|
參考文獻
[1] B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric ceramics, academic, New York, (1971). [2] H. Ishii, H. Nagate, and T. Takenaka, “Morphotropic phase boundry and electrical properties of bisumuth sodium titanate-potassium niobate solid-solution ceramics,” Jpn. J. Appl. Phys. I, 40 [9B] (2001) 5660. [3] H. Odagawa and K. Yamanouchi, “Superhigh electromechanical coupling and zero-temperature characteristics of KNbO3 and wide band filter applications,” Jpn. J. Appl. Phys., 37 (1998) 2929. [4] H. D. Megaw, “The seven phases of sodium niobate,” Ferroelectrics, 7 (1974) 87. [5] R. Wang, R. Xie, T. Sekiya, and Y. Shimojo, “Fabrication and characterization of potassium-sodium niobate piezoelectric ceramics by spark-plasma-sintering method,” Mat. Res. Bul., 39 (2004) 1709. [6] 吳朗,電子陶瓷 (介電),全欣科技圖書,1994。 [7] S. Narayana Murty, K.V Ramana Murty, K. Umakantham, and A. Bhanumathi, “Modified (NaK)NbO3 ceramics for transducer applications,” Ferroelectrics, 102 (1990) 243. [8] L. Egerton and D.M. Dillon, “Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate,” J. Am. Ceram. Soc., 42 (1959) 438. [9] B. Jaffe, R. S. Roth, and S. Marzullo “Properties of piezoelectric ceramics in the solid-solution series lead titanate zirconate-lead oxide: tin oxide and lead titanate - lead hafnate,” J. Res. Natl. Bur. Stand., 55 (1955) 239. [10] R. H. Dungan and R. D. Golding, “Polarization of NaNbO3-KNbO3 ceramic solid solutions.” J. Am. Ceram. Soc., 48 (1965) 601. [11] R. E. Jaeger and L. Egerton, “Hot pressing of potassium-sodium niobates,” J. Am. Ceram. Soc., 45 (1962) 209. [12] G. H. Haertling, “Properties of hot-pressed ferroelectric alkali niobate ceramics,” J. Am. Ceram. Soc., 50 (1967) 329. [13] K. Singh, V. Lingwal, S. C. Bhatt, N. S. Panwar, and B. S. Semwal, “Dielectric properties of potassium sodium niobate mixed system,” Mat. Res. Bull., 36 (2001) 2365. [14] M. A. L. Nobre and S. Lanfredi, “Dielectric loss and phase transition of sodium potassium niobate ceramic investigated by impedance spectroscopy,” Catal. Today, 78 (2003) 529. [15] V. J. Tennery, “High-temperature phase transitions in NaNbO3,” J. Am. Ceram. Soc., 48 (1965) 537. [16] F. Jona and G. Shirane, Ferroelectric crystals, Peramon, New York, (1962). [17] M. Kosec and D. Kolar, “On activated sintering and electrical properties of NaKNbO3,” Mater. Res. Bull., 50 (1975) 335. [18] A. Wood, “Polymorphism in potassium niobate, sodium niobate, and other ABO3 compounds,” Acta Crystallogr., 4 (1951) 353. [19] L. Egerton and C. A. Bieling, “Isostatically hot-pressed sodium-potassium niobate transducer material for ultrasonic devices,” Ceram. Bull., 47 (1968) 1151. [20] M. Ichiki, L. Zhang, M. Tanaka, and R. Maeda, “Electrical properties of piezoelectric sodium-potassium niobate,” J. Eur. Ceram. Soc., 24 (2004) 1693. [21] Y. Guo, K. Kakimoto, and H. Ohsato, “Ferroelectric-relaxor behavior of (Na0.5K0.5)NbO3-based ceramics,” J. Phys. Chem. Sol., 65 (2004) 1831. [22] S. Y. Chu, W.Water, Y.D. Juang, and J.T. Liaw, “Properties of (Na,K)NbO3 and (Li,Na,K)NbO3 ceramic mixed systems,” Ferroelectrics, 287 (2003) 23. [23] Y. Guo, K. Kakimoto, and H. Ohsato, “(Na0.5K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics,” Jpn. Mater. Lett., 59 (2005) 241. [24] Y. Guo, K. Kakimoto, and H. Ohsato, “Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3-SrTiO3 ceramics,” Solid State Commun., 129 (2004) 279. [25] Y. Guo, K. Kakimoto, and H. Ohsato, “Structure and electrical properties of lead-free (Na0.5K0.5)NbO3-BaTiO3 ceramics,” Jpn. J. Appl. Phys., 43 (2004) 6662. [26] R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Y. Akimune, N. Hirosaki, and M. Iton, “Piezoelectric properties of spark-plasma-sintered (Na0.5K0.5)NbO3-PbTiO3 ceramics,” Jpn. J. Appl. Phys., 41 (2002) 7119. [27] Y. Guo, K. Kakimoto, and H. Ohsato, “Ferroelectric-relaxor behavior of (Na0.5K0.5)NbO3-based ceramics,” J. Phys. chem. sol., 65 (2004) 1831. [28] E. Cross, “Lead-free at last,” Nature., 432 (2004) 24. [29] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T.Nagaya, and M. Nakamura, “Lead-free piezoelectric,” Nature., 432 (2004) 84. [30] T. Matsuda, S. Yamanaka, K. Kurosaki, and S. Kobayashi, “High temperature phase transitions of SrZrO3,” J. Alloys Compd., 351 (2003) 43. [31] L. Carlsson, “High-temperature phase transitions in SrZrO3,” Acta Crystallogr., 23 (1967) 901. [32] Y. Zhao and D.J. Weidner, “Thermal expansion of SrZrO3 and BaZrO3 perovskites,” Phys. Chem. Miner., 18 (1991) 294. [33] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, John Wiley and Sons, New York, (1976). [34] C. G. Bergeron and S. H. Risbud, Introduction to phase equilibria in ceramics, The American Ceramic Society Inc., Columbus, Ohio, (1984). [35] W. H. Lee, W. A. Groen, and D. Hennings, “Dysprosium doped dielectric materials for sintering in reducing atmospheres,” J. Electronceram., 5 (2000) 31. [36] O. Muller and R. Roy, The Major Ternary Structural Families, Springer-Verlag, Berlin, (1974). [37] D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A, 32(A) (1976) 751. [38] R. E. Eitel, C. A. Randall, T. R. Shrout, P. W. Rehrig, W. Hackenberger, and S. E. Park, “New high temperature phase boundary piezoelectrics based on Bi(Me)O3-PbTiO3 ceramics,” Jpn. J. Appl. Phys., 40 (2001) 5999. [39] Y. Yamashita, Y. Hosono, K. Harada, and N. Ichionse, “Effect of molecular mass of b-site ions on electromechanical coupling factors of lead-based perovskite piezoelectric materials,” Jpn. J. Appl. Phys.,39 (2000) 5593. [40] T. Yamamoto, “Crystallographic, dielectric and piezoelectric properties of PbZrO3-PbTiO3 system by phenomenological thermodynamics,” Jpn. J. Appl. Phys. 37 (1998) 6041. [41] 吳朗,電子陶瓷(壓電),全欣科技圖書,1994。 [42] 謝煜弘,電子材料,新文京開發出版有限公司,2003。 [43] 廖繼滄,鈮酸鋰、鈮酸鈉、鈮酸鉀陶瓷系列之研製及其特性探討。國立成 功大學電機工程研究所碩士論文,2002。 [44] C. Y. Huang, Thermal expansion behavior of sodium zirconium phosphate structure type materials, Ph. D. thesis, The Pennsylvania State University, U. S. A., (1990). [45] B. D. Cullity, Elements of X-Ray Diffraction, 2nd Ed., Wiley, New York, (1978). [46] H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr., 22 (1967) 151. [47] A. C. Larson and R. B. Von Dreele, “General Structure Analysis System,” Los Alamos National Laboratory, Los Alamos, (1988). [48] A. S. Bhalla, R. Guo, and R. Roy, “The Perovskite Structure – A Review of Its Role in Ceramic Science and Technology,” Mater. Res. Innovat., 4 (2000) 3. [49] M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr., B47 (1991) 105. [50] T. Hahn, International tables for crystallography volume A: space-group symmetry, 2nd Ed., D. Reidel publishing company, Dordrecht, (1987).
|