)PFB之DSC分析圖譜..........................................59
圖4-6 PDOF、PFT及PFB之TGA分析圖譜.......................................60
圖4-7 Ferrocene之CV圖........................................................................64
圖4-8 PDOF、PFT及PFB之CV圖......................................................65
圖4-9 PDOF、PFT及PFB之吸收(UV-Vis)光譜...................................69
圖4-10 PDOF溶液態與薄膜態之光激光(PL)光譜...............................70
圖4-11 PFT之光激光(PL)光譜...............................................................71
圖4-12 PFB之光激光(PL)光譜..............................................................72
圖4-13 PDOF之電激光(EL)光譜...........................................................77
圖4-14 PFT之電激光(EL)光譜..............................................................78
圖4-15 PFB之電激光(EL)光譜..............................................................79
圖4-16 PDOF之輝度(I-V-B)量測分析圖...............................................83
圖4-17 PFT之輝度(I-V-B)量測分析圖..................................................84
圖4-18 PFB之輝度(I-V-B)量測分析圖..................................................85












表目錄
表2-1 取代基對發光波長及強度之影響..............................................21
表4-1. 三種共軛高分子之分子量列表.................................................52
表4-2 PDOF、PFT及PFB之Tg及T5d................................................61
表4-3 PDOF、PFT及PFB之HOMO、LUMO及Eg.........................67
表4-4 PDOF、PFT及PFB之吸收(UV-Vis)及光激光(PL)光譜比較..73

















Scheme目錄
Scheme. 1 Witting、FeCl3、Glish及Wessling合成化學反應式........10
Scheme. 2 Yamamoto、Suzuki、Heck及Stille合成化學反應式............11
Scheme. 3 4,7-dibromo-2,1,3-Benzothiadiazole合成化學反應式..........32
Scheme. 4 PDOF合成化學反應式.........................................................35
Scheme. 5 PFT合成化學反應式.............................................................36
Scheme. 6 PFB合成化學反應式.............................................................37
參考文獻
(1)H. Shirakawa, C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Phy. Rev. Lett. 1977, pp. 1098.
(2)Y.Ohmori, M. Uchida, K. Muro, K. Yoshino, Jpn. J. Appl. Phys., 1991, 30, L1941.
(3)X. Zhan, Y. Liu, X. Wu, S. Wang, D. Zhu, Macromolecules, 2002, vol.35, pp. 2529.
(4)N. S. Cho, D.-H. Hwang, J.-I. Lee, , B-J. Jung, H.-K. Shim, Macromolecules, 2002. vol. 35, pp. 1224.
(5)M. Kreyenschmidt, G. Klaerner, T. Fuhrer, J. Ashenhurst, S. Karg, W. D. Chen, V. Y. Lee, J. C. Scott, R. D. Miller, Macromolecules, 1998, 31, pp. 1099.
(6)G. Kla¨rner, M. H. Davey, W. D. Chen, J. C. Scott, R. D. Miller, Adv. Mater., 1998, 10, pp. 993.
(7)方麒榮,國立中山大學材料科學研究所,碩士論文,2003。
(8)H. Becker, H. Spreitzer, W. Kreuder, E. Kluge, H. Vestweber, H. Schenk and K. Treacher, Synth. Met., 2001, 122, pp. 105.
(9)For some examples of Wittig polymerization see (a) K.D.Gourley, C. P. Lillya, J. R. Reynolds and J. C. W. Chien, Macromolecules, 1984, 17, pp. 1025; (b) Z.-K. Chen, H. Meng, Y.-H Lai and W. Huang, Macromolecules, 1999, 32, pp. 4351; (c) T. Ahn, S.-Y. Song and H.-K. Shim, Macromolecules, 2000, 33, pp. 6764.
(10)K. Yoshino, S. Hayashi and R. Sugimoto, Jpn. J. Appl. Phys., 1984, 23, pp. 899.
(11)G. Tourillon and F. Garnier, J. Electro. anal. Chem., 1982, 135, pp. 173.
(12)F. Babudri, G. M. Farinola and F. Naso, J. Mater. Chem., 2004, 14, pp. 11.
(13)D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, Harcourt Brace & Co., 1998, pp. 357.
(14)S. F. Alvarado, P. F. Seidler, D. G. Lidzey, D. D. C. Bradley, Phys. Rev. Lett., 1998, 81, pp. 1082.
(15)J. M. Lupton, J. Klein, Synthetic Metals, 2003, 138, 233~236.
(16)W. Yang, J. Huang, C. Liu, Y. Niu, Q. Hou, R. Yang, Y. Cao, Polymer, 2004, 45, pp. 865.
(17)S. Gamerith, C. Gadermaier, U. Scherf, and E. J. W. List, phys. stat. sol, 2004, 201, No. 6, pp. 1132.
(18)M. Gaal, E. J. W. List and U. Scherf, Macromolecules, 2003, 36, pp. 4236.
(19)J. Jacob, J. Zhang, A. C. Grimsdale, K. Mullen, M. Gaal, E. J. W. List, Macromolecules, 2003, 36 ( 22 ), pp. 8240.
(20)(a) T. Forster, Ann. Physik, 1948, 2, pp. 55. (b) T. Forster, Disc. Faraday Soc., 1959, 27, pp. 7.
(21)D. L. Dexter, J. Chem. Phys., 1953, 21, pp. 836.
(22)Y. Chen, Y. Araki, J. Doyle, A. Strevens, O. Ito, and W. J. Blau, Chem. Mater. 2005, 17, pp. 1661~1666.
(23)M. Zhang, P. Lu, X. Wang, L. He, H. Xia, W. Zhang, B. Yang, L. Liu, M. yang, Y. Ma, J. Feng, D. Wang, and N. Tamai, J. Phys. Chem. B, 2004, 108, pp. 13185.
(24)(a) 翁文國、林振華;工業材料,156期,p 75,民88年。(b)H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater., 1999, 11, pp. 605.
(25)P. K. H. Ho, M. Granström, R. H. Friend, N. C. Greenham, Adv. Mater., 1998, 10, pp. 769.
(26)S. A. Carter, M. Angelopoulos, S. Karg, P. J. Brock, J. C. Scott, Appl. Phys. Lett., 1997, 70, pp. 2067.
(27)J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F. Cacialli, J. Appl. Phys., 1998, 84, pp. 6859.
(28)S. K. Sol, W. K. Choil, C. H. Chengl, L. M. Leung, C. F. Kwong, Appl. Phys. A, 1999, 68, pp. 447.
(29)F. Nüesch, E. W. Forsythe, Q. T. Le, Y. Gao, L. J. Rothberg, J. Appl. Phys., 2000, 87, pp. 7973.
(30)黃孝文,國立成功大學化學工程研究所,博士論文,2001。
(31)K. Pilgram, M. Zupan, R. Skiles, J. Heterocycl. Chem., 1970, 7, pp. 629.
(32)P. Herguth, X. Jiang, M. S. Liu, and A. K.-Y. Jen, Macromolecules 2002, 35, pp. 6094.
(33)C. Xia and R. C. Advincula, Macromolecules, 2001, 34, pp. 5854.
(34)N. S. Cho, D.-H. Hwang, B.-J. Jung, J. Oh, H. Y. Chu, H.-K. Shim, Synthetic Metals, 2004, 143, pp. 277.
(35)H.-J. Cho, B.-J. Jung, N. S. Cho, J. Lee, and H.-K. Shim, Macromolecules, 2003, 36, pp. 6704.
(36)Y.-S. Suh, S. W. Ko, B.-J. Jung, H.-K. Shim, Optical Materials, 2002, 21, pp. 109.
(37)T. Yamamoto, A. Morita, Y. Miyazaki, T. Maruyama, H. Wakayama, Z.-h. Zhou, Y. Nakamura, T. Kanbara, S. Sasaki, K. Kubota, Macromolecules, 1992, 25, pp. 1214.
(38)J. H. Park, Y. T. Lim, O. O. Park, J. K. Kim, J.-W. Yu, and Y. C. KIM, Adv. Funct. Mater., 2004, 14, No 4, pp. 377.
(39)B. Liu, W.-L. Yu, Y.-H. Lai, and W. Huang, Macromolecules, 2000, 33, pp. 8945.
(40)W.-J. Lin, W.-C. Chen, W.-C. Wu, Y.-H. Niu, and A. K.-Y. Jen, Macromolecules, 2004, 37, pp. 2335.
(41)M. Ranger, D. Rondeau, and M. Leclerc, Macromolecules, 1997, 30, pp. 7686.
(42)S.-H. Ahn, M.-z. Czae, E.-R. Kim, H. Lee, S.-H. Han, J. Noh and M. Hara, Macromolecules 2001, 34, pp. 2522.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top