跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/18 16:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯延鋒
研究生(外文):Yen-Feng Ke
論文名稱:人工心臟離心泵之設計與分析
論文名稱(外文):Design and Analysis of a Centrifugal Pump Used in Artificial Heart
指導教授:陸鵬舉陸鵬舉引用關係
指導教授(外文):Pong-Jeu Lu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:109
中文關鍵詞:微型離心泵人工心臟渦殼計算流體力學
外文關鍵詞:Miniature Centrifugal PumpArtificial HeartVoluteComputational Fluid Dynamics
相關次數:
  • 被引用被引用:5
  • 點閱點閱:597
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:1
  電動液壓驅動器(Electro-Hydraulic Driver)為目前成功大學發展之左心室輔助器(Left Ventricular Assist Device)及全人工心臟(Total Artificial Heart)所採用的驅動機構。本研究的主要目的是在嚴格的體積限制條件下設計能夠提供所需心輸出量(Cardiac Output)的微型離心泵(Miniature Centrifugal Pump)。分別以經驗公式和計算流體力學(CFD)的分析方法運用於初步及詳細設計階段。基本葉輪的構造主要取決於關鍵幾何參數在經驗公式上的反覆運算,以及工業泵浦設計上獲得的經驗。初始葉輪設計經由計算流體力學的流場分析來仔細觀察。目前採用的套裝軟體為CFX-TASCflow,它是以有限體積法解析三維黏性雷諾平均Navier-Stokes方程式。藉由所選用之八個模型的流場分析與比較來尋找最後優化的葉形。本研究發現目前微型葉輪的設計,特別是在出口區域上受到黏滯效應影響格外嚴重。當入出口截面積比率為2.25時,發現全壓升提高33.9mmHg及11.1%的效率。葉形優化之後開始執行渦殼的設計。非常規的渦殼外型取決於轉換閥門(switching valve)幾何外型的限制,使目前的設計跳脫以往工業流體機械(Turbomachinery)取得的經驗。在轉換閥門與馬達機構的限制下,採取結合內、外渦殼流道具有特別的考量,本研究相較於常規的渦殼設計具有大幅減少70%體積的結果。研究過程中發現微型泵效能通常不如相關的大型工業泵浦,相關經驗與公式採用時需要適度修正。目前使用內渦殼的設計可以有效減少舌尖(Tongue)處局部逆流的現象。此外,為了減少渦殼出口處的紊亂流場及相關損失,可採用27度的出口導流角設計。研究結果顯示最後的離心泵設計,已達成提供足夠全壓升的目標且具備寬廣的工作流量區間,整體性能符合電動液壓驅動器的需求。
  Electro-hydraulic driver has been adopted as the pumping mechanism for the NCKU Left Ventricular Assist Device (LVAD) and the Total Artificial Heart (TAH). The objective is to design a miniature centrifugal pump that can deliver the required cardiac output under stringent space constraint. Both empirical and Computational Fluid Dynamics (CFD) analysis methods are used in the preliminary and detail design phases, respectively. Basic impeller configuration was determined first by iterating key geometric parameters using empirical rules and experiences gained in the industrial pump designs. This initial impeller design was then scrutinized by CFD flow analysis. The commercial code CFX-TASCflow, which is a finite-volume based method for solving Reynolds-averaged Navier-Stokes equations, was adopted presently. Flow analyses and comparisons have been conducted among eight selected models in search of the final optimized impeller shape. It was found that viscous effects are profound for the present design of miniature impeller, in particular in the exit region. By increasing the inlet/outlet ratio to 1: 2.25 it is seen that total pressure and efficiency are improved to gain respectively 33.9mmHg and 11.1%. Volute design was performed after the completion of the impeller shape optimization. Unconventional volute contour, which results from the geometric confinement of the switching valve wall, makes the present volute design deviate largely from the past experiences gained in industrial turbomachinery. A special consideration which combines together external and internal volute passages under the switching valve and torque motor confinement was taken, resulting in a great volume deduction of 70% as compared to that suggested by the conventional volute design. In the design process it was found that, in general, miniature pump performances are inferior to those pertaining to large industrial pumps, indicating that an appropriate revision of the existing relevant experiences and empirical formulas is necessitated. The present driver design uses an internal volute to alleviate the phenomenon of backflow near the tongue. Furthermore, in order to reduce the turbulent flow and the associated loss occurring near the volute outlet, an exit passage angle of 27 degree is introduced. The results show that the final centrifugal pump design achieves the goal of producing sufficient total pressure rise over a wide range of volume flow rate for the desired electro-hydraulic driver.
中文摘要 I
英文摘要 III
致謝 V
目錄 VI
表目錄 IX
圖目錄 X
符號說明 XIV

第一章 序論1
1-1前言1
1-2人工心臟的沿革與簡介2
1-3 NCKU人工心臟簡介5
1-4研究目的與方法6

第二章 數值方法8
2-1數值方法導論8
2-1-1統御方程式8
2-2紊流模型10
2-3壁面函數11
2-4數值方法13
2-4-1上風差分法14

第三章 物理模型17
3-1設計概念17
3-2泵的設計18
3-3葉形初始設計20
3-3-1葉片入、出流角設計22
3-4泵的優化24
3-5渦殼的設計25
3-6葉片網格建立26
3-6-1格點獨立(Grid Independent)27
3-6-2渦殼網格建立28
3-7邊界條件29

第四章 數值結果與討論31
4-1數值實例31
4-1-1數值收斂31
4-2模型A、B、C與D31
4-2-1數值結果與理論值32
4-2-2設計點之數值分析34
4-2-3葉形優化分析35
4-2-4模型C37
4-3模型V1、V2、V3與V438
4-3-1模型V138
4-3-2渦殼設計選擇39
4-3-3模型V442

第五章 結論46

參考文獻48
表53
圖57
自述
[1] Smith, W. A., Allaire, P., Antaki, J., Butler, K. C., Kerkhoffs, W., Kink, T., Loree, H., and Reul, H., “Collected Nondimensional Performance of Rotary Dynamic Blood Pumps,” ASAIO Journal, vol. 50, no. 1, pp. 25-32, 2004.

[2] Schima, H., Schlusche, C., Jeremejev, B.V., Schor, I., Geihseder, G., Muller, M. R., and Losert, U., “Influence of Centrifugal Blood Pumps on the Elasticity of Erythrocytes,” ASAIO Journal, vol. 37, no. 4, pp. 658-661, 1991.

[3] Burgreen, G. W., Antaki, J. F., and Griffith, B. P., “A Design Improvement Strategy for Axial Blood Pumps Using Computational Fluid Dynamic Dynamics,” ASAIO Journal, vol. 42, no. 5, pp. 354-360, 1996.

[4] Sezai, A., Shiono, M., Orime, Y., Nakata, K., Hata, M., Iida, M., Kashiwazaki, S., Kinoshita, J., Nemoto, M., Koujima, T., Furuichi, M., Eda, K., Hirose, H., Yoshino, T., Saitoh, A., Taniguchi, Y., and Sezai, Y., “Major Organ Function Under Mechanical Support: Comparative Studies of Pulsatile and Nonpulsatile Circulation,” Artificial Organs, vol. 23, no. 3, pp. 280-285, 1999.

[5] Sharp, M. K., “An Orbiting Scoll Blood Pump without Valves or Rtating Seals,” ASAIO Journal, vol. 40, no. 1, pp. 41-48, 1994.

[6] Nojiri, C., Kijima, T., Maekawa, J., Horiuchi, K., Kido, T., Sugiyama, T., Mori, T., Sugiura, N., Asada, T., Shimane, H., Nishimura, K., Ban, T., Akamatsu, T., Ozaki, T., Ito, H., Suzuki, M., and Akutsu, T., “More than 1 Year Continuous Operation of a Centrifugal Pump with a Magnetically Suspended Impeller,” ASAIO Journal, vol. 43, no. 5, pp. 548-552, 1997.

[7] Song, X., Wood, H. G., and Olsen, D. B., “Computational Fluid Dynamics (CFD) Study of the 4th Generation Prototype of a Continuous Flow Ventricular Assist Device (VAD),” Journal of Biomechanical Engineering, Transactions of the ASME, vol.126, no. 2, pp. 180-187, 2004.

[8] Bulter, K. C., Moise, J. C., and Wampler, R. K., “The Hemopump—a New Cardiac Prothesis Device,” IEEE Transactions Bio-Medical Engineering, vol.37, no. 2, pp. 193-196, 1990.

[9] Macris, M. P., Myers, T. J., Jarvik, R., Robinson, J. L., Fuqua, J. M., Parnis, S. M., and Frazier, O. H., “In Vivo Evaluation of an Intra-ventricular Electric Axial Flow Pump for Left Ventricular Assistance,” ASAIO Journal, vol. 40, no. 3, pp. 719-722, 1994.

[10] Butler, K. C., Maher, T. R., and Borovetz, H.S., Kormos, R. L., Antaki, J. F., Kameneva, M., Griffith, B. P., Zerbe, T., and Schaffer, F. D., “Development of an Axial Flow Blood Pump LVAS,” ASAIO Journal, vol. 38, no. 3, pp. 296-300, 1992.

[11] Fossum, T. W., Morley, D., Benkowski, R., Tayama, E., Olsen, D. B., Burns, G., Miller, M. W., Franks, J., Martinez, E., Carroll, G., Edwards, J., Vinnerqvist, A., Lynch, B., Stein, F., Noon, G. P., and DeBakey, M. E., “Chronic Survival of Calves Implanted with the DeBakey Ventricular Assist Device,” Artificial Organs, vol. 23, no. 8, pp. 802-806, 1999.

[12] 洪佐旻,”人工心臟混流泵之設計與分析”,成功大學航空太空工程研究所碩士論文,2004.

[13] Kim, S. H., Chandran, K. B., and Chen, C. J., “Numerical Simulation of Steady Flow in a Two-Dimensional Total Artificial Heart Model,” Journal of Biomechanical Engineering, vol. 114, no. 4, pp. 497-503, 1992.

[14] Chester, N. C., and Kamm, R. D., “Performance Analysis of a Cardiac Assist Device in Counterpulsation,” Journal of Biomechanical Engineering, vol. 120, no. 4, pp. 437-445, 1998.

[15] Launder, B. E., and Spalding, D. B., “The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, vol. 3, pp. 269-289, 1974.

[16] Ronel, J. and Baliga, B. R., ”A Finite Element Method for Unsteady Heat Conduction in Materials with or without Phase Change,”ASME Paper, 79-WA-HT-54, 1979.

[17] Schneider, G. E. and Raw, M. J., ”A Skewed, Positive Influence Coefficient Upwinding Procedure for Control-Volume-Based Finite Element Convection-Diffusion Computation,” Numerical Heat Transfer, vol. 8, pp. 1-26, 1986.

[18] Schneider, G. E. and Raw, M. J., “Control-Volume Finite Element Method for Heat Transfer and Fluid Flow Using Co-located Variables -- 1. Computational Procedure,” Numerical Heat Transfer, vol. 11, pp. 363-390, 1987.

[19] Huget, R. G., “The Evaluation and Development of Approximation Schemes for the Finite Volume Method,” University of Waterloo, Ph.D. Thesis, 1985.

[20] Raw, M. J., “A New Control-Volume-Based Finite Element Procedure for the Numerical Solution of the Fluid Flow and Scalar Transport Equations,” Doctoral Thesis, University of Waterloo, Waterloo, Ontario, Canada, 1985.

[21] Raithby, G. D., “Skew Upstream Differencing Schemes for Problems Involving Fluid Flow,” Computer Methods in Applied Mechanics and Engineering, vol. 9, pp. 153-164, 1976.

[22] Millner, A., Menn, D., Ochs, B., Vaughan, S. and Kung, R. T., “Development of an Efficient Electrohydraulic Total Artificial Heart,” ASAIO Journal, vol. 36, no. 3, pp. 245-249, 1990.

[23] Wright, Terry, Fluid Machinery, Performance, Analysis, and Design, CRC PRESS, 1999.

[24] Balje, O. E., Turbomachines, John Wiley and Sons, 1981.

[25] Cordier, O., ”Similarity Considerations in Turbomachines,” VDI Reports, vol. 3, 1955.

[26] J. P. Gostelow, Cascade Aerodynamics, Pregamon Press, 1984.

[27] John, Tuzson, Centrifugal Pump Design, John Wiley & Sons, 2000.

[28] Allaire, P. E., Wood, H. G., Awad, R. S. and Olsen, D. B., “Blood Flow in a Continuous Flow Ventricular Assist Device,” Artificial Organs, vol. 23, no. 8, pp. 769-773, 1999.

[29] Chua, L. P., Yu, S. C. M., Leo, H. L., Chan, W. K., “Comparison of Flow Characteristics of Enlarged Blood Pump Models with Different Impeller Design,” International Communications in Heat and Mass Transfer, vol. 26, no. 3, pp. 369-378, 1999.

[30] Stodola, A., Steam and Gas Turbines, Springer-Verlag, 1924.

[31] Karassik, I.J., Messina, J. and Cooper, P., Pump Handbook, McGraw-Hill Inc., 1986.

[32] Curtas, A. R., Wood, H. G., Allaire, P. E., Mcdaniel, J. C., Day, S. W. and Olsen, D. B., “Computational Fluid Dynamic Modeling of Impeller Designs for the HeartQuest Left Ventricular Assist Device,” ASAIO Journal, vol. 48, no. 5, pp. 552-561, 2002.

[33] 陳世雄,流體機械,成大航太所課程講義,1997.

[34] Baun, O. D. and Flack, D. R., “Effects of Volute Design and Number of Impeller Blades on Lateral Impeller Forces and Hydraulic Performance,” International Journal of Rotating Machinery, vol. 9, no. 2, pp. 145-152, 2003.

[35] Anderson, J. B., Wood, H. G., Allaire, P. E. and Olsen, D. B., “Numerical Analysis of Blood Flow in the Clearance Regions of a Continuous Flow Artificial Heart Pump,” Artificial Organs, vol. 24, no. 6, pp.492-500, 2000.

[36] Aungier, R. H., Centrifugal Compressors, A Strategy for Aerodynamic Design and Analysis, ASME PRESS, 2000.

[37] CFX-TASCflow Theory Documentation Version 2.12, AEA Technology Engineering Software Limited, 2002.

[38] CFX-TASCflow User Documentation Version 2.12, AEA Technology Engineering Software Limited, 2002.

[39] Cumpsty, N. A., Compressor Aerodynamics, Longman Scientific & Technical, 1989.

[40] Sam, Yedidiah, Centrifugal Pump User’s Guidebook, Problems and Solutions, Chapman & Hall, 1996.

[41] Volk, W. M., Pump Characteristics and Applications, M. Dekker, 1996.

[42] Nursen, E. C., and Ayder, E., “Numerical Calcuation of the Three-Dimensional Swirling Flow Inside the Centrifugal Pump Volutes,” International Journal of Rotating Machinery, vol. 9, no. 4, pp. 247-253, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top