|
[1] A. Coghlan., et al., “Relationship of codon bias to mRNA concentration and protein length in Saccharomyces Cerevisiae,” Yeast, 16:1131-1145, 2000. [2] A. D. Baxevanis, et al., “A practical guide to the analysis of genes and proteins,” Second edition. [3] A. Eyre-Walker, “Synonymous codon bias is related to gene length in Escherichia Coli: selection for translational accuracy,” Molecular Biology Evolution, 13:864-872, 1996. [4] A. Papoulis, “Probablity, random vairables and stochastic Process,” Fourth edition. [5] C. Li, W. H. Wong, “Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection,” PNAS, 98:31-36, 2001. [6] D. Yoon, et al., “Two-stage normalization using background intensities in cDNA microarray data,” BMC Bioinformatics, 5:97, 2004. [7] E. T. Munoz, et al., “Microarray and EST database estimates of mRNA expression levels differ: the protein length versus expression curve for C. elegans,” BMC Genomics, 5:30, 2004. [8] J. B. Tobler, et al., “Evaluating machine learning approaches for aiding probe selection for gene-expression arrays,” Bioinformatics, March 27, 2002. [9] J. H. Kim, et al., “Effect of local background intensities in the normalization of cDNA microarray data with a skewed expression profiles,” Experimental and Molecular Medicine, Vol. 34, No. 3, 224-232, July 2002. [10] J. M. Deutsch, “Evolutionary algorithms for finding optimal gene sets in microarray prediction,” Bioinformatics, July 12, 2002. [11] J. P. Townsend, “Multifactorial experimental design and the transitivity of ratios with spotted DNA microarrays,” BMC Genomics, 4:41, 2003. [12] L. Duret, et al., “Statistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochors,” Journal of Molecular Evolution., 40, 308, V317. 1995. [13] M. S. B. Sehgal, “Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data,” Bioinformatics, February 24, 2005. [14] M. Semon, et al., “Relationship between gene expression and GC-content in mammals: statistical significance and biological relevance,” BMC Genomics, 4:49, 2003. [15] Protech Technology, “Gene discovery introduction,” ProNews 23, Jul, 2004. [16] R. Linder, et al., “The subsequent artificial neural network(SANN) approach might bring more classificatory power to ANN-based DNA microarray analyses,” Bioinformatics, July 29, 2004. [17] R. Soumya, et al., “Principal components analysis to summarize microarray experiments: application to sporulation time series,” Stanford Medical Informatics, 2000. [18] S. Alexander, et al., “A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis.,” Bioinformatcs, September 16, 2004. [19] S. Haykin, “Neural networks: a comprehensive foundation,” Sencond edition. [20] T. C. Santiago, et al., “The relationship between mRNA stability and length in Saccharomyces Cerevisiae,” Nucleic Acids Res., 14:8347-8360, 1986. [21] W. Zhang, et al., “The functional landscape of mouse gene expression,” BMC Journal of Biology, Dec 6, 2004. [22] Cancer Genome Anatomy Project, CGAP, http://cgap.nci.nih.gov/ [23] dbEST, http://www.ncbi.nlm.nih.gov/dbEST/ [24] Introduction to Biotechnology, http://juang.bst.ntu.edu.tw/JRH/biotech.htm [25] Mammalian Gene Collection, MGC, http://mgc.nci.nih.gov/ [26] National Center for Biotechnology Information, NCBI, http://www.ncbi.nlm.nih.gov/ [27] Nucleotide, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide [28] Stanford Microarray Database, SMD, http://genome-www5.stanford.edu/ [29] UniGene Digital Differential Display, DDD, http://www.ncbi.nlm.nih.gov/UniGene/info_ddd.html [30] 教育部生物科技教育改進計畫,http://abep.sinica.edu.tw/stretagy7.htm [31] 莊順淑,生物資訊概論,http://www.ascc.net/nl/92/1920/02.txt [32] 陳健尉,生物晶片教學,http://www.nchu.edu.tw/~ibms/jwlaboratory.htm
|