跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/13 16:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁育彰
研究生(外文):Yu-Chang Liang
論文名稱:鈦酸鋅之低溫共燒與介電性質之討論
論文名稱(外文):The Study for Low Temperature Co-firing and Dielectric Properties of ZnTiO3
指導教授:張炎輝張炎輝引用關係
指導教授(外文):Yen-Hwei Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:69
中文關鍵詞:微波介電鈦酸鋅低溫共燒陶瓷
外文關鍵詞:microwave dielectricLTCCzinc titanate
相關次數:
  • 被引用被引用:3
  • 點閱點閱:576
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:1
  本研究是以鈦鐵礦結構之鈦酸鋅材料為探討對象。鈦酸鋅雖然具有良好的微波介電性質,然而現今傳統方式所製備之鈦酸鋅塊材緻密度並不理想,遂本研究在鈦酸鋅中添加硼矽酸鹽玻璃,探討不同的玻璃重量百分比以及燒結溫度如何影響其燒結緻密度及介電性質。
  鈦酸鋅和硼矽酸鹽玻璃粉末是以溶膠-凝膠法製備,兩者混合進行低溫共燒。實驗結果顯示,燒結時硼矽酸鹽玻璃會熔解成液相以提升燒結的緻密程度,隨著硼矽玻璃的量增加至10 wt.%時,達到最佳的密度約4.1g/cm3,孔隙率為1.2%,但是過量的玻璃會造成Zn4O(BO2)6相的產生,其巨大的晶粒會造成試片破裂。
  與硼矽酸鹽玻璃共燒之ZnTiO3在微波介電性質亦有良好的提升,添加1 wt.%硼矽酸鹽玻璃850℃下燒結之ZnTiO3在共振頻率6GHz左右具有最好的品質因子,其Q×f值為52460,而添加5 wt.%硼矽酸鹽玻璃850℃下燒結之ZnTiO3具有最佳之介電常數為22。
  This present investigation has been focused on the ZnTiO3, which has an ilmenite structure. ZnTiO3 though has good microwave dielectric properties; however, the densification of the ZnTiO3 made by traditional way is not well, so in this study, we added borosilicate glass into the ZnTiO3 to investigate the effects of the weight percentage of glass and the sintering temperature on sintering behaviors and dielectric properties of the ZnTiO3.

  ZnTiO3 and borosilicate glass were made by sol-gel method, and were mixed for co-firing at low temperature. Experimental results show that the borosilicate glass would liquefy to improve the densification during sintering. As the weight percentage of the borosilicate glass increasing to 10 wt.%, the maximum density about 4.1 g/cm3 was obtained, and the porosity was 1.2%. However, Zn4O(BO2)6 would be formed as too much borosilicate glass was added, and its large grains would break the samples.

  The microwave dielectric properties of the ZnTiO3 co-fired with borosilicate glass were also improved much. It shows a maximum Q factor at a frequency of 6 GHz(Q×f=52460) for the sample of ZnTiO3 with 1 wt.% borosilicate glass sintered at 850℃ for 24 hours. And it also shows a maximum dielectric constant about 22 for the sample of ZnTiO3 with 5 wt.% borosilicate glass sintered at 850℃ for 24 hours.
摘要 I
Abstract II
圖目錄 IV
表目錄 VI
第一章 緒論 1
 1-1. 前言 1
  1-1-1. 鈦鐵礦(Ilmenite)結構 1
  1-1-2. ZnO-TiO2 System  1
  1-1-3. 低溫共燒陶瓷(LTCC) 3
 1-2. 研究動機 3
 1-3. 研究目的 4
第二章 理論基礎 9
 2-1. 溶膠-凝膠法(Sol-gel Method) 9
  2-1-1. 溶膠-凝膠法之起源與應用 9
  2-1-2. 溶膠-凝膠法之定義 9
  2-1-3. 溶膠-凝膠製程之原理 10
  2-1-4. 溶膠-凝膠製程之優缺點 12
 2-2. 燒結過程及理論 13
  2-2-1. 燒結的基本原理 13
  2-2-2. 幾何形狀的考量 14
  2-2-3. 粉末顆粒大小對燒結行為的影響 14
  2-2-4. 液相燒結(Liquid Phase Sintering) 15
 2-3. 介電理論 17
  2-3-1. 介電性質 17
  2-3-2. 共振器與微波介電性質 18
第三章 實驗方法與流程 30
 3-1. 實驗方法 30
  3-1-1. ZnTiO3陶瓷粉末製備 30
  3-1-2. 硼矽玻璃粉末製備 30
  3-1-3. 塊材之製備 31
 3-2. 成分與結構分析 31
  3-2-1. 晶粒大小 31
  3-2-2. X光繞射(XRD)分析 31
  3-2-3. 掃描式電子顯微鏡(SEM)分析 32
 3-3. 材料性質分析 32
  3-3-1. 介電性質量測 32
  3-3-2. 孔隙率、密度量測 33
  3-3-3. 微波介電(Microwave Dielectric)性質量測 33
第四章 結果與討論 39
 4-1. X-ray繞射(XRD)分析 39
  4-1-1. XRD相檢測 39
  4-1-2. 晶粒大小及晶粒成長活化能 40
 4-2. 密度與孔隙率 41
 4-3. SEM表面結構分析 42
 4-4. 介電性質 44
  4-4-1. 低頻範圍之介電性質分析 44
  4-4-2. 微波介電性質 45
第五章 結論 64
參考文獻 65
[1] Y. M. Chaing, Birnie Ⅲ, Dunbar P. and David Kingery, W., ”Physical Ceramics: Principles for Ceramics Science and Engineering” John Wiley & Sons, Inc., New York, 1997, p.34
[2] L. Levy, “Chimie Minérale-Sur les titanates de zinc particulierement sur un trititanate” Compt. Rend, 105 (1887) 378; “Chimie-Sur quatre nouveaux titanate de zinc” ibid. 107 (1888) 421
[3] L. Levy, Ann Chim, Phys. 25-6 (1892) 433
[4] F. H. Dulin and D. E. Rase, “Phase Equilibria in the System ZnO-TiO2” J. Am. Ceram. Soc. 43 (1960) 125
[5] S. S. Cole and W. K. Nelson, “System Zinc Oxide” J. Phys. Chem. 42-2 (1938) 245
[6] N. W. Taylor, “Crystal Structure of Compounds Zn2TiO4, Zn2SnO4, Ni2SiO4 and NiTiO3” Z. Phys. Chem. B9-4 (1930) 241
[7] L. Passerini, “Spinal: Ⅲ, Cobalt and Zinc Titanates” Gazz. Chim. Ital. 60-12 (1930) 957
[8] S. Holgersson and A. Herrlin, “X-Ray Studies on Orthotitanates” Z. Anorg. U. Allgem. Chem. 198-1 (1931) 69
[9] S. F. Bartram and R. A. Slepetys, “Compound formation and crystal structure in the system ZnO-TiO2” J. Am. Ceram. Soc. 44 (1961) 493
[10] A. I. Sheinkman, F. P. Sheinkamn, I. P. Dobrovol’skii and G. R. Zvyagina, “Phase formation sequence in the reaction of zinc oxide with titanium dioxide” Izv. Akad. Nauk SSSR Neorg. Mater. 13 (1977) 1447
[11] V. B. Reddy, S. P. Goel and P. N. Mehrotra, “Investigation on formation of zinc titanate via thermal decomposition of zinc titanyl oxalate hydrate” Mater. Chem. Phys. 10 (1984) 365
[12] O. M.Yamaguchi, M. Morimi, H. Kawabata and K. Shimizu, “Formation of zinc titanate via thermal decomposition of zinc titanyl oxalate hydrate” Mater. Chem. Phys. 10 (1984) 365
[13] M. Ocana, W. P. Hsu and E. Matijevic, “Preparation and properties of uniform-coated colloidal particle, 6: titanis on zinc oxide” Lngmuir 7 (1991) 2911
[14] R. K. Datta, “Composition modification and characterization of ZnO-TiO2 based (ZTB) desulfurization sorbent” Final Report, Contract No. DE-AP21-93MC53415, Morgantown, WV, 1993
[15] J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon and H. J. Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values” Jpn. J. Appl. Phys. 33 (1994) 5466
[16] M. Sugiura and K. Ikeda, “Studies on Dielectric of the TiO2-ZnO System” J. Jpn. Ceram. Assoc. 55-626 (1947) 62
[17] K. Haga, T. Ishii, J. Mashiyama and T. Ikeda, “Dielectric Properties of Two-Phase Mixtures Ceramics Composed of Rutile and Its Compounds” Jpn. J. Appl. Phys. 31 (1992) 3156
[18] M. Wang. J. Zhou, Z. Yue, L. Li and Z. Gui, “Co-firing behavior of ZnTiO3-TiO2 dielectric/hexagonal ferrite composites for multi-layer LC filters” Mater. Sci. Eng. B 99 (2003) 262
[19] H. T. Kim S. H. Kim S. Nahm and J. D. Byum, “Low-temperature Sintering and Microwave Dielectric properties of Zinc Matatitante-Rutile Mixtures Using Boron” J. Am. Ceram. Soc. 82-11 (1999) 3043
[20] H. T. Kim, S. Nahm and J. D. Byun, “Low-fired (Zn,Mg)TiO3 Microwave Dielectrics” J. Am. Ceram. Soc. 82-12 (1999) 3476
[21] H. T. Kim, J. D. Byun and Y. Kim, “Microsturucture and Microwave Dielectric Properties of Modified Zinc Titanate (I)” Mater. Res. Bull. 33-6 (1998) 963
[22] H. T. Kim, J. D. Byun and Y. Kim, “Microsturucture and Microwave Dielectric Properties of Modified Zinc Titanate (II)” Mater. Res. Bull. 33-6 (1998) 975
[23] 張益新,”鈦鐵礦結構Zn1-xAxTi1-yByO3之合成及性質研究”,國立成功大學材料科學及工程研究所博士論文,2004
[24] J. J. Ebelmen, Ann. 57 (1864) 331
[25] K. S. Matediyasni, R. T. Dollof, J. S. Smith and J. Am. Ceram. Soc. 52 (1969) 513
[26] R. Roy, J. Am. Ceram. Soc. 39 (1956) 145
[27] C. J. Brinker and G. W. Scherer, “Sol-Gel Science” Academic Press, New York, 1990, p.839
[28] H. Dislich, C. Angew, Int. Ed. Engl. 10 (1971) 363
[29] 蔡印來,”鈣鈦礦結構之La1-ySryCo1-x(Cu/Ni)xO3-δ薄膜對一氧化碳氣體感測特性之研究”,國立成功大學資源工程博士論文,2001
[30] 蔡政達,”利用FT-IR和13C-NMR光譜探討檸檬酸製程合成太酸鋇陶瓷粉末之研究”,國立成功大學材料科學及工程博士論文,1998
[31] 陳慧英,”溶膠凝膠法在薄膜製備上之應用”,化工技術,無機薄膜之製備與應用專輯,11月號,80期,1999
[32] J. Livage and C. Sanchenz, “Sol-Gel Chemistry” J. Non-Cryst. Solids 145 (1992) 11
[33] M. Kakihana, “Sol-Gel Preparation of High Temperature Superconducting Oxides” J. Sol-Gel Sci. Tech. 6 (1996) 7
[34] 蕭富山,”修正型統計燒結理論評估位添加、氧化鎂及氧化鋯添加氧化鋁燒結行為及顯微結構演進”,國立成功大學材料科學及工程博士論文,2000
[35] R.L Coble, “Sintering Crystalline Solids. I. Intermediate and final State Diffusion Models” J. Appl. Phy. 32 (1961) 787
[36] C. Greskovich and J. H. Rosolowski, “Sintering of Covalent Solids” J. Am. Ceram. Soc. 59 (1976) 336
[37] D. W. Budworth, “Theory of Pore Closure during Sintering” Trans. Brit. Ceram. Soc. 69 (1970) 29
[38] C. Herring, “Effect of Change of Scale on Sintering Phenomena” J. Appl. Phys. 21 (1950) 301
[39] F. F. Lang, “Sinterability of Agglomerate Powder” J. Am. Ceram. Soc. 67 (1984) 83
[40] H. S. Cannon and F. V. Lenel in “Proceedings of the Plansee Seminar”, Edited by F. Benesovsky Metallwerk Plansee, Reutte, 1953, p.106
[41] K. S. Hwang, Phd Thesis, Rensselaer Ploytechnic in Troy, 1984
[42] R. Raj and C. K. Chyumg, “Solution Reprecipitation Creep in Glass Ceramics” Acta Metall, (1980) p.159-166
[43] R. B. Heady and J. W. Cahn, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particles” J. Am. Ceram. Soc. 7 (1970) p.406-409
[44] G. L. Matthaei, L. Young and E. M. Y. Jones, “Microwave Filters, Impedance-Matching Networks, and Coupling Structure” The McGraw-Hill, 1964
[45] M. D. Kingery, H. K. Barsoum, “Fundamental of Ceramics” The McGraw-Hill Companies, Inc. 1997, p.526
[46] 王惠傑,“通訊用介電陶瓷材料及元件”,工業材料,115期,(1996) 74
[47] 陳皇鈞,”陶瓷材料概論,下冊”,曉園出版社,(1987) 862
[48] K. Wakine, “Recent Development of Dielectric Resonator Materials and Filter in Japan” Ferroelectrics 91 (1989) 69
[49] K. Masumoto, “Ba(Mb1/3Ta1/3)O3 Ceramics with Ultra-Law Loss at Microwave Frequencies” Proc. 6th IEEE Inter. Sympo. On Appl. of Ferro. (1986) 118
[50] 傅坤福,”微波陶瓷介電材料介電性質量測”,工業材料,132期,(1997) 112
[51] 陳田雲,”高頻通訊元件介電材料特性量測”,工業材料,115期,(1996) 92
[52] 林震宇,”(Ba,Sr)Sm2Ti4O12陶瓷為波介電材料之合成、分析與性質研究",國立成功大學資源工程碩士論文,1996
[53] Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method” IEEE Trans. On Microwave Theory and Tech. MTT-33, 7 (1985) 586
[54] N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, “Control of preferred orientation for ZnOx films: Control of self-texture” J. Cryst. Growth 130 (1993) 269
[55] B. C. Cullity, “Elements of X-Ray Diffraction” 2th Edition Addison-Wesley Publishing Company, INC. 1978, p.102
[56] R. L. Coble, “Sintering Crystalline Solids, II. Experimental Test of Diffusion Models in Powder Compacts“ J. Appl. Phys. 32 (1961) 793
[57] M. Jarcho, C. H. Bolen, R. H. Doremus, “Hydroxyapatite synthesis and characterization in dense polycrystalline form” J. Mater. Sci. 11 (1976) 2027
[58] J. P. Coutures, p. Odier and C. Proust, “Barium Titanate Formation by Organic Resins Formed with Mixed Citrate” J. Mater. Sci. 27 (1992) 1849
[59] E. R. Leite, J. A. Varela, E. Longo and C. A. Paskocimas, “Influence of Polymerization on the Synthesis of SrTiO3: Part II. Particle and Agglomerate Morphology” Cerma. Int. 21 (1995) 153
[60] C. Kittel, “Introduction to Solid State Physics” 7th Edition, John Wiley & Sons, Inc., New York, 1996, p.391
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top