跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 20:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳怡靜
研究生(外文):I-Ching Wu
論文名稱:FasLigand的表現改變小鼠黑色素瘤細胞(B16F10)的轉移程度
論文名稱(外文):Fas Ligand Expression Alters Tumor Metastasis In B16F10 Cells
指導教授:楊倍昌楊倍昌引用關係
指導教授(外文):Bei-Chang Yang,
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:71
中文關鍵詞:Fas Ligand轉移小鼠黑色素瘤細胞多細胞腫瘤球體
外文關鍵詞:multicellular tumor spheroidsB16F10metastasisFas Ligand
相關次數:
  • 被引用被引用:0
  • 點閱點閱:806
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:0
腫瘤細胞必須要能逃避免疫系統的攻擊,並在新的組織中生存才能造成轉移。雖然腫瘤轉移的機制尚未清楚,不過目前已知有些腫瘤細胞會表現FasL來造成帶有Fas的免疫細胞的細胞凋亡,稱為「Fas的反擊」(Fas counterattack)。本實驗室先前的研究發現降低小鼠黑色素瘤細胞(B16F10)表面FasL的表現,確實減少皮下腫瘤的形成。然而我們卻發現降低FasL的表現,竟然增加了腫瘤轉移至肺臟的機會。本研究希望釐清FasL如何影響黑色素瘤細胞的轉移能力。首先我的研究再次確認利用ribozyme降低FasL的表現,能增加腫瘤在小鼠肺臟的轉移。而且在平面培養的條件之下,降低FasL的表現會增強細胞的移動能力。同時在多細胞腫瘤球體的立體結構系統中,降低FasL的表現也會使細胞脫離腫瘤球體及移動能力增強。但是若降低Fas的表現,細胞移動能力及轉移能力會下降。此外細胞內Fas傳遞訊息下游的caspase cascade的活化並未因FasL的表現而不同,而且抑制caspase-3/8 的活化,也不影響細胞的移動。因此Fas-associated caspase cascade及相關的訊號傳遞調控B16F10細胞移動能力的方式與FasL不同,初步排除改變FasL是透過Fas訊息的降低而影響細胞移動及轉移的可能性。另外,抑制FasL的表現會增加腫瘤細胞中MAPKs的表現。在MAPKs抑制物的存在下,細胞移動的能力會減緩。而且抑制FasL的表現增加細胞FAK的活化,可能因而影響細胞移動能力。此外,在立體腫瘤球體細胞回貼的實驗分析中,FasL會抑制gelatinase被基質激發的速率。FasL影響MMPs的表現可能是FasL改變細胞自腫瘤球體脫落程度的原因。總之,本實驗認為FasL可能具有一個傳遞reverse signal的能力,抑制腫瘤細胞的轉移。
Tumor cells escaping from immune surveillance and surviving in a new tissue environment are important for tumor metastasis. The mechanisms involving in these processes are still not completely understood. Fas/FasL mediated apoptosis is one of the strategies for immune escape. Some FasL-expressing tumor cells induce apoptosis in cytotoxic lymphocytes by direct “ Fas counterattack”. Apoptosis-resistant tumor cells may have enhanced motility and invasiveness upon FasL stimulation. In order to investigate how FasL affect tumor metastasis, we established B16F10-derived cells expressing different levels of Fas or FasL and their metastasis abilities were tested in a pulmonary metastatic animal model. We found that down-regulation of FasL obviously increased lung metastasis of B16F10 in B6 mice. Besides, both up-regulation and down-regulation of Fas reduced lung metastasis. Down-regulation of FasL (R and R149 cells) increased cell motility in 2-D culture, and expressed more activation of ERK and p38. Moreover, down-regulation of FasL increased cells detachment from tumor spheroid, and secreted more metalloproteinase. ERK and p38 inhibitors could reduce cell motility, suggested that ERK and p38 were involved in cell migration. However, the FasL-associated cell migration was caspase-8/3 independent. Down-regulation of Fas reduced cell motility and metastasis provided evidence that Fas signal enhances migration and metastasis, which is different from the effect of FasL. In summary, our results suggested that FasL might trigger novel signaling to inhibit metastasis.
中文摘要……………………………………………………… Ⅰ
英文摘要……………………………………………………… Ⅱ
目錄…………………………………………………………… Ⅲ
圖目錄………………………………………………………… Ⅶ
第1章 序論………………………………………………… 1
1.1 Fas與Fas ligand的作用………………………… 1
1.2 轉移性黑色素細胞癌……………………………… 3
1.3 腫瘤轉移機制……………………………………… 3
1.4 腫瘤轉移與FasL 之相關性……………………… 5
1.5 體外腫瘤細胞球體培養系統 (spheroid system)… 5
第2章 實驗目的及設計 ……………………………………… 7
2.1 實驗目的…………………………………………… 7
2.2 實驗設計…………………………………………… 8
第3章 實驗材料與方法 ……………………………………… 10
3.1 實驗材料…………………………………………… 10
3.1.1 儀器設備…………………………………………… 10
3.1.2 試劑………………………………………………… 10
3.1.3 細胞培養材料……………………………………… 12
3.1.4 抗體………………………………………………… 12
3.2 實驗方法 …………………………………………… 13
3.2.1 細胞株來源與培養………………………………… 13
3.2.2 質體DNA之建構、轉染與細胞株篩選 …………… 13
3.2.3 反轉錄聚合酶連鎖反應…………………………… 14
3.2.4 動物實驗及組織處理……………………………… 16
3.2.5 腫瘤球體的養成與觀察…………………………… 16
3.2.6 冷凍切片技術……………………………………… 17
3.2.7 蘇木紫與伊紅染色法……………………………… 18
3.2.8 細胞蛋白質抽取…………………………………… 18
3.2.9 蛋白質濃度定量…………………………………… 18
3.2.10 西方點墨法………………………………………… 18
3.2.11 SDS-PAGE gelatin zymography assay ………… 21
3.2.12 單一細胞移動分析………………………………… 22
3.2.13 傷口瘉合分析……………………………………… 22
3.2.14 細胞脫離團塊及移行分析………………………… 23
3.3 試劑製備 …………………………………………… 23
3.3.1 細胞株來源與培養………………………………… 23
3.3.2 質體DNA之建構、轉染與細胞株篩選 …………… 24
3.3.3 反轉錄聚合酶連鎖反應…………………………… 24
3.3.4 動物實驗及組織處理……………………………… 25
3.3.5 腫瘤球體的養成與觀察…………………………… 25
3.3.6 冷凍切片技術……………………………………… 25
3.3.7 蘇木紫與伊紅染色法……………………………… 26
3.3.8 細胞蛋白質抽取…………………………………… 26
3.3.9 蛋白質濃度定量…………………………………… 26
3.3.10 西方點墨法………………………………………… 26
3.3.11 SDS-PAGE gelatin zymography assay ………… 28
第4章 實驗結果 ……………………………………………… 30
4.1 小鼠黑色素瘤細胞 B16F10穩定細胞株的建立及確
認腫瘤細胞株FasL表現量……………………………………… 30
4.2 B16F10腫瘤肺臟轉移之動物模式………………… 30
4.3 平面培養時,FasL對於細胞移行能力之影響…… 31
4.4 腫瘤球體的養成及觀察…………………………… 32
4.5 立體培養時,FasL對於腫瘤細胞自球體脫離及細胞
移行能力之影響………………………………………………… 33
4.6 Caspase cascade並未參與FasL調控B16F10細胞的
移動能力………………………………………………………… 34
4.7 Caspase cascade並未參與FasL調控B16F10細胞自
腫瘤球體脫離的能力…………………………………………… 34
4.8 ERK及p38參與FasL調控B16F10細胞的移動能力… 35
4.9 細胞黏著分子( focal adhesion molecules)的表現…36
4.10 ERK參與FasL調控B16F10細胞自腫瘤球體脫離的能力…
……………………………………………………………………… 37
4.11 Matrix metalloproteinases (MMPs)的表現……… 38
4.12 調控Fas的表現不會促進B16F10細胞的移動及轉移… 38
第5章 討論……………………………………………………… 40
第6章 結論……………………………………………………… 44
第7章 參考文獻………………………………………………… 45
附錄 ……………………………………………………………… 52
圖 (Figures) …………………………………………………… 55
Alderson M.R., Armitage R.J., Maraskovsky E., Tough T.W., Roux E., Schooley K., Ramsdell F. and Lynch D.H.. Fas transduces activation signals in normal human T lymphocytes. J. Exp. Med., 178:2231-2235, 1993.
Bader A., Knop E., Kern A., Boker K., Fruhauf N., Crome O., Esselmann H., Pape C., Kempka G., and Sewing K.F.. 3-D coculture of hepatic sinusoidal cells with primary hepatocytes-design of an organotypical model. Exp. Cell. Res., 226:223-233, 1996.
Barnhart B.C., Legembre P., Pietras E., Bubici C., Franzoso G., and Peter M.E.. CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J., 23:3175-3185, 2004.
Barr R.K. and Bogoyevitch M.A.. The c-Jun N-terminal protein kinase family of mitogen-activated protein kinases (JNK MAPKs). Int. J. Biochem. Cell. Biol., 33:1047-1063, 2001.
Bennett M.W., O'Connell J., O'Sullivan G.C., Brady C., Roche D., Collins J.K., and Shanahan F.. The Fas counterattack in vivo: apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma. J. Immunol., 160:5669-5675, 1998.
Biancone L., Martino A.D., Orlandi V., Conaldi P.G., Toniolo A., and Camussi G.. Development of inflammatory angiogenesis by local stimulation of Fas in vivo. J. Exp. Med., 186:147-152, 1997.
Bjerkvig R.. Spheroid culture in cancer research. CRC Press, Boca Raton, FL, 4, 1991.
Brown M.C. and Turner C.E.. Roles for the tubulin- and PTP-PEST-binding paxillin LIM domains in cell adhesion and motility. Int. J. Biochem. Cell Biol., 34:855-863, 2002.
Chen M. and Wang J.. Initiator caspases in apoptosis signaling pathways. Apoptosis, 7:313-319, 2002.
Chen Y.L., Wang J.Y., Chen S.H., and Yang B.C.. Granulocytes mediates the Fas-L-associated apoptosis during lung metastasis of melanoma that determines the metastatic behaviour. Br. J. Cancer, 87: 359-365, 2002.
Chintala S.K., Sawaya R., Gokaslan Z.L., and Rao J.S.. Modulation of matrix metalloprotease-2 and invasion in human glioma cells by alpha 3 beta 1 integrin. Cancer Lett., 103:201-208,1996.
Cox A.D., Brtva T.R., Lowe D.G., and Der C.J.. R-Ras induces malignant, but not morphologic, transformation of NIH3T3 cells. Oncogene, 9:2181-3288, 1994.
Culig Z., Hobisch A., Cronauer M.V., Radmayr C., Hittmair A., Zhang J., Thurnher M., Bartsch G., and Klocker H.. Regulation of prostatic growth and function by peptide growth factors. Prostate, 28:392-405, 1996.
Deak J.C., Cross J.V., Lewis M., Qian Y., Parrott L.A., Distelhorst C.W., and Templeton D. J.. Fas-induced proteolytic activation and intracellular redistribution of the stress-signaling kinase MEKK1. Proc. Natl. Acad. Sci. U S A., 95:5595-5600, 1998.
Deryugina E.I. and Bourdon M.A.. Tenascin mediates human glioma cell migration and modulates cell migration on fibronectin. J. Cell Sci., 109:643-652, 1996.
Desbarats J., Birge R.B., Mimouni-Rongy M., Weinstein D.E., Palerme J.S., and Newell M.K.. Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nat. Cell. Biol., 5:118-125, 2003.
Dhein J., Walczak H., Baumler C., Debatin K.M. and Krammer P.H.. Autocrine T-cell suicide mediated by APO-1 (Fas/CD95). Nature, 373:438-441, 1995.
Du Q.S., Ren X.R., Xie Y., Wang Q., Mei L. and Xiong W.C.. Inhibition of PYK2-induced actin cytoskeleton reorganization, PYK2 autophosphorylation and focal adhesion targeting by FAK. J. Cell Sci., 114:2977-2987, 2001.
Elder D.E.. Metastatic melanoma. In Pigment Cell (ed. D.E. Elder), pp. 182. Karger, Basel, Switzerland. 1987.
Favre-Felix N., Fromentin A., Hammann A., Solary E., Martin F., and Bonnotte B.. Cutting edge: the tumor counterattack hypothesis revisited: colon cancer cells do not induce T cell apoptosis via the Fas (CD95, APO-1) pathway. J. Immunol., 164:5023-5027, 2000.
Hahne M., Rimoldi D., Schroter M., Romero P., Schreier M., French L.E., Schneider P., Bornand T., Fontana A., Lienard D., Cerottini J.C., and Tschopp J.. Melanoma cell expression of Fas (Apo-1/CD95) ligand: implications for tumor immune escape. Science, 274:1363-1366, 1996.
Heuertz R.M., Tricomi S.M., Ezekiel U.R., and Webster R.O.. C-reactive protein inhibits chemotactic peptide-induced p38 mitogen-activated protein kinase activity and human neutrophil movement. J. Biol. Chem., 274:17968-17974, 1999.
Hidalgo M. and Eckhardt S.G.. Development of matrix metalloproteinase inhibitors in cancer therapy. J. Natl. Cancer Inst., 93:178-193, 2001.
Holtfreter J. A.. A study of the mechanixm of gastrulation, Part II. J. Exp. Zool., 95:171-211, 1944.
Houghton A.N. and Polsky D.. Focus on melanoma. Cancer Cell, 2:275-278, 2002.
Huang C., Jacobson K., and Schaller M.D.. MAP kinases and cell migration. J. Cell Sci., 117:4619-4628, 2004.
Huang C., Rajfur Z., Borchers C., Schaller M. D., and Jacobson K.. JNK phosphorylates paxillin and regulates cell migration. Nature, 424:219-223, 2003.
Huang S.C., Ho C.T., Lin-Shiau S.Y., Lin J.K.. Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappa B and c-Jun. Biochem. Pharmacol., 69:221, 2005.
Imai A., Takagi A., Takagi H., and Tamaya T.. Evidence for fight compling of gonadotropin-releasing hormone receptor to stimulated Fas ligand expression in reproduction tract tumors: possible mechanism for hormone control of apoptotic cell death. J. Chin. Endocrinol. Metab., 83:427-431, 1998.
Itoh N., Yonehara S., Ishii A., Yonehara M., Mizushima S., Sameshima M., Hase A., Seto Y., and Nagata S.. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell, 66:233-43, 1991.
Jelaska A. and Korn J. H.. Anti-Fas induces apoptosis and proliferation in human dermal fibroblasts: differences between foreskin and adult fibroblasts. J. Cell Physiol., 175:19-29, 1998.
Jenkins M., Keir M., and McCune J.M.. A membrane-bound Fas decoy receptor expressed by human thymocytes. J. Biol. Chem., 275:7988-7993, 2000.
Johnson T.M., Hamilton T. and Lowe L.. Multiple primary melanomas. J. Am. Acad. Dermatol., 39:422-427, 1998.
Ju S. T., Matsui K., and Ozdernirli M.. Molecular and cellular mechanisms regulating T and B cell apoptosis through Fas/FasL interaction. Int. Rev. Immunol., 18:485-513, 1999.
Juliano R.L.. Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu. Rev. Pharmacol. Toxicol., 42:283-323, 2002.
Kahana O., Micksche M., Witz I.P., and Yron I..The focal adhesion kinase (P125FAK) is constitutively active in human malignant melanoma. Oncogene, 21:3969-3977, 2002.
Kang S.M., Braat D., Schneider D.B., O'Rourke R.W., Lin Z., Ascher N.L., Dichek D.A., Baekkeskov S., and Stock P.G.. A non-cleavable mutant of Fas ligand does not prevent neutrophilic destruction of islet transplants. Transplantation, 69:1813-1817, 2000.
Kang S.M., Schneider D.B., Lin Z., Hanahan D., Dichek D.A., Stock P.G., and Baekkeskov S.. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nature Med., 3:738, 1997.
Klemke R.L., Cai S., Giannini A.L., Gallagher P.J., de Lanerolle P., and Cheresh D.A.. Regulation of cell motility by mitogen-activated protein kinase. J. Cell. Biol., 137:481-492, 1997.
Koga M., Hiromatsu Y., Jimi A., Inoue Y., Nonaka K.. Possible involvement of Fas-mediated apoptosis in eye muscle tissue from patients with thyroid-associated ophthalmopathy. Thyroid, 8:311-318, 1998.
Koyama S., Koike N., and Adachi S.. Fas receptor counterattack against tumor-infiltrating lymphocytes in vivo as a mechanism of immune escape in gastric carcinoma. J. Cancer Res. Clin. Oncol., 127:20-16, 2001.
Krueger J.S., Keshamouni V.G., Atanaskova N., and Reddy K.B.. Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene, 20:4209-4219, 2001.
Kurooka M., Nuovo G.J., Caligiuri M.A., and Nabel G.J.. Cellular localization and function of Fas ligand (CD95L) in tumors. Cancer Res., 62:1261-1265, 2002.
Lafleur E.A., Koshkina N.V., Stewart J., Jia S.F., Worth L.L., Duan X., and Kleinerman E.S.. Increased Fas expression reduces the metastatic potential of human osteosarcoma cells. Clin. Cancer Res., 10:8114-8119, 2004.
Lakka S.S., Gondi C.S., Yanamandra N., Dinh D.H., Olivero W.C., Gujrati M., and Rao J.S.. Synergistic down-regulation of urokinase plasminogen activator receptor and matrix metalloproteinase-9 in SNB19 glioblastoma cells efficiently inhibits glioma cell invasion, angiogenesis, and tumor growth. Cancer Res., 63:2454-2461, 2003.
Li-Weber M. and Krammer P. H.. Function and regulation of the CD95 (APO-1/Fas) ligand in the immune system. Semin. Immunol., 15:145-157, 2003.
Liabakk N.B., Talbot I., Smith R.A., Wilkinson K., and Balkwill F.. Matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9) type IV collagenases in colorectal cancer. Cancer Res., 56:190-196, 1996.
Matrisian L.M. The matrix-degrading metalloproteinases. Bioessays, 14:455-463, 1992.
Matsumoto T., Yokote K., Tamura K., Takemoto M., Ueno H., Saito Y., and Mori S.. Platelet-derived growth factor activates p38 mitogen-activated protein kinase through a Ras-dependent pathway that is important for actin reorganization and cell migration. J. Biol. Chem., 274:13954-13960, 1999.
McCawley L.J. and Matrisian L.M.. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol. Med. Today., 6:149-156, 2000.
Mooney E.E., Peris J.M.R., O’Neill A., and Sweeney E.C.. Apoptotic and mitotic indices in malignant melanoma and basal cell carcinoma. J. Clin. Pathol., 48:242-244, 1995.
Moscona A.. Formation of lentoids by dissociated retinal cells of the chick embryo. Science, 125:598-599, 1957.
Mueller-Klieser W.. Multicellular spheroids. A review on cellular aggregates in cancer research. J. Cancer Res. Clin. Oncol., 113:101-122, 1987.
Mueller-Klieser W.. Tumor biology and experimental therapeutics. Crit. Rev. Oncol. Hematol., 36:123-139, 2000.
Muller A., Homey B., Soto H., Ge N., Catron D., Buchanan M.E., McClanahan T., Murphy E., Yuan W., Wagner S.N., Barrera J.L., Mohar A., Verastegui E. and Zlotnik A.. Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50-56, 2001.
Nagata S.. Fas and Fas ligand: a death factor and its receptor. Adv. Immunol., 57:129, 1994.
Nagata S.. Apoptosis by death factor. Cell, 88:355-365, 1997.
Niehans G.A., Brunner T., Frizelle S.P., Liston J.C., Salero C.T., Knapp D.J., Green D.R. and Kratzke R.A.. Human lung carcinomas express Fas ligand. Cancer Res., 57:1007-1012, 1997.
O’Connell J., O’Sullivan G.C., Collins K., and Shanahan F.. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J. Exp. Med., 184:1074-1082, 1996.
O’Connell J., Bennett M.W., O’sullivan G.G., D. Roche, J. Kelly, J.K. Collins, and Shanahan. F.. Fas counter-attack the best form of tumor defense? Nature Med., 5:267-268, 1999.
Ono K. and Han J.. The p38 signal transduction pathway: activation and function. Cell. Signal., 12:1-13, 2000.
Opdenakker G., Van den Steen P.E., and Van Damme J.. Gelatinase B: a tuner and amplifier of immune functions. Trends. Immunol., 22:571-579, 2001.
Paget S.. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev., 8:98-101, 1989.
Pitti R.M., Marsters S.A., Lawrence D.A., Roy M., Kischkel F.C., Dowd P., Huang A., Donahue C.J., Sherwood S.W., Baldwin D.T., Godowski P.J., Wood W.I., Gurney A.L., Hillan K.J., Cohen R.L., Goddard A.D., Botstein D., and Ashkenazi A.. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature, 396:699-703, 1998.
Poste G., Paruch L., and Stephen Paget.. Aretrospective. Cancer Metastasis Rev., 8:93-97, 1989.
Reddy K.B, Krueger J.S., Kondapaka S.B., and Diglio C.A.. Mitogen-activated protein kinase (MAPK) regulates the expression of progelatinase B (MMP-9) in breast epithelial cells. Int. J. Cancer., 82:268-273, 1999.
Reddy K.B., Nabha S.M., and Atanaskova N.. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev., 22:395-403, 2003.
Saas P., Walker P.R., Hahne M., Quiquerez A.L., Schnuriger V., Perrin G., Franch L., VanMeir E.G., Tribolet N.T., Schopp J., and Dietrich P.Y.. Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J. Clin. Invest., 99:1173-1178, 1997.
Santini M.T., Rainaldi G., and Indovina P.L.. Multicellular tumour spheroids in radiation biology. Int. J. Radiat. Biol., 75:787-799, 1999.
Sastry S.K. and Burridge K.. Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp. Cell Res., 261:25-36, 2000.
Schaller M.D.. Paxillin: a focal adhesion-associated adaptor protein. Oncogene, 20:6459-6472, 2001.
Shiraki K., Tsuji N., Shioda T., Isselbacher K.J. and Takahashi H.. Expression of Fas ligand in liver metastases of human colonic adenocarcinomas. Proc. Natl. Acad. Aci. USA, 94:6420-6425, 1997.
Song E., Lee S.K., Wang J., Ince N., Ouyang N., Min J., Chen J., Shankar P., and Lieberman J.. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med., 9:347, 2003.
Sutherland R.M.. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science, 240:177-184, 1988.
Suzuki I. and Fink PJ.. Maximal proliferation of cytotoxic T lymphocytes requires reverse signaling through Fas ligand. J. Exp. Med., 187:123-128, 1998.
Wajant H., Pfizenmaier K., and Scheurich P.. Non-apoptotic Fas signaling. Cytokine Growth Factor Rev., 14:53-66, 2003.
Walker P.R., Saas P. and Dietrich P.Y.. Role of Fas ligand (CD95L) in immune escape: the tumor cells strikes back. J. Immunol., 158:4521-4524, 1997.
Walker P.R., Saas P., and Dietrich P.Y.. Tumor expression of Fas ligand (CD95L) and the consequences. Curr. Opin. Immunol., 10:564-572, 1998.
Wenzel J., Sanzenbacher R., Ghadimi M., Lewitzky M., Zhou Q., Kaplan D.R., Kabelitz D., Feller S.M., and Janssen O.. Multiple interactions of the cytosolic polyproline region of the CD95 ligand: hints for the reverse signal transduction capacity of a death factor. FEBS Lett., 509:255-262, 2001.
Xia Y. and Karin M.. The control of cell motility and epithelial morphogenesis by Jun kinases. Trends. Cell. Biol., 14:94-101, 2004.
Yang J., Price M.A., Neudauer C.L., Wilson C., Ferrone S., Xia H., Iida J., Simpson M.A., and McCarthy J.B.. Melanoma chondroitin sulfate proteoglycan enhances FAK and ERK activation by distinct mechanisms. J. Cell Biol.,165:881-891, 2004.
Yang X., Khosravi-Far R., Chang H.Y., and Baltimore D.. Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell, 87:1067-1076, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top