|
Alderson M.R., Armitage R.J., Maraskovsky E., Tough T.W., Roux E., Schooley K., Ramsdell F. and Lynch D.H.. Fas transduces activation signals in normal human T lymphocytes. J. Exp. Med., 178:2231-2235, 1993. Bader A., Knop E., Kern A., Boker K., Fruhauf N., Crome O., Esselmann H., Pape C., Kempka G., and Sewing K.F.. 3-D coculture of hepatic sinusoidal cells with primary hepatocytes-design of an organotypical model. Exp. Cell. Res., 226:223-233, 1996. Barnhart B.C., Legembre P., Pietras E., Bubici C., Franzoso G., and Peter M.E.. CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J., 23:3175-3185, 2004. Barr R.K. and Bogoyevitch M.A.. The c-Jun N-terminal protein kinase family of mitogen-activated protein kinases (JNK MAPKs). Int. J. Biochem. Cell. Biol., 33:1047-1063, 2001. Bennett M.W., O'Connell J., O'Sullivan G.C., Brady C., Roche D., Collins J.K., and Shanahan F.. The Fas counterattack in vivo: apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma. J. Immunol., 160:5669-5675, 1998. Biancone L., Martino A.D., Orlandi V., Conaldi P.G., Toniolo A., and Camussi G.. Development of inflammatory angiogenesis by local stimulation of Fas in vivo. J. Exp. Med., 186:147-152, 1997. Bjerkvig R.. Spheroid culture in cancer research. CRC Press, Boca Raton, FL, 4, 1991. Brown M.C. and Turner C.E.. Roles for the tubulin- and PTP-PEST-binding paxillin LIM domains in cell adhesion and motility. Int. J. Biochem. Cell Biol., 34:855-863, 2002. Chen M. and Wang J.. Initiator caspases in apoptosis signaling pathways. Apoptosis, 7:313-319, 2002. Chen Y.L., Wang J.Y., Chen S.H., and Yang B.C.. Granulocytes mediates the Fas-L-associated apoptosis during lung metastasis of melanoma that determines the metastatic behaviour. Br. J. Cancer, 87: 359-365, 2002. Chintala S.K., Sawaya R., Gokaslan Z.L., and Rao J.S.. Modulation of matrix metalloprotease-2 and invasion in human glioma cells by alpha 3 beta 1 integrin. Cancer Lett., 103:201-208,1996. Cox A.D., Brtva T.R., Lowe D.G., and Der C.J.. R-Ras induces malignant, but not morphologic, transformation of NIH3T3 cells. Oncogene, 9:2181-3288, 1994. Culig Z., Hobisch A., Cronauer M.V., Radmayr C., Hittmair A., Zhang J., Thurnher M., Bartsch G., and Klocker H.. Regulation of prostatic growth and function by peptide growth factors. Prostate, 28:392-405, 1996. Deak J.C., Cross J.V., Lewis M., Qian Y., Parrott L.A., Distelhorst C.W., and Templeton D. J.. Fas-induced proteolytic activation and intracellular redistribution of the stress-signaling kinase MEKK1. Proc. Natl. Acad. Sci. U S A., 95:5595-5600, 1998. Deryugina E.I. and Bourdon M.A.. Tenascin mediates human glioma cell migration and modulates cell migration on fibronectin. J. Cell Sci., 109:643-652, 1996. Desbarats J., Birge R.B., Mimouni-Rongy M., Weinstein D.E., Palerme J.S., and Newell M.K.. Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nat. Cell. Biol., 5:118-125, 2003. Dhein J., Walczak H., Baumler C., Debatin K.M. and Krammer P.H.. Autocrine T-cell suicide mediated by APO-1 (Fas/CD95). Nature, 373:438-441, 1995. Du Q.S., Ren X.R., Xie Y., Wang Q., Mei L. and Xiong W.C.. Inhibition of PYK2-induced actin cytoskeleton reorganization, PYK2 autophosphorylation and focal adhesion targeting by FAK. J. Cell Sci., 114:2977-2987, 2001. Elder D.E.. Metastatic melanoma. In Pigment Cell (ed. D.E. Elder), pp. 182. Karger, Basel, Switzerland. 1987. Favre-Felix N., Fromentin A., Hammann A., Solary E., Martin F., and Bonnotte B.. Cutting edge: the tumor counterattack hypothesis revisited: colon cancer cells do not induce T cell apoptosis via the Fas (CD95, APO-1) pathway. J. Immunol., 164:5023-5027, 2000. Hahne M., Rimoldi D., Schroter M., Romero P., Schreier M., French L.E., Schneider P., Bornand T., Fontana A., Lienard D., Cerottini J.C., and Tschopp J.. Melanoma cell expression of Fas (Apo-1/CD95) ligand: implications for tumor immune escape. Science, 274:1363-1366, 1996. Heuertz R.M., Tricomi S.M., Ezekiel U.R., and Webster R.O.. C-reactive protein inhibits chemotactic peptide-induced p38 mitogen-activated protein kinase activity and human neutrophil movement. J. Biol. Chem., 274:17968-17974, 1999. Hidalgo M. and Eckhardt S.G.. Development of matrix metalloproteinase inhibitors in cancer therapy. J. Natl. Cancer Inst., 93:178-193, 2001. Holtfreter J. A.. A study of the mechanixm of gastrulation, Part II. J. Exp. Zool., 95:171-211, 1944. Houghton A.N. and Polsky D.. Focus on melanoma. Cancer Cell, 2:275-278, 2002. Huang C., Jacobson K., and Schaller M.D.. MAP kinases and cell migration. J. Cell Sci., 117:4619-4628, 2004. Huang C., Rajfur Z., Borchers C., Schaller M. D., and Jacobson K.. JNK phosphorylates paxillin and regulates cell migration. Nature, 424:219-223, 2003. Huang S.C., Ho C.T., Lin-Shiau S.Y., Lin J.K.. Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappa B and c-Jun. Biochem. Pharmacol., 69:221, 2005. Imai A., Takagi A., Takagi H., and Tamaya T.. Evidence for fight compling of gonadotropin-releasing hormone receptor to stimulated Fas ligand expression in reproduction tract tumors: possible mechanism for hormone control of apoptotic cell death. J. Chin. Endocrinol. Metab., 83:427-431, 1998. Itoh N., Yonehara S., Ishii A., Yonehara M., Mizushima S., Sameshima M., Hase A., Seto Y., and Nagata S.. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell, 66:233-43, 1991. Jelaska A. and Korn J. H.. Anti-Fas induces apoptosis and proliferation in human dermal fibroblasts: differences between foreskin and adult fibroblasts. J. Cell Physiol., 175:19-29, 1998. Jenkins M., Keir M., and McCune J.M.. A membrane-bound Fas decoy receptor expressed by human thymocytes. J. Biol. Chem., 275:7988-7993, 2000. Johnson T.M., Hamilton T. and Lowe L.. Multiple primary melanomas. J. Am. Acad. Dermatol., 39:422-427, 1998. Ju S. T., Matsui K., and Ozdernirli M.. Molecular and cellular mechanisms regulating T and B cell apoptosis through Fas/FasL interaction. Int. Rev. Immunol., 18:485-513, 1999. Juliano R.L.. Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu. Rev. Pharmacol. Toxicol., 42:283-323, 2002. Kahana O., Micksche M., Witz I.P., and Yron I..The focal adhesion kinase (P125FAK) is constitutively active in human malignant melanoma. Oncogene, 21:3969-3977, 2002. Kang S.M., Braat D., Schneider D.B., O'Rourke R.W., Lin Z., Ascher N.L., Dichek D.A., Baekkeskov S., and Stock P.G.. A non-cleavable mutant of Fas ligand does not prevent neutrophilic destruction of islet transplants. Transplantation, 69:1813-1817, 2000. Kang S.M., Schneider D.B., Lin Z., Hanahan D., Dichek D.A., Stock P.G., and Baekkeskov S.. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nature Med., 3:738, 1997. Klemke R.L., Cai S., Giannini A.L., Gallagher P.J., de Lanerolle P., and Cheresh D.A.. Regulation of cell motility by mitogen-activated protein kinase. J. Cell. Biol., 137:481-492, 1997. Koga M., Hiromatsu Y., Jimi A., Inoue Y., Nonaka K.. Possible involvement of Fas-mediated apoptosis in eye muscle tissue from patients with thyroid-associated ophthalmopathy. Thyroid, 8:311-318, 1998. Koyama S., Koike N., and Adachi S.. Fas receptor counterattack against tumor-infiltrating lymphocytes in vivo as a mechanism of immune escape in gastric carcinoma. J. Cancer Res. Clin. Oncol., 127:20-16, 2001. Krueger J.S., Keshamouni V.G., Atanaskova N., and Reddy K.B.. Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene, 20:4209-4219, 2001. Kurooka M., Nuovo G.J., Caligiuri M.A., and Nabel G.J.. Cellular localization and function of Fas ligand (CD95L) in tumors. Cancer Res., 62:1261-1265, 2002. Lafleur E.A., Koshkina N.V., Stewart J., Jia S.F., Worth L.L., Duan X., and Kleinerman E.S.. Increased Fas expression reduces the metastatic potential of human osteosarcoma cells. Clin. Cancer Res., 10:8114-8119, 2004. Lakka S.S., Gondi C.S., Yanamandra N., Dinh D.H., Olivero W.C., Gujrati M., and Rao J.S.. Synergistic down-regulation of urokinase plasminogen activator receptor and matrix metalloproteinase-9 in SNB19 glioblastoma cells efficiently inhibits glioma cell invasion, angiogenesis, and tumor growth. Cancer Res., 63:2454-2461, 2003. Li-Weber M. and Krammer P. H.. Function and regulation of the CD95 (APO-1/Fas) ligand in the immune system. Semin. Immunol., 15:145-157, 2003. Liabakk N.B., Talbot I., Smith R.A., Wilkinson K., and Balkwill F.. Matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9) type IV collagenases in colorectal cancer. Cancer Res., 56:190-196, 1996. Matrisian L.M. The matrix-degrading metalloproteinases. Bioessays, 14:455-463, 1992. Matsumoto T., Yokote K., Tamura K., Takemoto M., Ueno H., Saito Y., and Mori S.. Platelet-derived growth factor activates p38 mitogen-activated protein kinase through a Ras-dependent pathway that is important for actin reorganization and cell migration. J. Biol. Chem., 274:13954-13960, 1999. McCawley L.J. and Matrisian L.M.. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol. Med. Today., 6:149-156, 2000. Mooney E.E., Peris J.M.R., O’Neill A., and Sweeney E.C.. Apoptotic and mitotic indices in malignant melanoma and basal cell carcinoma. J. Clin. Pathol., 48:242-244, 1995. Moscona A.. Formation of lentoids by dissociated retinal cells of the chick embryo. Science, 125:598-599, 1957. Mueller-Klieser W.. Multicellular spheroids. A review on cellular aggregates in cancer research. J. Cancer Res. Clin. Oncol., 113:101-122, 1987. Mueller-Klieser W.. Tumor biology and experimental therapeutics. Crit. Rev. Oncol. Hematol., 36:123-139, 2000. Muller A., Homey B., Soto H., Ge N., Catron D., Buchanan M.E., McClanahan T., Murphy E., Yuan W., Wagner S.N., Barrera J.L., Mohar A., Verastegui E. and Zlotnik A.. Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50-56, 2001. Nagata S.. Fas and Fas ligand: a death factor and its receptor. Adv. Immunol., 57:129, 1994. Nagata S.. Apoptosis by death factor. Cell, 88:355-365, 1997. Niehans G.A., Brunner T., Frizelle S.P., Liston J.C., Salero C.T., Knapp D.J., Green D.R. and Kratzke R.A.. Human lung carcinomas express Fas ligand. Cancer Res., 57:1007-1012, 1997. O’Connell J., O’Sullivan G.C., Collins K., and Shanahan F.. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J. Exp. Med., 184:1074-1082, 1996. O’Connell J., Bennett M.W., O’sullivan G.G., D. Roche, J. Kelly, J.K. Collins, and Shanahan. F.. Fas counter-attack the best form of tumor defense? Nature Med., 5:267-268, 1999. Ono K. and Han J.. The p38 signal transduction pathway: activation and function. Cell. Signal., 12:1-13, 2000. Opdenakker G., Van den Steen P.E., and Van Damme J.. Gelatinase B: a tuner and amplifier of immune functions. Trends. Immunol., 22:571-579, 2001. Paget S.. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev., 8:98-101, 1989. Pitti R.M., Marsters S.A., Lawrence D.A., Roy M., Kischkel F.C., Dowd P., Huang A., Donahue C.J., Sherwood S.W., Baldwin D.T., Godowski P.J., Wood W.I., Gurney A.L., Hillan K.J., Cohen R.L., Goddard A.D., Botstein D., and Ashkenazi A.. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature, 396:699-703, 1998. Poste G., Paruch L., and Stephen Paget.. Aretrospective. Cancer Metastasis Rev., 8:93-97, 1989. Reddy K.B, Krueger J.S., Kondapaka S.B., and Diglio C.A.. Mitogen-activated protein kinase (MAPK) regulates the expression of progelatinase B (MMP-9) in breast epithelial cells. Int. J. Cancer., 82:268-273, 1999. Reddy K.B., Nabha S.M., and Atanaskova N.. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev., 22:395-403, 2003. Saas P., Walker P.R., Hahne M., Quiquerez A.L., Schnuriger V., Perrin G., Franch L., VanMeir E.G., Tribolet N.T., Schopp J., and Dietrich P.Y.. Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J. Clin. Invest., 99:1173-1178, 1997. Santini M.T., Rainaldi G., and Indovina P.L.. Multicellular tumour spheroids in radiation biology. Int. J. Radiat. Biol., 75:787-799, 1999. Sastry S.K. and Burridge K.. Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp. Cell Res., 261:25-36, 2000. Schaller M.D.. Paxillin: a focal adhesion-associated adaptor protein. Oncogene, 20:6459-6472, 2001. Shiraki K., Tsuji N., Shioda T., Isselbacher K.J. and Takahashi H.. Expression of Fas ligand in liver metastases of human colonic adenocarcinomas. Proc. Natl. Acad. Aci. USA, 94:6420-6425, 1997. Song E., Lee S.K., Wang J., Ince N., Ouyang N., Min J., Chen J., Shankar P., and Lieberman J.. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med., 9:347, 2003. Sutherland R.M.. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science, 240:177-184, 1988. Suzuki I. and Fink PJ.. Maximal proliferation of cytotoxic T lymphocytes requires reverse signaling through Fas ligand. J. Exp. Med., 187:123-128, 1998. Wajant H., Pfizenmaier K., and Scheurich P.. Non-apoptotic Fas signaling. Cytokine Growth Factor Rev., 14:53-66, 2003. Walker P.R., Saas P. and Dietrich P.Y.. Role of Fas ligand (CD95L) in immune escape: the tumor cells strikes back. J. Immunol., 158:4521-4524, 1997. Walker P.R., Saas P., and Dietrich P.Y.. Tumor expression of Fas ligand (CD95L) and the consequences. Curr. Opin. Immunol., 10:564-572, 1998. Wenzel J., Sanzenbacher R., Ghadimi M., Lewitzky M., Zhou Q., Kaplan D.R., Kabelitz D., Feller S.M., and Janssen O.. Multiple interactions of the cytosolic polyproline region of the CD95 ligand: hints for the reverse signal transduction capacity of a death factor. FEBS Lett., 509:255-262, 2001. Xia Y. and Karin M.. The control of cell motility and epithelial morphogenesis by Jun kinases. Trends. Cell. Biol., 14:94-101, 2004. Yang J., Price M.A., Neudauer C.L., Wilson C., Ferrone S., Xia H., Iida J., Simpson M.A., and McCarthy J.B.. Melanoma chondroitin sulfate proteoglycan enhances FAK and ERK activation by distinct mechanisms. J. Cell Biol.,165:881-891, 2004. Yang X., Khosravi-Far R., Chang H.Y., and Baltimore D.. Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell, 87:1067-1076, 1997.
|