跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/18 05:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:湯譯增
研究生(外文):tang I-tseng
論文名稱:影響射頻表面聲波元件特性之因素探討
論文名稱(外文):Factor considerations on the novel RF SAW devices
指導教授:洪茂峰洪茂峰引用關係王永和王永和引用關係
指導教授(外文):Mau-Phon HoungYeong-Her Wang
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:128
中文關鍵詞:表面聲波
外文關鍵詞:Surface acoustic wave
相關次數:
  • 被引用被引用:0
  • 點閱點閱:352
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
  近年來隨著社會的高度資訊化,表面聲波(Surface Acoustic Wave, SAW)元件已經被大量的應用在日常生活中,如衛星通訊、網路通訊及無線通訊等,而對於輕薄短小高頻元件的需求,更是與日俱增。由於表面聲波元件具有體積小、重量輕及可積體化等特性,所以高頻表面聲波元件的發展,將成為一很重要的課題。
  本論文,設計一些特殊型的射頻表面聲波元件,以提高頻率並改善其特性。(一) 我們應用表面聲波的理論基礎與半導體微機電系統技術,將表面聲波16 �慆線寬、42對輸入╱輸出的交叉指狀電極轉換器(Interdigital Transducer, IDT)與四個電磁波方形耦合微帶線開迴路諧振器,經由適當的電路設計,交錯耦合組合而成一中心頻率在GHz範圍之新型微波表面聲波帶通濾波器。(二)利用射頻磁控濺鍍法(RF magnetron sputtering)濺射ZnO陶瓷靶,將薄膜沉積於非晶質之類鑽碳被覆膜矽基板上,以鑽石成長的多層膜結構,來製作成高聲速鑽石表面聲波濾波元件。(三)有鑑於傳統的帶拒濾波器(Notch Filter)不易積體化且功率消耗大,吾人利用表面聲波的原理,設計表面聲波8 �慆線寬、40對輸入╱輸出的交叉指狀電極轉換器於128˚ rotated YX-cut Lithium Niobate(鈮酸鋰,LiNbO3)壓電材料基板上,製作成體積小、重量輕及可積體化的新型表面聲波帶拒濾波器。
  結果顯示,(一)為了證實此新型微波表面聲波帶通濾波器之特性,我们分別製作於較高壓電耦合係數(K2 = 5.3 %)128° rotated YX-cut Lithium Niobate(鈮酸鋰,LiNbO3)壓電材料基板、較低壓電耦合係數(K2 = 0.07 %)GaAs S-I光壓電材料基板及9000 Å SiO2╱Si非壓電材料基板等三種不同性質的基板上。作一比較測試分析與探討,吾人發現電磁波與表面聲波之相互關係及交互作用所產生的效應,可有效地提升表面聲波濾波器之特性。此一新型低插入損失(S21 =–2.962 dB)、頻寬(BW = 80 %)甚大、中心頻率1 GHz的微波表面聲波高頻濾波器,已被設計製作完成。
  (二)當鑽石薄膜被覆於矽基板上(ZnO/Diamond/Si),將使得壓電薄膜ZnO之表面聲波波速,由原先的2800 m/s而提升至11430 m/s,因此利用鑽石薄膜所製作的表面聲波濾波元件,無需次微米的微影技術,即可達到更高頻的需求。最後於壓電薄膜ZnO表面鍍製交叉指狀電極轉換器,並成功地研製出鑽石表面聲波濾波元件。
  (三)此新型表面聲波帶拒濾波器,符合通訊元件低成本、製作容易、體積小的需求,更解決了傳統RLC濾波器之不易積體化、消耗功率等問題;其所呈現的中心頻率為 113.4 MHz 且3 dB頻寬約為400 KHz(BW = 0.36 %)、插入損失(S21)約為 -10.583 dB的帶拒濾波效果。
 The development of high frequency surface acoustic wave (SAW) devices has become necessary because of the increasing volume of information and communication media, such as satellite communication, cellular communication, and wireless local area network (LAN). When the society is inclined to high information in the recent years, the need and fast development of all kind of wireless communication system, and the high frequency SAW devices that characteristics with slight thin, short, and tiny communication system are the most important issues.
 In this thesis, we design some special high frequency SAW devices to improve the characteristics and to raise the frequency. First, we will apply the principle of SAW and equivalent circuit of IDTs, By the Micro-Electro-Mechanical System (MEMS) technology, the SAW filters of the 16-μm-input/output interdigital transducers (IDTs) of 42 pairs and four cross-coupled micro-strip line square open-loop resonators are fabricated together as a novel microwave SAW bandpass filter with the central frequency of GHz-band by appropriate circuit designs. Secondly, the applications of surface acoustic wave (SAW) devices aim directly at piezoelectric thin-films deposited onto amorphous diamond like carbon-coated on silicon substrates from target ZnO in this study. Our high-velocity SAW filters are characterized using multi-layer structures of thin-films by diamond like carbon depositing. As the diamond like carbon thin films dad been deposited on piezoelectric substrates, the diamond surface acoustic wave (DSAW) had been designed and achieved. Finally, although SAW notch filter was investigated in the past, the structures of these devices often needed the extra lumped-element such as resistance R, capacitance C, and inductance L so that the devices are complex and integrated hardly. We adopt the surface acoustic wave and the interdigital transducer’s theory to design the novel SAW notch filter of the 8-μm-input/output IDTs of 40 pairs, with conventional photolithography process; lift-off technique; piezoelectric materials to fabricate on the 128° rotated YX-cut Lithium Niobate (LiNbO3) substrate.
 From these results represent, (1) To confirm this claim devices, all with the same design, were fabricated on the three kinds of substrate: on had 128°-rotated YX-cut lithium niobate (LiNbO3) with a high electromechanical coupling coefficient (K2 = 5.3 %), one had GaAs S-I photo-piezoelectric materials with a low electromechanical coupling coefficient (K2 = 0.07 %) and one had non-piezoelectric SiO2/Si materials with a thickness of 9000 Å. With a series of analyses and discussions, it is found the characteristics of the SAW filters effectively increased by the mutual interaction effects of the electromagnetic wave and surface acoustic wave. A novel microwave micro-strip line SAW filter has been successfully fabricated with the lower insertion loss S21 of –2.962 dB, wider 3dB bandwidth of 80 % and central frequency of 1 GHz. These devices performed significantly differently.
 (2) However, if propagating velocity of diamond is much higher, then the SAW phase velocity of piezoelectric thin-film ZnO deposited on diamond like carbon (DLC) coated onto Si substrate is raised from 2800 m/s to11430 m/s. Consequently, the GHz-band SAW devices could be fabricated using thin-films of diamond like carbon without sub-micron photolithography technology. We have been also successfully fabricated and demonstrated the diamond-like SAW filters by evaporating interdigital transducers (IDTs) on ZnO thin-films with ULSI technology.
 (3) From this, we offer a simple planar structure of the SAW notch filters that have smaller size and can be fabricated easily. It has several advantages such as easy-integrated; smaller size and no power dissipation. Finally, we get the frequency responses of the novel SAW notch filter with the center frequency 113.4 MHz, the 3dB bandwidth 0.36 %, and the insertion loss S21= –10.583 dB.
Contents

中文摘要 I
Abstract III
List of Tables IX
List of Figures X

Chapter 1 Introduction
1.1 Overview & Motivation …………………………………...…………………………...1
1.2 Literature Review………………......………...………………………….…………......3
1.3 Piezoelectric Properties on SAW Device……………………….….…….…………......5
1.3.1 Piezoelectric effect……..………...………………………………..…………......5
1.3.2 Fundamental Properties of Lithium Niobate……..……………….…………......6
1.3.3 Fundamental Properties of ZnO…….....………………………….…………......7
1.4 Piezoelectric Substrate and Electrode Materials………………………………………..8
1.4.1 Electromechanical Coupling Factor.....…..….…………………….…………......9
1.4.2 Temperature Stability…..……………...………….……………….…………....10
1.4.3 Permittivity and BAW Characteristics..….….…………………….…………....10
1.4.4 Propagation Loss……….……….……...………………………….…………....11
1.4.5 Characteristics of SAW and Leaky-SAW.………..……………….………….....11
1.5 Overview of the Dissertation……….....……...………………………….…………....12
Chapter 2 Background theory for the Surface Acoustic Wave Filters
2.1 Introduction..………….……………………………………………………………15
2.2 Design of SAW Filter…………………………………………………….…………....17
2.2.1 Equivalent-Circuit Model……………….….……..…………………………….17
2.2.2 Coupling-of-Mode Model…………….………...………………………………19
2.3 Simulation and Experimental Results…………………………………………………23
2.4 Summary…………...…………………………………………………..……………...25
Chapter 3 A Novel Microwave Surface Acoustic Wave Filter
3.1 Introduction……………………………………………………………………….…...26
3.2 Experimental Procedures…………………...…………………………………………28
3.3 Results & Discussions...……………………………...…………………...…………..28
3.3.1 Interactions between EM Wave and SAW…….………….………...…………..29
3.3.2 Equivalent Circuit of the Interdigital Transducers for SAW Filter.....…………..32
3.4 Summary……………………………….…………………………………………….35
Chapter 4 Investigation of piezoelectric ZnO film deposited on diamond like carbon coated onto Si Substrate
4.1 Introduction…………….………………...……………………………….…………...36
4.2 Fabrication Processes….…….……………………...……………………….………...36
4.3 Results and Discussions………………………………………...……………………..37
4.3.1 Effects of the ZnO Thin-Films Growths with RF Power…………...…….…….37
4.3.2 Effects of Ambient Pressure on the ZnO Thin-Films Growths………….….…..38
4.3.3 Effects of O2/Ar ratios on ZnO Thin-Films Growths…....…………….………..38
4.3.4 Effect of Sputtering Parameters on Thin-Film Surface Micro-morphology.…...39
4.3.5 Analyses of the TEM…………………..….……………...……………………..40
4.3.6 Analyses of the Thin-Films in the Surface and Depth elements…….…...……..40
4.3.7 Surface Roughness Analyses of the Thin-Films…….…....……………………..41
4.3.8 Electric Analyses of the Thin-Films..……….…………...………….…………..41
4.4 Summary…………….……………...…………………………………………………42
Chapter 5 Diamond Surface Acoustic Wave filter
5.1 Introduction…………………........……….…………….……………………………..43
5.1.1 Synthesis of diamond films……….……..……….……………………………..44
5.2 Experimental Procedures…………………………………………………………..…45
5.3 Results and discussions…………………………………………........................…46
5.4 Summary………………………....….…………………………........................…...48
Chapter 6 A Novel Integrable Surface Acoustic Wave Notch Filter
6.1 Introduction …………..……………...................….……….……………………….50
6.2 Principles of the Novel SAW Notch Filters….............…….………..…………….51
6.3 Experiments & Results.……………................….……….………………………….52
6.4 Summary.…………..........................................….……….………………………….55
Chapter 7 Conclusions and Future Works
7.1 Conclusions………….......................………..…….……….………………………….56
7.2 Future Works………………….……….………………………..……………….…...58
References……………………………………………………………………...…..…...59
Publication List….……………………………………….………..…………….....125
Vita………..……………………….……………………...………………………..….126
Reference
[1]“2002 Symposium of RF Filters Technology and Applications,” Science and Technology Project of Ministry of Economic Affairs, ROC., 2002.
[2]L. Rayleigh, “On waves propagating along the plane surface of an elastic solid”, Proc. Lodon Math. Soc., vol.7, pp. 4-11, 1885.
[3]R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves”, Appl. Phys. Lett., vol. 17, pp. 314-316, 1965.
[4]R. C. Williamson, “Case studies of successful surface-acoustic-wave devices”, IEEE Ultrasonic Symp., pp. 460-468, 1977.
[5]C. S. Hartmann, “System impact of modern Rayleigh wave technology”, in E. A. Ash and E. G. S. Faige, Rayleigh-Wave Theory and Applications, pp. 238-253, 1985.
[6]M. Lewis, “Surface skimming bulk waves, SSBW”, IEEE Ultrasonic Symp., pp. 744-752, 1977.
[7]C. N. Helmick, D. L. White, and K. M. Lakin, “Deep bulk acoustic wave devices utilizing interdigitial transducers”, IEEE Ultrasonic Symp., pp. 280-285, 1981.
[8]K. Hashimoto and M. Yamaguchi, “Delta function modal analysis of SSBW spurious response in SAW devices”, IEEE Ultrasonic Symp., pp. 639-644, 1993.
[9]C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications, Academic Press, San Diego, USA, 1998.
[10]G. Kovacs, M. Anhorn, H. E. Engan, G. Visintini, and C. C. W. Rupple, “Improved material constants for LiNbO3 and LiTaO3”, IEEE Ultrasonic Symp., pp. 435-438, 1990.
[11]J. G. Gualtieri, J. A. Kosinski, and A. Ballato, “Piezoelectric materials for acoustic wave applications”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 41, pp. 53-59, 1994.
[12]F. S. Hickernell, “The experimental SAW propagation characteristics of LiNbO3 and LiTaO3 with free and metallized surfaces”, IEEE Ultrasonic Symp., pp. 105-108, 2001.
[13]K. Y Hashimoto, Surface acoustic wave devices in telecommunications, Springer, pp. 176-179, 2000.
[14]H. Shimizu, Y. Suzuki, and T. Kanda, “Love-Type-SAW resonator of small size with low capacitance ratio and its application to VCO”, IEEE Ultrasonic Symp., pp. 103-108, 1990.
[15]Yoshino Y, Kadota M, Ieki H, Kasanami T and Wakino K, Eighth International Symposium on Plasma Chemistry, Tokyo, Japan, Proc. 2, 2271, 1987.
[16]K. Yahanouchi and M. Takeuchi, “Applications for piezoelectric leaky surface waves”, IEEE Ultrasonic Symp., pp. 11-18, 1990.
[17]J. R. Mileham, S. J. Perton, C. R. Abernathy, J. D. Mackenzie, R. J. Shul, and S. P. Kilcoyne, “Wet chemical etching of AlN”, Appl. Phys. Lett., vol. 67, pp. 1119-1121, 1995.
[18]P. Kung, A. Saxler, X. Zhang, D. Walker, T. C. Wang, and I. Ferguson et al, “High quality AlN and GaN epilayers grown on ( 00 -1) sapphire, (100), and (111) silicon substrates”, Appl. Phys. Lett., vol. 66, pp. 2958-2960, 1995.
[19]J. D. Mackenzie, C. R. Abernathy, S. J. Pearton. V. Krishnamoorthy, S. Bharatan, and K. S. Jones et al, “Growth of AlN by metalorganic molecular beam epitaxy”, Appl. Phys. Lett., vol. 67, pp. 253-255, 1995.
[20]K. S. Stevens, M. Kinniburgh, A. F. Schwartzman, A. Ohtahi, and R. Beresford, “Demonstration of a silicon field-effect transistor using AlN as the gate dielectric”, Appl. Phys. Lett., vol. 66, pp. 3179-3181, 1995.
[21]S. Yoshida. S. Misawa, and S. Gonda, “Properties of AlxGa1-xN films prepared by reactive molecular beam epitaxy”, J. Appl. Phys., vol. 53, pp. 6844-6848, 1982.
[22]W. J. Meng, J. A. Sell, G. L. Eesley, and T. A. Perry, “Measurement of intrinsic stresses during growth of aluminum nitride thin films by reactive sputter deposition”, J. Appl. Phys., vol. 74, pp. 2411-2414, 1993.
[23]M Miyauchi, Y. Ishikawa, and N. Shibata, “Growth of aluminum nitride films on silicon by electron-cyclotron-resonance-assisted molecular beam epitaxy”, Jpn. J. Appl. Phys., vol. 31, pp. 1714-1717, 1993.
[24]R. F. Milsom, N. H. C. Reilly, and M. Redwood, The Interdigital transducer in surface wave filters, Wiley, pp. 55-108, 1977.
[25]R. F. Milsom, N. H. C. Reilly, and M. Redwood, “Analysis of generation and detection of surface and bulk acoustic waves by interdigital transducers”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 24, pp. 147-166, 1977.
[26]J. J. Campbell and W. R. Jones, “A method for optimal crystal cuts and propagation directions for excitation of piezoelectric surface waves”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 15, pp. 209-217, 1968.
[27]K. A. Ingebrigtsen, “Surface waves in piezoelectrics”, J. Appl. Phys., vol. 40, pp. 2681-2686, 1969.
[28]Y. Shimizu and M. Tanaka, “A new cut of quartz for SAW devices with extremely small temperature coefficient by leaky surface wave”, Electronics and Communications in Japan, vol. 69, pp. 48-56, 1986.
[29]C. C. W. Rupple, W. Ruile, G. Scholl, K. Ch. Wagner, and O. Manner, “Review of models for loss-loss filter design and applications”, IEEE Ultrasonic Symp., pp. 313-324, 1994.
[30]M. Buchner, W. Ruile, A. Dietz, and R. Dill, “FEM analysis of the reflection coefficient of SAWs in an infinite periodic array”, IEEE Ultrasonic Symp., pp. 371-375, 1991.
[31]U. Rosler, D. Cohrs, A. Dietz, G. Fischerauer, W. Ruile, and P. Russer et al, “Determination of leaky SAW propagation, reflection and coupling on LiTaO3”, IEEE Ultrasonic Symp., pp. 247-250, 1995.
[32]T. Sato and H. Abe, “Propagation of longitudinal leaky surface acoustic waves under periodic metal grating structure on lithium tetraborate”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, pp. 394-408, 1998.
[33]P. Ventura, J. Desbois, and L. Boyer, “A mixed FEM/ analytical model of the electrode mechanical perturbation for SAW and PSAW propagation”, IEEE Ultrasonic Symp., pp. 205-208, 1993.
[34]P. Ventura, J. M. Hode, and M. Solal, “A new efficient combined FEM and periodic Green’s function formalism for the analysis of periodic SAW structures”, IEEE Ultrasonic Symp., pp. 263-268, 1995.
[35]P. Ventura and J. M. Hode, “A new accurate analysis of periodic IDTs built on conventional orientation on quartz”, IEEE Ultrasonic Symp., pp. 139-142, 1997.
[36]K. Hashimoto and M. Yamaguchi, “Precise simulation of surface transcerse wave devices by discrete Green function theory”, IEEE Ultrasonic Symp., pp. 253-258, 1994.
[37]K. Hashimoto, G. Endoh, and M. Yamaguchi, “Coupling-of-modes modeling for fast and precise simulation of leaky surface acoustic wave devices”, IEEE Ultrasonic Symp., pp. 251-256, 1995.
[38]K. Hashimoto and M. Yamaguchi, “General-purpose simulator for leaky surface acoustic wave devices based on coupling-of-modes theory”, IEEE Ultrasonic Symp., pp. 117-122, 1996.
[39]R. C. Peach, “A general Green function analysis for SAW devices”, IEEE Ultrasonic Symp., pp. 221-225, 1995.
[40]V. P. Plessky and T. Thorvaldsson, “Periodic Green’s function analysis of SAW and leaky SAW propagation in a periodic system of electrodes on a piezoelectric crystal”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 42, pp. 280-293, 1995.
[41]J. Koskela, V. P. Plessky, and M. S. Salomaa, “Suppression of the leaky SAW attenuation with heavy mechanical loading”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, pp. 439-449, 1998.
[42]A. Isobe, M. Hikita, and K. Asai, “Propagation characteristics of longitudinal leaky SAW in Al-grating structure”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 46, pp. 849-855, 1999.
[43]V. P. Plessky, “SAW impedance elements”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 42, pp. 870-875, 1995.
[44]T. Matsuda, H. Uchishiba, O. Ikata, T. Nishihara, and Y. Satoh, “L and S band low-loss filters using SAW resonators”, IEEE Ultrasonic Symp., pp. 163-167, 1994.
[45]C. S. Hartmann, P. V. Wright, R. J. Kansy, and E. M. Garber, “An analysis of SAW interdigital transducers with internal reflections and the application to the design of single-phase unidirectional transducers”, IEEE Ultrasonic Symp., pp. 40-45, 1982.
[46]S. Datta, B. J. Hunsinger, and D. C. Malocha, “A generalized model for periodic transducers with arbitrary voltages”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 26, pp. 243-245, 1979.
[47]J. Koskela, V. P. Plessky, and M. M. Salomaa, “COM parameter extraction from computer experiments with harmonic admittance of a periodic array of electrodes”, IEEE Ultrasonic Symp., pp. 119-122, 1997.
[48]W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder, and H. J. Shaw, “Analysis of interdigital surface wave transducers by use of an equivalent circuit model”, IEEE Trans. Microwave Theory and Tech., vol. 17, pp. 856-864, 1969.
[49]V. P. Plessky, C. S. Hartmann, and J. Koskela, “Suppression of the leakage effect in 64°YX-LiNbO3 for thick aluminum electrodes”, IEEE Ultrasonic Symp., pp. 1603-1606, 1996.
[50]S. H. Tsai, I. T. Tang, M. P. Houng, and Y. H. Wang, “A design rule of surface acoustic wave filter,” J. Mat. Sci. & Eng., vol. 34, pp. 231-238, 2002.
[51]W. R. Smith, “Studies of microwave acoustic transducers and dispersive delay lines”, Ph.D. dissertation, Department of Applied Physics, Standford University, U.S.A., 1969.
[52]Herbert Matthews, “Surface Acoustic Wave Filter”, John Wiley & Sons, 1977.
[53]R. H. Tancrell and M. G. Holland, "Acoustic Surface Wave Filters”, Proc. IEEE﹐Vol.59, No.3, pp.393-409, 1971.
[54]J. A. G. Malherbe, “Microwave Transmission Line”, Artech House, Inc., 1979.
[55]R. Levy and S. B. Cohn﹐" A history of microwave filter research﹐design and development "﹐IEEE Trans. Microwave Theory Tech.﹐vol. MTT–32﹐pp.1055–1067﹐Sept. 1984.
[56]M. J. Lancaster and J. S. Hong, “Microstrip Filters using New Small Resonant Components”, IEE Colloquium RF & Microwave Components for Communications, pp1-6, 1997.
[57]David M. Pozar, “Microwave Engineering”, John Wiley & Sons, 1998.
[58]Robert E. Collin, “Foudations for Microwave Engineering"﹐Chapter 7-8﹐McGraw Hill, 1992.
[59]Fred Gardiol, “Microstrip Circuits”, Chapter 7, Wiely Interscience, 1994.
[60]Ulrich H. Gysel, “New Theory and Design for hairpin Line Filters”, IEEE Trans. Microwave Theory Tech., vol. MTT–22, no.5, pp.523-531, 1974.
[61]J. S. Hong and M. J. Lancaster, “Canonical microstrip filter using square open-loop resonators”, Electron Lett., vol.31, pp.2020-2022, Nov. 1995.
[62]J. S. Hong and M. J. Lancaster﹐“Realization of quasielliptic function filter using dual-mode microstrip square loop resonators”﹐Electron Lett.﹐vol.31﹐pp.2085–2086﹐Nov. 1995.
[63]J. S. Hong and M. J. Lancaster﹐“Microstrip bandpass filter using degenerate modes of a novel meander loop resonators”﹐IEEE Microwave Guided Wave Lett. vol.5﹐pp.371–372﹐Nov. 1995.
[64]J. S. Hong and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters”, IEEE Trans. Microwave Theory Tech., vol.44﹐pp.2099-2109, Decermber 1996.
[65]J. S. Hong and M. J. Lancaster, “Microstrip Slow-Wave Open-Loop Resonator Filters”, IEEE MIT-S Digest pp. 713-716, 1997.
[66]R. M. Kurzrok, “General four-resonator filters at microwave frequencies”, IEEE Trans. Microwave Theory Tech., pp.295–296, June 1966.
[67]S. J. Yao﹐R. R. Bonetti and A. E. William﹐“Generalized dual-plane multicoupled line filters ”﹐IEEE Trans. Microwave Theory Tech.﹐vol.41﹐pp.2182-2189﹐Dec.1993.
[68]B. A. Auld, “Surface Wave Theory”, IEEE Ultrasonics Symposium Proceedings, pp.1-15, 1970.
[69]Supriyo Datta, “Surface Acoustic Wave Devices”, Prentice Hall, Englewood Cliffs 1986.
[70]Andrew J. Slobodnik, JR, Thomas L. Szabo, Kenneth R. lake, “Miniature Surface Acoustic Wave Filter”, Proc. IEEE Vol.67, No.1, pp.129-144, 1979.
[71]I-Tseng Tang, Fenq-Lin Jenq, Jui-Hong Horng, Mau-Phon Houng and Yeong-Her Wang, “A Novel Microwave Microstrip Surface Acoustic Wave Filter with GHz-Band Low-Loss Wide Bandwidth for Broad Spectrum Communication System”, Jpn. J. Appl. Phys. Vol. 41, pp.2974-2977 (2002)
[72]R. V. Stuart, “Thin Film Technology”.
[73]M. Hatzakis, B. J. Canavello and J. M. Shaw, “Single-step optical lift-off process”, IBM J. Res. Develop, Vol. 24, No.4 pp 452-459.
[74]Yasutaka Shimizu, “Current Status of Piezoelectric Substrate and Propagation Characteristics for SAW Devices”, Jpn. J. Appl. Phys., Vol. 32 pp. 2183-2187, 1993.
[75]Charles Kittel, “Introduction to Solid State Physics”, John Wiley & Sons, 1986.
[76]T. Vandelde, M. Nesladek, C. Quaeyhaegen and L. Stals: Thin Solid Film 308-309 (1997) 154.
[77]Naoyuki Mishima, Yasushi Kuroda, Reiko Kobayashi and Toshiyuki Takagi: Jpn. J. Appl. Phys. 33 (1994) 2984
[78]Hiroyuki Odagawa, Toshiyasu Meguro and Kazuhiko Yamanouchi: Jpn. J. Appl. Phys. 35 (1996) 3028.
[79]S. M. Rossnagel: J. Vac. Sci. Techno A6(1) (1988) 19.
[80]C Kittle: Introduction to Solid State Physics (John Wiley & Sons, New York, 1986).
[81]C. R. Aita, A. J. Purdes, R. J. Lad and P. D. Funkenbusch: J. Appl. Phys 51 (1980) 5533.
[82]Hwan Chul Lee and Jai Young Lee: J. Mater. Sci 5 (1994) 221.
[83]H.K.Kim and M. Mathur: Mat. Res. Soc. Symp. Proc. 238 (1992) 317.
[84]N. Schwesinger, H-Bartsch and F. Moller: SPIE 2639 315.
[85]Li-Jian Meng: Thin Solid Film 250 (1994) 26.
[86]R. M. White, “Surface Elastic Waves,” Proceedings of the IEEE,vol. 58, pp. 1238-1276, 1970.
[87]L. Wu, “Electronic Ceramic: Piezoelectric,” Chuan-Hsin Information Co. Ltd., 1994.
[88]R. F. Milsom, N. H. Reilly, and M. Redwood, “Analysis of Generation and Detection of Surface And Bulk Acoustic Waves by Interdigital Transducers,” IEEE Transactions On Sonics Ultrasonics, vol. 24, pp. 147-166, 1977.
[89]S.T. Lee, Zhangda and Xin Jian, Materials Science and Engineering 25, 123-154, (1999)
[90]R. Berman and M. Martinez, “Diamond Research,” Industrial Diamond Review, 1976.
[91]Huimin Liu and David S. Dandy, Diamond and Related Mater. 4, 1174 (1995)
[92]B. Lux, Diamond and Diamond-like Films and Coating, Plenum Press, New York, 579 (1991)
[93]Kurt Nassau, Diamond Films and Coatings, edit by Robert F. Davis, Noyes Publications, New Jersey, 51-55, (1993)
[94]J. Koike, K. Shimoe, and H. Ieki, "1.5Ghz Low-Loss Surface Acoustic Wave Filter Using ZnO/Sapphire Substrate", Jpn. J. Appl. Phys. Vol. 32 pp. 2337-2340 1993.
[95]I-Tseng Tang, Y. C. Wang, W. C. Hwang, C. C. Hwang, N. C. Wu, Mau-Phon Houng and Yeong-Her Wang, Journal of Crystal Growth 252 (2003) 190.
[96]Osamu Yamazaki, Tsuneo Mitsuyu, Kiyotaka, IEEE Trans. Sonic and Ultrason. Vol.SU-27, No.6, (1980) 369.
[97]S. Fujii, Y. Seki, K. Yoshida﹐H. Nakahata, K. Higaki, H. Kitabayashi and S. Shikata:IEEE Ultrasonics Symp. Proc. (1997) 183.
[98]H. Nakahata, H. Kitabayashi, and A. Hachigo, IEEE Ultrason. Symp. Proc., (1998) 319.
[99]P.A. Lorenz, and D.F. Thompson, “Wide Bandwidth Low Cost SAW Notch Filters”, IEEE Ultrasonics Symposium, pp 51-55 1998.
[100]M. J. Lancaster and J. S. Hong, “Microstrip Filters using New Small Resonant Components”, IEE Colloquium RF & Microwave Components for Communications, pp1-6 1997.
[101]Ken-ya Hashimoto, “Surface Acoustic Wave Devices in Telecommunications”, Springer-Verlag, Berlin, 2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文