跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 21:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳伯煒
研究生(外文):Bo-Wei Chen
論文名稱:以類神經網路近似微陣列與表達序列標籤實驗數據間之關係:以大腸組織為例
論文名稱(外文):Applying Neural Network to Approximate Correlations between Gene Expression Levels in Microarray and the EST Library: Colon Tissue as Case Study
指導教授:蔣榮先蔣榮先引用關係
指導教授(外文):Jung-Hsien Chiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:53
中文關鍵詞:表達序列標籤微陣列類神經網路
外文關鍵詞:MicroarrayNeural NetworkEST
相關次數:
  • 被引用被引用:0
  • 點閱點閱:363
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
  對於微陣列實驗與表達序列標籤實驗而言,其目的便是針對研究人員所感興趣的組織細胞中所取出的mRNA作檢測並測量它的表現值,兩者之間所欲達成的目標是相同的,但是mRNA在這兩種實驗中卻有不同的表現量。為了近似並找出微陣列數值與表達序列標籤數值的關係,本系統採用了具有函數近似功能的徑向基底函數類神經網路作為計算兩者關係的方法;而其中包含了四個部份:(1)利用微陣列數值與表達序列標籤數值組成訓練樣本;(2)針對樣本中歪斜的情況進行加權式樣本的產生;(3)利用聚類分析法找出訓練樣本的外圍極端值並移除;(4)最後再利用k-means對樣本空間分析,以找出合適的徑向基底函數中心,然後再進行訓練徑向基底函數類神經網路的動作。當訓練完成的時候,使用者便可以輸入微陣列的表現值,進而由系統計算出所相對的表達序列標籤數值。
  The main purpose of both microarray and EST experiments are to measure the mRNA expression level but in different quantity representation. The aim of this study therefore is to approximate the relations between two experimental measurements. The underlying heuristics of our approach based on RBF neural network with functional approximation mechanism consisted of 1) corresponding microarray with EST expression values to generate the training samples, 2) adopting weighted-pattern generator to resolve the skew distribution among the samples, 3) identifying outliers through clustering, and 4) detecting centers of RBFs by analyzing the feature space of the training samples using k-means algorithm in order to facilitate the training process of neural network. Upon completion of neural network learning, system returns the corresponding EST count when microarray expression value is submitted. Our experiments have shown that the overall error rate fell from 10% to 30% when the five-dimensional feature vector was applied. If we are to increase the neural network performance, more training samples will be required. Furthermore, the results of feature selection comparison experiments suggest that using five-dimensional feature vector performed better than that of the three-dimension. On the other hand, in the outlier detection experiments, less outliers were identified if the size of data set grew.
第一章 導論..............................................................1
1.1 前言.................................................................1
1.2 研究動機.............................................................2
1.3 解決方法.............................................................3
1.4 系統概述.............................................................4
1.5 論文架構.............................................................5

第二章 文獻回顧與相關研究................................................6
2.1 微陣列製作流程.......................................................6
2.2 表達序列標籤製作流程.................................................9
2.3 微陣列與表達序列標籤數據關聯性之相關研究............................11
2.4 類神經網路於生物領域方面之相關研究..................................12

第三章 應用類神經網路計算微陣列與表達序列標籤數據間的近似關係...........13
3.1 方法論概述..........................................................13
3.2 系統架構圖..........................................................14
3.3 微陣列與表達序列標籤數據資料的前處理................................16
3.3.1 微陣列資料的處理..................................................16
3.3.2 表達序列標籤資料的處理............................................18
3.3.3 訓練樣本的產生....................................................19
3.4 加權式樣本(Weighted-pattern)產生方法................................21
3.5 類神經網路架構方法..................................................26
3.5.1 特徵的擷取........................................................26
3.5.2 神經元高斯函數之中心點選取與權重值更新方法........................29
3.5.3 架構類神經網路....................................................32
3.6 藉由聚類法偵測外圍極端值............................................33

第四章 實驗設計與結果分析...............................................35
4.1 資料集介紹及測試方法介紹............................................35
4.2 實驗與結果分析......................................................36
4.2.1 類神經網路與非線性?歸比較.........................................36
4.2.2 特徵選取之比較....................................................40
4.2.3 偵測外圍極端值策略的比較..........................................45

第五章 結論與未來研究方向...............................................49
5.1 結論................................................................49
5.2 未來研究方向........................................................49

參考文獻.................................................................51
[1] A. Coghlan., et al., “Relationship of codon bias to mRNA concentration and protein length in Saccharomyces Cerevisiae,” Yeast, 16:1131-1145, 2000.
[2] A. D. Baxevanis, et al., “A practical guide to the analysis of genes and proteins,” Second edition.
[3] A. Eyre-Walker, “Synonymous codon bias is related to gene length in Escherichia Coli: selection for translational accuracy,” Molecular Biology Evolution, 13:864-872, 1996.
[4] A. Papoulis, “Probablity, random vairables and stochastic Process,” Fourth edition.
[5] C. Li, W. H. Wong, “Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection,” PNAS, 98:31-36, 2001.
[6] D. Yoon, et al., “Two-stage normalization using background intensities in cDNA microarray data,” BMC Bioinformatics, 5:97, 2004.
[7] E. T. Munoz, et al., “Microarray and EST database estimates of mRNA expression levels differ: the protein length versus expression curve for C. elegans,” BMC Genomics, 5:30, 2004.
[8] J. B. Tobler, et al., “Evaluating machine learning approaches for aiding probe selection for gene-expression arrays,” Bioinformatics, March 27, 2002.
[9] J. H. Kim, et al., “Effect of local background intensities in the normalization of cDNA microarray data with a skewed expression profiles,” Experimental and Molecular Medicine, Vol. 34, No. 3, 224-232, July 2002.
[10] J. M. Deutsch, “Evolutionary algorithms for finding optimal gene sets in microarray prediction,” Bioinformatics, July 12, 2002.
[11] J. P. Townsend, “Multifactorial experimental design and the transitivity of ratios with spotted DNA microarrays,” BMC Genomics, 4:41, 2003.
[12] L. Duret, et al., “Statistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochors,” Journal of Molecular Evolution., 40, 308, V317. 1995.
[13] M. S. B. Sehgal, “Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data,” Bioinformatics, February 24, 2005.
[14] M. Semon, et al., “Relationship between gene expression and GC-content in mammals: statistical significance and biological relevance,” BMC Genomics, 4:49, 2003.
[15] Protech Technology, “Gene discovery introduction,” ProNews 23, Jul, 2004.
[16] R. Linder, et al., “The subsequent artificial neural network(SANN) approach might bring more classificatory power to ANN-based DNA microarray analyses,” Bioinformatics, July 29, 2004.
[17] R. Soumya, et al., “Principal components analysis to summarize microarray experiments: application to sporulation time series,” Stanford Medical Informatics, 2000.
[18] S. Alexander, et al., “A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis.,” Bioinformatcs, September 16, 2004.
[19] S. Haykin, “Neural networks: a comprehensive foundation,” Sencond edition.
[20] T. C. Santiago, et al., “The relationship between mRNA stability and length in Saccharomyces Cerevisiae,” Nucleic Acids Res., 14:8347-8360, 1986.
[21] W. Zhang, et al., “The functional landscape of mouse gene expression,” BMC Journal of Biology, Dec 6, 2004.
[22] Cancer Genome Anatomy Project, CGAP, http://cgap.nci.nih.gov/
[23] dbEST, http://www.ncbi.nlm.nih.gov/dbEST/
[24] Introduction to Biotechnology, http://juang.bst.ntu.edu.tw/JRH/biotech.htm
[25] Mammalian Gene Collection, MGC, http://mgc.nci.nih.gov/
[26] National Center for Biotechnology Information, NCBI, http://www.ncbi.nlm.nih.gov/
[27] Nucleotide, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide
[28] Stanford Microarray Database, SMD, http://genome-www5.stanford.edu/
[29] UniGene Digital Differential Display, DDD, http://www.ncbi.nlm.nih.gov/UniGene/info_ddd.html
[30] 教育部生物科技教育改進計畫,http://abep.sinica.edu.tw/stretagy7.htm
[31] 莊順淑,生物資訊概論,http://www.ascc.net/nl/92/1920/02.txt
[32] 陳健尉,生物晶片教學,http://www.nchu.edu.tw/~ibms/jwlaboratory.htm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文