跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/19 19:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳逸桓
研究生(外文):Yi-Huan Chen
論文名稱:鍶添加對射頻磁控濺鍍銅酸鑭薄膜晶體結構和導電性質之研究
論文名稱(外文):The crystal structure and electrical conductivity property of Sr-doped LaCuO3 thin film by RF magnetron sputtering
指導教授:方冠榮
指導教授(外文):Kuan-Zong Fung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:76
中文關鍵詞:射頻磁控濺鍍鍶添加銅酸鑭
外文關鍵詞:RF magnetron sputteringLSCu
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  鈣鈦礦結構之鍶添加銅酸鑭(La1−xSrxCuO2.5−δ , LSCu)因為其具有高的導電率和大量的氧空缺,所以被當作固態氧化物燃料電池之陰極來研究。由於鈣鈦礦之鍶添加銅酸鑭結構的穩定性跟在材料中的銅離子價數有關;在薄膜沉積時,控制材料的化學成分和氧壓以及後續薄膜之熱處理是很重要的。在鍶添加銅酸鑭薄膜的製備,討論靶材材料的成分,和熱處理過程對薄膜的影響。另外,陰極反應行為藉由電流中斷法和交流阻抗來分析,並探討陰極之反應行為。

  當鍶添加銅酸鑭薄膜經由後續在空氣中500 oC之熱處理,會形成鈣鈦礦結構之鍶添加銅酸鑭。當熱處理溫度高達800 oC時,有第二相的產生,造成LSCu薄膜的導電率隨著熱處理溫度由500oC上升到800oC而從131 S/cm下降到10 S/cm。而陰極過電壓和量測離子導電率之裝置可知氧離子可經由緻密LSCu薄膜內部的氧空缺移動,由此可知LSCu材料確實具有氧空缺可傳導氧離子,為一混合電子離子(MEIC)導體。在800℃下,LSCu氧離子的導電率約為0.02 S/cm。

  由阻抗分析圖中,可以得到(1)吸附在電極(LSCu)表面的氧原子轉變成氧離子時的電荷轉移所造成的極化電阻(Rct)值隨著溫度由400℃增加到550℃增加而由95 Ω減少到53 Ω。 (2)LSCu薄膜之氧離子擴散電阻(Rd)隨著溫度由400℃增加到550℃而由112 Ω減 少為46 Ω。且在相同溫度下,緻密LSCu薄膜之氧離子擴散電阻隨著厚度 增加而上升。(3)吸附在電極(LSCu)表面的氧原子轉變成氧離子時的電荷轉移極化電阻為速率決定步驟。
 La1−xSrxCuO2.5−δ (LSCu) with perovskite-based structure have been investigated as potential cathode materials for the solid oxide fuel cells (SOFCs) because of their high electrical conductivity and high oxygen vacancy concentration. Due to the structural stability of LSCu is greatly affected by the valence state of cupper ions in the material, the control of chemical composition, and the oxygen partial pressure during deposition and heat-treatment plays an important role on the synthesis of LSCu film. And the cathodic reaction behaviors were analyzed by current interrupt method and ac-impedance method.

 The single tetragonal perovskite phase was obtained when the sample was heat-treatment at more than 500oC in air for 1 hour. However, the second phase was formed when the sample was heat-treated at 800oC. The electrical conductivity of LSCu film was decreased from 131 S/cm to 10 S/cm when the specimen was heat-treated in range from 500oC to 800 oC. The oxygen ion diffused in the vacancies of dense LSCu film by cathodic polarization and ion conductivity measurement. By this way, we can know that the material of LSCu is a mixed electronic and ionic conductor. The ion conductivity of LSCu was 0.02 S/cm at 800℃.

 By ac-impedance spectra, (1) The charge transfer resistance of LSCu film decreased from 95 Ω to 53 Ω when testing temperature increased 400℃ to 550℃. (2) The oxygen ion diffusion resistance of LSCu film decreased from 112 Ω to 46 Ω when temperature increased from 400℃ to 550℃. And at the same testing temperature, the oxygen ion diffusion resistance of LSCu film increased by increasing the LSCu film thickness. (3) The charge transfer resistance of LSCu film is the rate-limited step.
中文摘要………………………………………………………………...I
英文摘要………………………………………………………………..III
目錄……………………………………………………………………. .V
圖目錄………………………………………………………………...VIII
表目錄…………………………………………………………………..XI
第一章 緒論……………………………………………………………..1
第二章 理論基礎………………………………………………………..3
2-1 燃料電池簡介……………………………………………………….3
2-1-1燃料電池之原理…………………………………………………...3
2-1-2燃料電池的分類…………………………………………………...5
2-1-3燃料電池之優點及應用…………………………………………...5
2-2 固態氧化物燃料電池之結構與反應…………………………….....9
2-3 固態氧化物電解質………………………………………………...10
2-4 固態陰極材料………………………………………………...........12
2-5 射頻磁控濺鍍原理………………………………………………...15
2-6薄膜成核沉積理論………………………………………………....15
2-7 薄膜成長模式………………………………………………...........17
2-8 研究目的………………………………………………...................18
第三章 實驗方法與步驟………………………………………………20
3-1 實驗流程………………………………………………...................20
3-2 濺鍍系統設計………………………………………………...........25
3-3 原料選擇………………………………………………...................27
3-4 鍍膜參數及步驟……………………………………………….......28
3-4-1鍍膜參數..……………………………………………….............28
3-4-2鍍膜步驟..……………………………………………….............28
3-5 鍍膜熱處理..……………………………………………….............28
3-6 薄膜性質分析..……………………………………………….........29
3-6-1 X光繞射分析..……………………………………………….....29
3-6-2 SEM觀察..………………………………………………............29
3-6-3 感應式偶合電漿分析儀(ICP-AES) ..………………………….29
3-7 薄膜電性量測..……………………………………………….........29
3-7-1 四點探針電阻分析儀(four point probe) ..……………………..29
3-7-2 電極極化之量測 (over potential) ..……………………………30
3-7-3 交流阻抗分析 (ac-impedance analyze) ..……………………..30
第四章 結果與討論..…………………………………………………..33
一 LSCu薄膜分析..……………………………………………………33
4-1 LSCu薄膜之晶體結構分析..……………………………………...33
4-2 LSCu薄膜之微觀型態.……………………………………............35
4-3 LSCu薄膜之成長速率.……………………………………............37
4-4 LSCu薄膜之成分 …...……………………………………............37
二 LSCu薄膜電性分析…...……………………………………...........42
4-5 LSCu薄膜的導電性…...…………………………………….......42
4-6 陰極過電壓量測…...……………………………………................45
4-6-1 溫度對LSCu薄膜陰極過電壓的影響…………................47
4-6-2 LSCu薄膜厚度對陰極過電壓的影響…………..................47
4-6-3 LSCu電極的反應機制…………..........................................50
4-6-4 LSCu薄膜的鍶離子添加量對陰極極化現象之影響..........51
4-6-5 LSCu薄膜之晶粒大小對陰極極化現象之影響..................54
4-7 交流阻抗分析…...……………………………………....................60
4-7-1 LSCu薄膜不同厚度的電荷轉移電阻…………..................56
4-7-2 LSCu薄膜不同厚度的氧離子擴散電阻………..................64
4-8 LSCu之氧離子導電率……….........................................................67
第五章 結論………................................................................................71
參考文獻………......................................................................................73
誌謝……………………………………………………………………..76

圖目錄
Fig. 2-1 Schematic of fuel cell……………………………………………4
Fig. 2-2 Schematic of the typical electrochemical reactions in fuel cell.…………………………………………………………………….....8
Fig.2-3 Schematic of solid oxide fuel ell………………………………..11
Fig. 2-4 The perovskite structure………………………………………..14
Fig. 2-5 The plane circle of magnetron structure ……………................16
Fig. 2-6 The three crystal growth modes.………………………….........19
Fig. 3-1 The flow chart of the experiment………………….……...……20
Fig. 3-2The flow chart of target…………………………………………21
Fig. 3-3 The flow chart of substrate …………………….……………...22
Fig. 3-4 The sintering curve of target…………………………………...23
Fig. 3-5 The sintering curve of substrate………………………...……...24
Fig. 3-6 The RF magnetron sputtering measurement …………………..26
Fig. 3-7 The schematic of four point probe……………….………….....31
Fig. 3-8 The current interrupt method ……………………..…………...32
Fig.4-1 The XRD patterns of LSCu thin films on YSZ substrate of (a) as-deposited and heat treatment at (b) 500℃ (c) 600℃ (d) 700℃ (e) 800℃for 1 hour in air.…………………………………………………..34
Fig.4-2 The top view SEM images of LSCu films on YSZ substrate (a) as-deposition, and heat treatment at (b) 500℃ (c) 600℃ (d) 700℃ (e) 800℃ for 1 hour. The cross section SEM of LSCu thin on YSZ substrate and heat treatment at (f) 700 ℃ for 1 hour.…………………….……….36
Fig.4-3 The thickness of LSCu films were in range from 60W to 120W RF power………………………………………………………….…….38
Fig. 4-4 The growth rate of LSCu films were at different RF power.......40
Fig.4-5 The electrical conductivity of LSCu films that were heat-treated at various temperatures from 500oC to 800oC…………………………..44
Fig. 4-6 The top view(a) and cross-section(b) images of testing sample, and schematic diagrams of YSZ-supported half cell for electrochemical analyses.………………………………………………………………....46
Fig.4-7 Cathodic polarization of LSCu dense film electrodes measured in the temperature range of 550~700℃ in air……………………………..48
Fig. 4-8 Cathodic polarization of LSCu dense film electrodes measured in the LSCu film thickness range of 1~4μm………………………………49
Fig. 4-9 Schematic of the cathodic reaction on dense electrode………..52
Fig. 4-10 Cathodic polarization of LSCu and LSM dense film electrodes measured at 700℃……………………………………………...............53
Fig. 4-11 Cathodic polarization of LSCu dense film electrodes measured at 700℃ in different heat treatment time…………………………..……55
Fig. 4-12 The top view SEM images of RF magnetron sputtered LSCu films on YSZ were heat treatment at 700℃ for (a)1 hour (a)6 hour (a)12 hour (a)24 hour in air.…………………………………………………...57
Fig. 4-13 AC impedance spectra measured for dense LSCu electrode in the temperature range of (a)400℃, (b)450℃, (c)500℃ and (d)550℃ in air………………………………………………………………………..58
Fig.4-14. The equivalent circuit of the LSCu film on YSZ substrate…...61
Fig. 4-15 The charge transfer resistances plotted as the temperature in various thickness of dense LSCu electrodes……………………………62
Fig. 4-16 The charge transfer resistance of LSCu film was as a function of inverse absolute temperature.………………………………………...63
Fig. 4-17 The oxygen ion diffusion resistances obtained from impedance spectra in different thicknesses.……………………………………..…..65
Fig. 4-18 The oxygen ion diffusion resistance of LSCu film was as a function of inverse absolute temperature.………………………..……...66
Fig.4-19 Schematic of the ionic conductivity measurement…………....68
Fig. 4-20 The ionic conductivity of LSCu plotted as a function of temperature from 873K to 1073K.……………………………………...70




















表目錄
Table. 2-1 The fundamental characteristicof the fuel cells…………….…6
Table. 2-2 The anode and cathode reaction of the fuel cells……………..7
Table. 4-1 The growth rate of LSCu films were at different RF power....39
Table. 4-2 The composition of La1-xSrxCuO2.5-δ film……………..……..41
Table. 4-3 Summary of the equivalent circuit model results.…………...60
[1] 衣寶廉著,五南圖書出版公司, Fuel Cell, November of 2000. p21.
[2] S.C. Singhal, MRS Bulletin March (2000).
[3] T. Setoguchi, M. Sawano, K. Eguchi and H. Arai, Solid States Ionics, 40-41, (1990) p502.
[4] T. Hibino, A. Hsahimoto, K. Asano, M. Yano, M. Suzuki and M. Sano, Electromchem. Solid State Lett, 5, (2002) A242.
[5] V. E. J. van Dieten and J. Schoonman, Solid States Ionics, 57, (1992), p141.
[6] H. C. Yu, K. Z. Fung, Materials Research Bulletin, 38, (2003) p231.
[7] H. C. Yu, K. Z. Fung, Journal of Power Sources, 133, (2004) p162.
[8] W. R. Grove, Philos. Mag, 14, (1839) p127.
[9] K. Kordesch and G. Simader, Fuel cells and their applications, pp51-166.
[10]N. Q. Minh, J. Am. Ceram. Soc, 76, (1993) p563.
[11] S. P. Simmer, J. F. Bonnett, N. L.Canfield, K. D. Meinhardt, J. P. Shelton, V. L. Sprenkle and J. W. Stevenson, Journal of Power Sources, 113, (2003), p1.
[12] O. Yamamoto, Y. Takeda, R. Kanno and M. Noda, Solid States Ionics, 22, (1988), p241.
[13] B. C. H. Steele, Solid States Ionics, 86-88, (1996), p1223.
[14] A. O. Isenberg, Proceeding of the High Temperature Solid Oxide Electrolytes Conference, (1983), p5.
[15] D. H. Archer, J. J. Alles, W. A. English, L. Elikan, E. F. Sverdrup, R. L. Zahradnik, Westinghouse Solid Electrolyte Fuel Cell, Fuel Cell Systems, pp 332-342.
[16] J. B. Goodenough, Solid State Ionics, 94, (1997), p17.
[17] J. B. Goodenough, Nature, 404, (2000), p821.
[18] T. Kenjo, and Y. Yamakoshi, Bull. Chem. Soc. Jpn, 65, (1992) p995.
[19] T. Tsai and S. A. Barnett, Solid State Ionics, 93, (1997), p207.
[20]Kim Kinoshta, “Electrochemical Oxygen techenology”, John Wiley& Sons, New York, 1992.
[21] J. A. Lane and B. C. H. Steele, J.Electrochem.Soc, 143, (1996) p3554.
[22] Y. Takeda, R. Kanno. M. Noda and O. Yamamoto, J. Electrochem. Soc, 11, (1987) p2656
[23] M. Godickemeier, K. Sasaki, L. J. Gauckler, I. Riess, Solid State Ionics, 86-88, (1996) p691.
[24] I. Riess, Solid State Ionics, 157, (2003) p1.
[25] J. Fleig, J. Maier, Journal of European Ceramic Society, 24, (2004) p1343.
[26] K.K. Schueqraf, Handbook of Thin Film Deposition Process and Techniques, Noyes Publications, 1998.
[27] M. Ohring, “The Materials Science of Thin Films”, Academic Press, 1992.
[28] “Thin Films”, American Society for Metals, (1963), p.10-12.
[29] P.J. Kelly and R.D. Arnell, Vacuum, (2000), p.159-172.
[30] G.K. Hubler and J.A. Sprague, Surface and Coatings Technology, 81, (1996), pp29-35.
[31] 林棋瑋,張加強,劉品均,“電漿技術於半導體製程之應用與發展”,工業材料,(2003),pp.56~64.
[32] G.O Zhang, Y.J. Ge, W.J. Yang and Z.F. Zhao, , Thin Solid Films, 80, (2001), p243.
[33] 莊達人,VLSI製造技術,(1999),pp146-157.
[34] K.H. Muller, J. Appl. Phys, 62, n5, (1987), p1796.
[35] J.A. Thornton, J. Vac. Sci. Technol, 11, no.4, (1974), p666.
[36] L. Eckertova and T. Ruzicka, International Summer School, June (1991), p220.
[37] N.Imanishi, T. Matsumura, Y. Sumiya, K. Yoshimura, A. Hirano, Y. Takeda, D. Mori, R. kanno, Solid State Ionics, 174, (2004) p245
[38] T. horita, K. Yamaji, N. Sakai, H. Yokokawa, A. Weber, E. I. Tiffee, Electrochimica Acta, 46, (2001) p1837.
[39] A. Endo, H. Fukunaga, C. Wen, K. Yamada, Solid State Ionics, 135, (2000) p353
[40] Stuart B. Adler, Chem. Rev. 104, (2004) p4791.
[41] Y. K. Lee, J. Y. Kim, Y. K. Lee, I. K. Hee-Soo Moon, J.W. Park, C. P. Jacobson, S. J. Visco, Journal of Power Sources, 115, (2003) p219.
[42] R. Peng, C. Xia, X. Liu, D. Peng, G. Meng, Solid State Ionics, 152-153, (2002) p561.
[43] Y. J. Leng, S. H. Chan, S. P. Jiang, K. A. Khor, Solid State Ionics, 170, (2004) p15.
[44] Selmar de Souza, Steven J. Visco, Lutgard C. De Jonghe, Solid State Ionics, 98, (1997) p57.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 蘇秀芬、詹芳霖(2002),〈顧客關係管理於健保承保業務之應用─以健保局南區分局為例〉,《研考雙月刊》,第26卷,第5期,頁102-113。
2. 蕭乃沂(2004),〈公民關係管理與政策問題建構:以民意電子信箱為起點〉,《國家政策季刊》,第3卷,第1期,頁155-174。
3. 蕭乃沂(2003),〈各國推動電子化政府之比較:整體資訊建設指標的觀點〉,《中國行政評論》,第13卷,第1期,頁1-28。
4. 蕭乃沂(2001),〈電子化政府便民應用服務的評估架構〉,《研考雙月刊》,第25卷,第1期,頁75-81。
5. 黃朝盟、趙美慧(2000),〈公共網站管理應避免的十大錯誤〉,《研考雙月刊》,第24卷,第3期,頁41-47 。
6. 黃東益、蕭乃沂與陳敦源(2003),〈網際網路時代公民直接參與的機會與挑戰─台北市「市長電子信箱」的個案研究〉,《東吳政治學報》,第17期,頁121-151。
7. 項靖(2000),〈線上政府:我國地方政府WWW網站之內涵與演變〉,《行政暨政策學報》,第2期,頁41-96。
8. 陳敦源、黃東益與蕭乃沂(2004),〈電子化參與:公共政策過程中的網路公民參與〉,《研考雙月刊》,第28卷,第4期,頁36-66。
9. 陳文華(2000),〈運用資料倉儲技術於顧客關係管理〉,《能力雜誌》,第527期,頁132-138。
10. 李明章、鄭義熙與陳榮方(2001),〈運用網際挖掘進行顧客關係管理之研究─以高雄市國稅局為例〉,《高雄應用科技大學學報》,第31期,頁273-285。
11. 李仲彬、黃朝盟(2001),〈電子化政府的網站設計:台灣省二十一縣市政府WWW網站內容評估〉,《中國行政》,第69期,頁47-74。