跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/11 19:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏均穎
研究生(外文):Chun-Ying Wei
論文名稱:氧化鑭添加及冷卻速率對鈦酸鋇PTCR效應及導電行為的影響
論文名稱(外文):Effect of La2O3 and Cooling Rate on the PTCR and Conduction Bahavior of BaTiO3
指導教授:方滄澤
指導教授(外文):Tsang-Tse Fang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:125
中文關鍵詞:氧化鑭鈦酸鋇正溫度係數冷卻速率
外文關鍵詞:La2O3PTCRCooling Rate
相關次數:
  • 被引用被引用:2
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
  正溫係數電阻器(Positive temperature coefficient of resistivity, PTCR)材料已經成為很重要的零件,而由鈦酸鋇化合物是其中最重要的材料。鈦酸鋇是鈣鈦礦結構,在常溫下為正方晶系(tetragonal)鐵電材料。當添加微量的施體時,鈦酸鋇會半導化,且有正溫係數電阻效應,半導化鈦酸鋇陶瓷會受到施體添加量以及製程的影響。

  本研究主要討論在添加不同濃度的鑭(0.2∼0.4at%),在不同的冷卻速率下,觀察室溫電阻的變化和正溫係數電阻行為的變化,直流電阻率隨溫度變化的量測從室溫到280℃,且利用交流阻抗量測各個試片在不同溫度的阻抗以了解其晶體各個部份的電性隨溫度的變化。此外,利用掃描式電子顯微鏡(SEM)觀察各個試片的微結構。在此研究中,可發現當添加量為0.3at%時,電阻值最小,且有較好的PTCR效應;而當在較慢的冷卻速率下,PTCR的躍升值會增加,且躍升的斜率會較陡峭。藉由阻抗分析可將晶粒和晶界電阻分開,顯示出PTCR效應主要來源是晶界。在SEM照片所顯示出冷卻速率對微結構沒有很大影響,晶粒大小約略相同。
  The Positive temperature coefficient of resistivity (PTCR) materials have become very important components, and among these materials barium titanate (BaTiO3) compounds are the most important group. BaTiO3 is a perovskite structure with ferroelectric properties at room temperature. Small amounts of donor doping in BaTiO3 cause semiconductivity and PTCR effect in this material. The PTCR effect of semiconducting BaTiO3 ceramics can be remarkably influenced by both donor dopants and ceramic processing.

  The effects of La dopant (0.2∼0.4at%)and different cooling rates on the room resistance and the PTCR effect were investigated in this paper. DC resistivity measurements were carried out as a function of temperature from the room temperature up to 280℃ and data of ac impedance was measured at different temperatures to know the electricity of the individual part of the polycrystalline BaTiO3. Besides, Scanning electron microscope (SEM) was employed to study the microstructures. In this paper, we found that the resistance reached minimum when dopant concentration reached 0.3at%, and the specimen brought about the better PTCR effect, resulting in an increase in the steepness of the resistivity-temperature plots in the region of the transition from low to high resistance. We can separate the grain and the grain boundary resistance by impedance analyses and we found that the origin of the PTCR effect was the grain boundary resistance. It was found that the cooling rates didn’t have significant influence on the microstructure such as grain sizes.
中文摘要 I
Abstract II
目錄 III
表目錄 V
圖目錄 VI

第一章 前言 1

第二章 理論基礎與文獻回顧 3
2-1 鈦酸鋇的基本性質 3
2-1-1 鈦酸鋇的晶體結構 3
2-1-2 鈦酸鋇相圖以及顯微結構 9
2-2 半導體陶瓷 12
2-2-1 陶瓷的應用 12
2-2-2 能帶基礎理論 14
2-2-3 半導體陶瓷簡介 21
2-2-4 施體/受體元素對鈦酸鋇性質的影響 24
2-3 添加物對鈦酸鋇的影響 27
2-3-1 添加物使居禮溫度的偏移 27
2-3-2添加物對介電性質的影響 27
2-2-3 添加物對燒結行為的影響 29
2-2-4異常的導電率及異常晶粒成長 30
2-3-5 添加量與電荷載子的關係 33
2-4正溫電阻係數電阻器 35
2-4-1 PTCR簡介 35
2-4-2 PTCR特性 38
2-4-3 PTCR的應用範圍 40
2-2-4 說明PTCR的模型 41
2-4-5 電子捕捉(Electron traps)的種類 49
2-5 Cole-Cole Plots 55
2-5-1 介電特性與頻率的相依性 55
2-5-2 阻抗圖 59
2-5-3 PTCR鈦酸鋇的阻抗分析 70

第三章 實驗步驟及方法 74
3-1 藥品 74
3-2 實驗流程 74
3-2-1 粉末的配製 74
3-2-2 燒結試片 75
3-3 性質測試 76
3-3-1 X光繞射分析 76
3-3-2 密度量測 76
3-3-3 電阻率對溫度變化量測 77
3-3-4 阻抗之量測 77
3-3-5 SEM顯微結構分析 78

第四章 結果與討論 80
4-1 粉末之合成與燒結 80
4-2 電阻量測與分析 82
4-2-1 添加量及燒結過程對室溫導電率的影響 82
4-2-2 添加量及燒結過程對PTCR的影響 85
4-3 交流阻抗分析 90
4-4 氧化鑭添加對顯微結構的影響 115

第五章 結論 119

第六章 參考文獻 120

表目錄
表2-1 陶瓷的主要應用--------------------------------------------------------13
表4-1 不同燒結過程,鑭添加的電性比較---------------------------------89
表4-2 不同燒結過程,鑭添加的電性比較---------------------------------89
表4-3控制降溫速率,0.26at%鑭添加的試片,利用交流阻抗圖計算而得的晶界電阻---------------------------------------------------------113
表4-4 晶界活化能------------------------------------------------------------114
1. A. J. Moulson and J.M. Herbert, Electroceramics, 2nd edition, Wiley (2003).
2. M. Barsoum, Fundamentals of ceramics, McGraw-Hill (2000).
3. D.E. Rase and R. Roy, “Phase equilibria in the system BaO-TiO2”, J. Am. Ceram. Soc., 38(3), 102 (1955).
4. R. K. Sharma, N. H. Chan and D. M. Smyth, “Solubility of TiO2 in BaTiO3”, J. Am. Ceram. Soc., 64(8), 448 (1981).
5. Y. H. Hu, M. P. Harmer and D. M. Smyth, “Solubility of BaO in BaTiO3”, J. Am. Ceram. Soc., 68(7), 372 (1985)
6. K. W. Kirby and B. A. Wechsler, “Phase Relations in the Barium Titanate-Titanium Oxide System”, J. Am. Ceram. Soc., 74, 1841 (1991)
7. A. K. Maurice and R. C. Buchanan, “Preparation and Stoichiomertry Effects on Mictrostructure and Properties of High Purity BaTiO3”, Ferroelectrics, 74, 61 (1987)
8. J. K. Lee, K. S. Hong and J. W. Jang, “Role of Ba/Ti Ratios in the Dielectric Properties of BaTiO3 Ceramics”, J. Am. Ceram. Soc., 84(9), 2001 (2001)
9. M. Drofenik, “Anomalous Grain Growth in Donor-Doped Barium Titanate with Excess Barium Oxide”, J. Am. Ceram. Soc., 85(3), 653 (2002)
10. J. F. Murray, “Some Causes and Effects of Phase Other Than Tetragonal BaTiO3 in Barium Titanate”, Am. Ceram. Soc. Bull., 37(11), 476 (1958)
11. A. Beauger, J. C. Mutin and J. C. Niepce, “Role and Behavior of Orthotitanate Ba2TiO4 during the Processing of BaTiO3 Based Ferroelectric Ceramics”, J. Mater. Sci., 19, 195 (1984)
12. 魏炯權,電子陶瓷材料 (2004)
13. Per Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, John Wiley & Sons, Inc., (1972)
14. O. Saburi, “Properties of Semiconductive Barium Titanates”, J. Phys. Soc. Jpn. 14, pp.1159 (1959)
15. S. Shirasaki, M. Tsukioka, H. Yamamura and H. Oshima, Solid State Communication, Vol. 19, 721 (1976)
16. S. Shirasaki and H. Haneda, J. Mater. Sci., 22, 4439 (1987)
17. N. H. Chan and D. M. Smyth, “Defect Chemistry of Donor-Doped BaTiO3”, J. Am. Ceram. Soc. 67, 285 (1984)
18. G. H. Jonker, “The Influence of Foreign Ions on The Crystal Lattice of Barium Titanate”, Mat. Res. Bull., 17, 345 (1982)
19. G. H. Jonker, “Some Aspects of Semiconducting Barium Titanate”, Solid State Electron, 7, 895 (1964)
20. T. Murakami, T. Miyashita, M. Nakahara and E. Erkind, “Effect of Rare-Earth Ions on Electrical Conductivity of BaTiO3 Ceramics”, J. Am. Ceram. Soc., 56(6), 294 (1973)
21. J. Daniels and K. H. Hardtl, D. Hennings and R. Wernicke, Philips Res. Rept. 31, pp.487-559, (1976)
22. K. S. Mazdiyasni and L. M. Lawn, J. Am. Ceram. Soc., 54, 539 (1971)
23. L. A. Xue, Y. Chan and R. J. Brook, J. Mater. Sci., 7, 1163 (1988)
24. C. J. Ting, C. J. Peng, H. Y. Lu and S. T. Wu, “Lanthanum-Magnesium and Lanthanum-Manganese Donor-Acceptor-Codoped Semiconducting Barium Titanate”, J. Am. Ceram. Soc. 73(2), 329 (1990)
25. S. B. Desu and D. A. Payne, “Interfacial Segregation in Perovskites: Ⅲ, Microstucture and Electrical Properties”, J. Am. Ceram. Soc. 73(11), 3407 (1990)
26. S. Shirasaki, H. Yamamura, H. Haneda, J. Chem. Phys., 73, 4640 (1980)
27. S. Shirasaki, H. Handea, K. Arai, and M Fujimoto, J. Mater. Sci., 22, 4439 (1987)
28. B. Jaffe, W. R. Cook and H. Jaffe, Piezoelectric Ceramics, Academic Press, London and New York (1971)
29. S. B. Desu and E. C. Subbarao, Grain Boundary Phenomena in Electronic Ceramics, Edited by Lionel M. levinson, pp. 189~206 (1981)
30. T. Fukami and H. Tsuchiya, “Dependence of Resistivity on Donor Dopant Content in Barium Titanate Ceramics”, Jpn. J. Appl. Phys., 18(4), 735 (1979)
31. W. D. Kingery, H. K. Bown and D. R. Uhlmann (Eds.), Introduction to Ceramics, 2nd Ed., p.61, p. 461, p.489, p.498, p.900, John, Wiley&Sons, Singapore (1991)
32. M. F. Yan, R. M. Cannon and H. K. Bowen, in Ceramic Microstructures’76, pp.276 (1976)
33. K. R. Udayakumar, K. G. Brooks, J. A. T. Taylor and V. R. W. Amarakoon,”Effect of Liquid Phase on the PTCR Behavior of BaTiO3”, Ceram. Eng. Sci. Proc., 8 (9-10), 1035 (1987)
34. N. Mukhwejee, R. D. Roseman and Q. Zhang, “Sintering behavior and PTCR properties of stoichiometric blend BaTiO3”, J. Phys. Chem. Solids., 63, 631 (2002)
35. P. Bomlai, N. Sirikulrat and T. Tunkasiri, “Effects of TiO2 and SiO2 Additions on Phase Formation, Microstructures and PTCR Characteristics of Sb-doped Barium Strontium Titanate Ceramics” J. Mat. Sci., 39, 1831 (2004)
36. D. F. K. Henning and B. S. Schreinemacher, “Temperature-Stable Dielectric Materials in the system BaTiO3-Nb2O5-Co3O4” J. Europ. Ceram. Soc., 14, 463 (1994)
37. C. J. Peng and H. Y. Lu, “Compensation Effect in Semiconduting Barium Titanate”, J. Am. Ceram. Soc., 71(1), C44-46 (1988)
38. Y. Matsuo, M. Fujimura, H. Sasaki, K. Nagase and S. Hayakawa, Ceram. Bull., 47, 292 (1968)
39. H. F. Cheng, “Effect of Sintering Aids on Electrical properties of Positive Temperature Coefficient of Resistivity BaTiO3 Ceramics”, J. Appl. Phys., 66, 1382 (1989)
40. V. Ravi and T. R. N. Kutty, “A Novel Method for the Uniform Incorporation of Grain-Boundary Layer Modifiers in Positive Temperature Coefficient of Resistivity Barium Titanate”, J. Am. Ceram. Soc., 75(1), 203 (1992)
41. D. F. K. Hennings, “Recrystallization of Barium Titanate Ceramics”, Sci. Ceram., 12, 405 (1984)
42. L. Meidong, I. J. Li, L. Hsiwei, C. Zhixiong and Y. Xi. Jpn. J. Appl. Phys., 24, 308 (1985)
43. A. Hasegawa, F. Satoru, K. Koumoto and H. Yanagida, J. Ceram. Soc. Jpn, 99, 718 (1991)
44. J. Daniels, K. H. Hardtl and R. Wernicke, Philips Tech. Rev., 38(3), 73 (1998)
45. M. Drofenik, A. Popovic, L. Irmancnik, D. Kolar and V. Krasevec, “Release of Oxygen During the Sintering of Doped BaTiO3”, J. Am. Ceram. Soc., C203 (1982)
46. M. Drofenik, “Oxygen Partial Pressure and Grain Growth in Donor-Doped BaTiO3”, J. Am. Ceram. Soc., 70(5), 311 (1987)
47. F. D. Morrison, D. C. Sinclair and A. R. West, J. Am. Ceram. Soc., 84(3), 531 (2001)
48. F. D. Morrison, D. C. Sinclair and A. R. West, “Doping Mechanisms and Electrical Properties of La-doped BaTiO3 Ceramics”, EInternational Journal of Inorganic Materials 3, 1205 (2001)
49. P. Blanchart, J. F. Baumard and P. Abelard, “Effects of Yttrium Doping on the Grain and Grain-Boundary Resistivities of BaTiO3 for Positive Temperature Coefficient Thermistors”, J. Am. Ceram. Soc. 75(5), 1068 (1992)
50. W. Heywang, “Semiconducting Barium Titanate”, J. Mat. Sci. 6, 1214 (1971)
51. H. Nagomoto, H. Kagotani and T. Okubo., “Positive Temperature Coefficient of Resistivity in Ba1-xSrxPb1+yO3-8 Ceramics”, J. Am. Ceram. Soc., 76(8), 2053 (1993)
52. W. Heywang, “Resistivity Anomaly in Doped Barium Titanate”, J. Am. Ceram. Soc., 47(10), 484 (1964)
53. P. Gerthsen and B. Hoffmann, “Current-Voltage Characteristics and Capacitance of Single Grain Boundaries in Semiconducting BaTiO3 Ceramics”, Solid State Electronics, 16, 617 (1973)
54. H. Ihrig and W. Puschert, “A Systematic Experimental and Theoretical Investigation of the Grain-Boundary Resitivities of n-doped BaTiO3 Ceramics”, J. Appl. Phys., 48, 3081 (1977)
55. J. Daniels and R. Wernicke, Philips Res. Repts. 31, 544 (1976)
56. G. H. Jonker, “Halogen Treatment of Barium Titanate Semiconductors”, Mater. Res. Bull., 2, 401 (1967)
57. H. Igarashi, S. Hayakawa and K. Okazaki, Jpn. J. Appl. Phys., 20(4), 135 (1981)
58. M. Kuwabara, “Effect of Microstructure on the PTCR Effect in Semiconducting Barium Titanate Ceramics”, J. Am. Ceram. Soc., 64(11), 639 (1981)
59. M. Kuwabara, “Determination of the Potential Barrier Height in Barium Titanate Ceramics”, Solid State Electron, 27(11), 929 (1984)
60. A. B. Alles, V. R. W. Amarakoon and V. L. Burdick, “Positive Temperature Coefficient of Resistivity Effect in Undoped, Atmospherically Reduced Barium Titanate”, J. Am. Ceram. Soc., 72, 148 (1989)
61. T. Takahashi, Y. Nakano and N. Ichinose, J. Ceram. Soc. Jpn., 98, 879 (1990)
62. J. G. Kim, “Effects of O2 and N2 Atmospheres on the PTCR Characteristics of Y-doped PTCR BaTiO3 Ceramics”, J. Mat. Sci., 39, 4931 (2004)
63. T. Kolodiazhnyi and A. Petric, “Analysis of Point Defects in Polycrystalline BaTiO3 by Electron Paramagnetic Resonance”, J. Am. Ceram. Soc., 86(9), 1554 (2003)
64. H. Ueoka, “The Doping Effects of Transition Elements on the PTC Anomaly of Semiconductive Ferroelectric Ceramics”, Ferroelectrics, 7, 351 (1974)
65. H. Ihrig, “PTC effect as a function of doping with 3d elements”, J. Am.Ceram. Soc., 64(10), 617 (1981)
66. H. M. Al-Allak, A. W. Brinkman, G. J. Russel and J. Woods, “The Effect of Mn on the Positive Temperature Coefficient of Resitance Characteristics of Donor Doped BaTiO3 Ceramics”, J. App. Phys., 63(9), 4530 (1988)
67. Y. C. Chen, G. M. Lo, C. R. Shin Lu, M. H. Chen and K. C. Huang, “Influence of Manganese on Lanthanum-Doped BaTiO3”, Jpn. J. Appl. Phys., 33, 1412 (1994)
68. Y. C. Chen, G. M. Lo and M. Y. Su, “Influence of Manganese on the Room-Temperature Resitivity of Lathanum-Doped BaTiO3”, Jpn. J. Appl. Phys., 35, 2745 (1996)
69. T. R. N. Kutty, P. Murugaraj and N. S. Gajbhiye, “EPR Evidence for Activation of Trap Centers in PTCR BaTiO3 Ceramics”, Mater. Res. Bull., 20, 565 (1985)
70. C. J. F. Bottcher, Theory of Electric Polarization, Elsevier Scientific Pub. Co. (1973-78)
71. H. Frohlich, Theory of Dielectrics:Dielectrics Constant and Dielectric Loss, Oxford (1986)
72. J. R. Mcdonald, Impedance Spectroscopy, J. Wiley and Sons, New York (1987)
73. 邱碧秀, 電子陶瓷材料, 徐氏基金會 (1989)
74. D. C. Sinclair and A. R. West, “Impedance and Modulus Spectroscopy of Semiconducting BaTiO3 Showing Positive Temperature Coefficient of Resistance”, J. Appl. Phys., 66(8), 3850 (1989)
75. N. Hirose and A. R. West, “Impedance Spectroscopy of Undoped BaTiO3 Ceramics”, J. Am. Ceram. Soc., 79(6), 1633 (1996)
76. A. R. West, D. C. Sinclair and N. Hirose, “Characterization of Electrical Materials, Especially Ferroelectrics, by Impedance Spectroscopy”, Journal of Electroceramics, 1(1), 65 (1997)
77. H. S. Maiti and R. N. Basu, “Complex-Plane Impedance Analysis for Semiconducting Barium Titanate”, Mat. Res. Bull., 21, 1107 (1986)
78. S. H. Wang, F. S. Hwang and T. Y. Tseng., “Fabrication of High-Curie-Point Barium-Lead Titanate PTCR Ceramics”, J. Am. Ceram. Soc.,73, 2767 (1990)
79. J. Illingsworth, H. M. Al-Allak, A. W. Brinkman and J. Woods, “The Influence of Mn on the Grain-Boundary Potential Barrier Characteristics of Donor-Doped BaTiO3 Ceramics”,J. Appl. Phys., 67, 2088 (1990)
80. J. G. Kim, W. S. Cho and K. Park, “Effect of Reoxidation on the PTCR Characteristics of Porous (Ba,Sr)TiO3”, Mat. Sci. Eng., B94, 149 (2002)
81. N. Kurata and M. Kueabara, “Semiconducting-Insulating Transition for High Donor-Doped Barium Titanate Ceramics”, J. Am. Ceram. Soc., 76(6), 1605 (1993)
82. G. V. Lewis and C. R. A. Catlow, “Defect Studies of Doped and Undoped Barium Titanate Using Computer Simulation Techniques”, J. Phys. Chem. Solids, 47(1), 89 (1986)
83. H. M. Al-Allak, G. J. Russel and J. Woods, “The Effect of Annealing on characteristics of Semiconducting BaTiO3 Positive Temperature Coefficient of Resistance Devices”, J. Phys. D: Appl. Phys., 20, 1645 (1987)
84. B. Huybrechts, K. Ishizaki and M. Takata, “Influence of high oxygen partial pressure annealing on the positive temperature coefficient of Mn-doped Ba0•8Sr0•2TiO3”, J. Eur. Ceram. Soc., 11(5), 395 (1993)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 巫仁恕著,〈晚明的旅遊活動與消費文化――以江南為討論中心〉,《中央研究院近代史研究所集刊》第41期,2003。
2. 毛文芳著,〈閱讀與夢憶——晚明旅遊小品試論〉,《中正大學中文學術年刊》第3期,2000。
3. 毛文芳著,〈閱讀與夢憶——晚明旅遊小品試論〉,《中正大學中文學術年刊》第3期,2000。
4. 張素莉、胡太山、林建元(2004)。高科技產業與生產者服務業互動關係之探討:以新竹科學園區及周邊地區為例。科技管理學刊,9(3),33-61。
5. 龔鵬程著,〈遊人記遊——論晚明小品遊記〉,《中華學苑》第48期,1996。
6. 龔鵬程著,〈遊人記遊——論晚明小品遊記〉,《中華學苑》第48期,1996。
7. 巫仁恕著,〈晚明的旅遊活動與消費文化――以江南為討論中心〉,《中央研究院近代史研究所集刊》第41期,2003。
8. 張素莉、胡太山、林建元(2004)。高科技產業與生產者服務業互動關係之探討:以新竹科學園區及周邊地區為例。科技管理學刊,9(3),33-61。
9. 馬維揚(2002)。竹科IC產業群聚成功實例之探討。產業論壇,4(1),256-271。
10. 馬維揚(2002)。竹科IC產業群聚成功實例之探討。產業論壇,4(1),256-271。
11. 胡太山、張素莉(2001)。技術基礎設施、產業群聚與地方創新網絡建構之初探-以新竹科學園區暨週邊地區為例。建築與規劃學報,4,27-42。
12. 胡太山、張素莉(2001)。技術基礎設施、產業群聚與地方創新網絡建構之初探-以新竹科學園區暨週邊地區為例。建築與規劃學報,4,27-42。
13. 林楨家、馮正民、李洋寧(2004)。知識可及性對創新的影響:以台灣北部區域電子產業為例。運輸計劃季刊,33(3),577-602。
14. 林楨家、馮正民、李洋寧(2004)。知識可及性對創新的影響:以台灣北部區域電子產業為例。運輸計劃季刊,33(3),577-602。
15. 李文瑞、陳秋宏(1998)。產業群聚與競爭優勢-我國印刷電路板產業發展與競爭力之分析。經濟情勢暨評論,4(3),209-228。