Chapter 1
[1]H. S. Bennett, �cTechnology Roadmaps for Compound Semiconductors�c, J. Res. Natl. Inst. Stand. Technol., vol. 105, no. 3, 2000, pp. 429-439.
[2]Peter Y. Yu, and Manuel Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, Berlin: Springer Verlag, 1999.
[3]H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, �cLarge-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies�c, J. Appl. Phys., vol. 76 , issue 3, 1994, pp. 1363-1398.
[4]R. Borges, �cGallium nitride electronic devices for high-power wireless applications�c, RF Design, 2001, pp.72-81.
[5]S. Nakamura, T. Mukai and M. Senoh, �cHigh-Power GaN P-N Junction Blue-Light-Emitting Diodes�c, Jpn. J.Appl. Phys., vol. 30, 1991, L1998.
[6]S. Nakamura, T. Mukai and M. Senoh, �cCandela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes�c, Appl. Phys. Lett., vol. 64, issue 13, 1994, pp.1687-1689.
[7]J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campell, �cCurrent transport mechanisms in GaN-based metal-semiconductor-metal photodetectors�c, Appl. Phys. Lett., vol. 72, issue 5, 1998, pp. 542-544.
[8]N. Maeda, T. Tawara, T. Saitoh, K. Tsubaki, and N. Kobayashi, �cDoping design of GaN-based heterostructure field-effect transistors with high electron density for high-power applications�c, Phys. Stat. Sol.(a), vol. 200, no. 1, 2003, pp. 168-174.
[9]M. A. Khan, J. N. Kuznkia, A. R. Bhattarai, and D. T. Oslon, �cMetal Semiconductor Field Effect Transistor Based on Single Crystal GaN�c, Appl. Phys. Lett., vol. 62, issue 15, 1993, pp. 1786-1787.
[10] J. D. Brown, R. Borges, E. Piner, A. Vescan, S. Singhal, and R. Therrien, �cAlGaN/GaN HFETs fabricated on 100-mm GaN on silicon (111) substrates�c, Solid-State Electron., vol. 46, issue 10, 2002, pp. 1535-1539.
[11] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, �cHigh-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide subtrates�c, IEEE Electron Dev. Lett., vol. 20, 1999, pp.161-163.
[12] K. Kumakura and T. Makimoto, �cHigh-voltage operation with high current gain of pnp AlGaN/GaN heterojunction bipolar transistors with thin n-type GaN base�c, Appl. Phys. Lett., vol. 86, issue 2, 2005, 023506-1(3p).
[13] H. C. Casey Jr., G. G. Fountain, R. G. Alley, B. P. Keller and S. P. DenBaars, �cLow Interface Trap Density for Remote Plasma Deposited SiO2 on n-type GaN�c, Appl. Phys. Lett., vol. 68, issue 13, 1996, pp. 1850-1852.
[14] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, �cInvestigations of SiO2/n-GaN and Si3N4/n-GaN Insulator -Semiconductor Interfaces with Low Interface State Density�c, Appl. Phys. Lett., vol. 73, issue 6, 1998, pp. 809-811.
[15] B. Gaffey, L. J. Guido, X. W. Wang and T. P. Ma, �cHigh-Quality Oxide/Nitride/Oxide Gate Insulator for GaN MIS Structures�c, IEEE Trans. Electron Dev. vol. 48, issue3, 2001, pp.458-464.
[16] L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu and J. K. Sheu, �cHigh-Dielectric-Constant Ta2O5/n-GaN Metal-Oxide-Semiconductor Structure�c, Appl. Phys. Lett., vol. 77, issue 23, 2000, pp. 3788-3790.
[17] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C. Chiu, and C. Y. Chen, �cPhotoenhanced wet oxidation of gallium nitride�c, Appl. Phys. Lett., vol. 76, issue 4, 2000, pp. 511-513.
[18] D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho, D. H. Shin, C. H. Lee, and K. S. Chung, �cGaN metal-oxide-semiconductor structures using Ga-oxide dielectrics formed by photoelectrochemical oxidation�c, Appl. Phys. Lett., vol. 80, issue 3, 2002, pp. 446-448.
[19] Dieter K. Schroder, Semiconductor Material and Device Characterization, New York: John Wiley & Sons, 1998, pp.339.
Chapter 2
[1]S. J. Pearton, J. C. Zolper, R. J. Shul, F. Ren, �cGaN: Processing, defects, and devices�c, J. Appl. Phys, vol. 86, no. 1, 1999, pp. 25-28.
[2]T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, J. Graul, V. Schwegler, C. Kirchner, M. Kamp, and M. Heuken, �cPhotoinduced oxide film formation on n-type GaN surfaces using alkaline solutions�c, Appl. Phys. Lett., vol. 76, no. 26, 2000, pp. 3923-3925.
[3]C. B. Vaftuli, S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, E. S. Lambers, and J. C. Zolper, �cHigh temperature surface degradation of III-V nitrides�c, J. Vac. Sci. Technol. B, vol. 14, no. 6, 1996, pp. 3523-3531.
[4]M. S. Minsky, M. White, and E. L. Hu, �cRoom-temperature photoenhanced wet etching of GaN�c, Appl. Phys. Lett., vol. 68, issue 11, 1996, pp. 1531-1533.
[5]H. Lu, Z. Wu, and I. Bhat, �cPhotoassisted Anodic Etching of Gallium Nitride�c, J. Electrochem. Soc., vol. 144, 1997, pp. L8-L11.
[6]C. Youtsey, I. Adesida and G. Bulman, �cHighly anisotropic photoenhanced wet etching of n-type GaN�c, Appl. Phys. Lett., vol. 71, issue 15, 1997, pp. 2151-2153.
[7]C. T. Lee, H. W. Chen, and H. Y. Lee, �cMetal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN�c, Appl. Phys. Lett., vol. 82, issue 24, 2003, pp. 4304-4306.
[8]C. T. Lee, H. W. Chen, and H. Y. Lee, �cGaN MOS device using SiO2-Ga2O3 insulator grown by photoelectrochemical oxidation method�c, IEEE Electron Dev. Lett., vol. 24, issue 2, 2003, pp. 54-56.
[9]L. H. Peng, C. W. Chuang, J. K. Ho, C. N. Huang, and C. Y. Chen, �cDeep ultraviolet enhanced wet chemical etching of gallium nitride�c, Appl. Phys. Lett., vol. 82, no. 8, 1998, pp. 939-941.
[10] H. O. Finkiea, Semiconductor Electrodes, Netherlands: Elsevier Science, 1998.
[11] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C. Chiu, and C. Y. Chen, �cPhotoenhanced wet oxidation of gallium nitride�c, Appl. Phys. Lett., vol. 76, issue 4, 2000, pp. 511-513.
[12] S. M. Sze, Semiconductor Devices Physics and Technology, John Wiley & Sons, 2002.
[13] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, Clarecon Press, Oxford, 1988.
[14] M. E. Lin, Z. Ma, F. Y. Huang, Z. Fan, L. H. Allen, and H. Morkoc, �cLow resistance ohmic contacts on wide band-gap GaN�c, Appl. Phys. Lett., vol. 64, issue 8, 1994, pp. 1003-1005.
[15] B. P. Luther, S. E. Mohney, T. N. Jackson, M. Asif Khan, Q. Chen, and J. W. Yang, �cInvestigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN�c, Appl. Phys. Lett., vol. 70, issue 1, 1997, pp. 57-59.
[16] C. T. Lee and H. W. Kao, �cLong-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN�c, Appl. Phys. Lett., vol. 76, issue 17, 2000, pp. 2364-2366.
[17] G. S. Marlow, M. Das, �cThe effects of xontact size and nonzero metal resistance on the determination of special contact resistance�c, Solid-State Electron., vol. 25, 1982, pp. 91-94.
[18] G. K. Reeves, �cSpecific contact resistance using a circular transmission line model�c, Solid-State Electron., vol. 23, 1980, pp. 487-490.
[19] G. K. Reeves and H. B. Harrison, �cAn analytical model for alloyed ohmic contacts using a trilayer transmission line model�c, IEEE Electron Dev. Lett., vol. 42, issue 8, 1995, pp. 1536-1547.
[20] Yannis Tsividis, Operation and Modeling of the MOS Transistor, New York: OXFORD, 1999, pp.227-231.
[21] W. E. Wagner, III and M. H. White, �cCharacterization of Silicon Carbide (SiC) Epitaxial Channel MOSFETs�c, IEEE Trans. Electron Dev. vol. 4, issue 11, 2000, pp.2214-2218.
Chapter 3
[1]C. T. Lee, H. Y. Lee, and H. W. Chen, �cGaN MOS Device Using SiO2-Ga2O3 Insulator Grown by Photoelectrochemical Oxidation Method�c, IEEE Electron Dev. Lett., vol. 24, 2003, pp.54-56.
[2]J. Tan, K. Das, J. A. Cooper, Jr., and M. R. Melloch, �cMetal-oxide-semiconductor capacitors formed by oxidation of polycrystalline silicon on SiC�c, Appl. Phys. Lett., vol. 70, issue 17, 1997, pp. 2280-2281.
[3]陳宏維, �cN型氮化鎵MOS元件製作與研究�c, 國立中央大學光電所, 碩士論文, 2002.[4]C. T. Lee, H. W. Kao, �cLong-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN�c, Appl. Phys. Lett., vol. 76, issue 17, 2000, pp. 2364-2366.
[5] H. C. Casey Jr., G. G. Fountain and R. G. Alley, B. P. Keller and S. P. DenBaars, �cLow Interface Trap Density for Remote Plasma Deposited SiO2 on n-type GaN�c, Appl. Phys. Lett., vol. 68, issue 13, 1996, pp. 1850-1852.
[6] T. Hashizume, E. Alekseev, D. Pavlidisb, K. S. Boutros and J. Redwing, �cCapacitance-Voltage Characterization of AlN/GaN Metal-Insulator-Semiconductor Structures Grown on Sapphire Substrate by Metalorganic Chemical Vapor Deposition�c, J. Appl. Phys., vol. 88, issue 4, 2000, pp. 1983-1986.
[7] Dieter K. Schroder, Semiconductor Material and Device Characterization, New York: John Wiley & Sons, 1998, chapter 6.
[8] J. Tan, M. K. Das, J. A. Cooper Jr. and M. R. Mellocha, �cMetal-oxide-semiconductor capacitors formed by oxidation of polycrystalline silicon on SiC�c, Appl. Phys. Lett., vol. 70, issue 17, 1997, pp. 2280-2281.
Chapter 4
[1]Albrecht Mőschwitzer, Semiconductor Devices, Circuits and Systems, New York: OXFORD, 1991.
[2]C. T. Lee, H. W. Chen, and H. Y. Lee, �cGaN MOS device using SiO2-Ga2O3 insulator grown by photoelectrochemical oxidation method,�c IEEE Electron Dev. Lett., vol. 24, issue 2, 2003, pp. 54-56.
[3]C. T. Lee and H. W. Kao, �cLong-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN,�c Appl. Phys. Lett., vol. 76, issue 17, 2000, pp. 2364-2366.
[4]S. M. Sze, Semiconductor Devices Physics and Technology, John Wiley & Sons, 2002.
[5]G. S. Marlow and M. Das, �cThe effects of xontact size and nonzero metal resistance on the determination of special contact resistance�c, Solid-State Electron., vol. 25, 1982, pp. 91-94.
[6]G. K. Reeves, �cSpecific contact resistance using a circular transmission line model�c, Solid-State Electron., vol. 23, 1980, pp. 487-490.
[7]G. K. Reeves and H. B. Harrison, �c An analytical model for alloyed ohmic contacts using a trilayer transmission line model,�c IEEE Electron Dev. Lett., vol. 42, issue 8, 1995, pp. 1536-1547.
Chapter 5
[1]C. C. Tsai and C. S. Chang, �cLow-etch-pit-density GaN substrates by regrowth on free-standing GaN films�c, Appl. Phys. Lett., vol. 80, issue 20, 2002, pp. 3718-3720.
[2]C. Kim, I. K. Robinson, J. Myoung, K. H. Shim, and K. Kim, �cBuffer layer strain transfer in AlN/GaN near critical thickness�c, J. Appl. Phys., vol. 85, issue 8, 1999, pp. 4040-4044.