|
Chapter 1 [1] A. W. Goddard, D. W. Brenner, S. E. Lyshevski, G.. J. lafrate, “Handbook of Nanoscience engineering and technology”, CRC Press, Boca Raton, 1, 2003 [2] http://www.nano.gov/omb_nifty50.htm [3] http://www.sc.doe.gov/production/bes/scale_of_things.html [4] P. Mulvaney, “Not All That's Gold Does Glitter”, MRS Bulletin, vol.26, pp.1009-1015, 2001. [5] P. A. Buffat and J.-P. Borel, “Size effect on the melting temperature of gold particles”, Phys. Rev. A, vol.13, pp.2287-2295, 1976. [6] C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites”, J. Am. Chem. Soc. vol.115, pp.8706-8707, 1993. [7] A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, “Melting in semiconductor nanocrystals”, Science, vol.256, pp.1425-1430, 1992. [8] T. Takagahara and K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials, Phys. Rev. A, vol.46, pp.15578-15582, 1992. [9] A. D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems”, Adv. Phys. Vol.51, pp799-890, 2002. [10] Dingle, R., Proceedings of 13th International Conference on the Physics of Semiconductors, Rome, edited by F. G. Fumi (Rome: Topografia Marves) pp. 965-965. 1976. [11] S. Iijima, Nature, “Helical microtubules of graphitic carbon”, vol.354, pp.56-58, 1991. [12] R. Waser, “Nanoelectronic and information Technology, vol.3 pp.473-500, 2003. [13] P. G.. Collins, M. S. Arnold, P. Avouris, “Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown”, Science, vol.292, pp.706-709, 2001. [14] Yi Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks”, Science, vol.291, pp.851-853, 2001. [15] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, C. M. Lieber, “Logic Gates and Computation from Assembled Nanowire Building Blocks”, Science, vol.294, pp.1313-1317, 2001. [16] Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, C. M. Lieber “Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems”, Science, vol.302, pp.1377-1379, 2003. [17] H. M. Kim, Y. H. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays”, Nano letters, vol.4, pp.1059-1062, 2004.
Chapter 2 [1] Y. Chen, D. M. Bagnall, H. Feick, N. Tran, E. Weber, P. Yang, ” Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater., vol.13, pp.113-116, 2001. [2] W. I. Park, Y. H. Jun, S. W. Jung, and G.-C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods”, Appl. Phys. Lett., vol.82, pp.964-966. 2003. [3] L. Vayssieres, K. Keis, A. Hagfeldt, S. E. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes“, Chem. Mater, vol.13, pp.4386-4395, 2001. [4] J. C. Johnson; H. Q. Yan, P. Yang, R. J. Saykally, ”Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides”, J. Phys. Chem. B, vol.107, pp.8816-8828, 2003. [5] J. J. Wu, S. C. Liu, “ Catalyst-Free Growth and Characterization of ZnO Nanorods“, J Phys Chem. B, vol.106, pp.9546-9551, 2002. [6] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature“, Appl. Phys. Lett. vol.81, pp.3648-3650, 2002. [7] J. J. Wu, S. C. Liu, “ Low-temperature and catalyst-free synthesis of well-aligned ZnO nanorods on Si (100)“, J. Mater. Chem., vol.12, pp.3125-3129, 2002. [8] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, ” Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties”, Appl. Phys. Lett. vol.76, pp.2011-2013, 2000. [9] L. Vayssieres, “ Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions“, Adv. Mater., vol.15, pp.464-466, 2003. [10] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, and P. H. Fleming, “Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy”, Appl. Phys. Lett., vol.81, pp.3046-3048, 2002. [11] W. I. Park, S. J. An, J. L. Yang, G. C. Yi, “ Photoluminescent Properties of ZnO/Zn0.8Mg0.2O Nanorod Single-Quantum-Well Structures“, J. Phys. Chem. B, vol.108, pp.15457-15460, 2004. [12] W.I. PARK, Y. H. Jun, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett. vol. 80, pp. 4232-4234, June 2002. [13] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. vol. 13, pp. 113-116, Jan. 2001. [14] P. X. Gao, Z. L. Wang, “ Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process“, J. Phys. Chem. B, vol.108, pp.7534-7537, 2004. [15] C. L. Hsu, S. J. Chang, Y. K. Tseng, C. J. Huang and I. C. Chen,” Vertical single crystal ZnO nanowires grown on ZnO:Ga/glass templates”, Accepted by IEEE Tran. Nanotechnology [16] S. C. and J. J. Wu, “Low-temperature and catalyst-free synthesis of well-aligned ZnO nanorods on Si (100)”, J. Mater. Chem., vol.12, pp.3125-3129, 2002. [17] T. N. Xu, H. Z. Wu, Y. F. Lao, D. J. Qiu, N. B. Chen, N. Dai, “Anodic-aluminium-oxide template-assisted growth of ZnO nanodots on Si (100) at low temperature”, Chinese phys. Letters, vol.21, pp.1327-1329, 2004. [18] S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. W. Emanaetoglu, and Y. Lu, “Selective MOCVD growth of ZnO nanotips”, IEEE Trans. Nanotechnol., vol.2, pp.50-54, 2003. [19] Y. Wu, P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth”, J. Am. Chem. Soc., vol.123, pp.3165-3166, 2001. [20] J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, “Synthesis of Uniform Hexagonal Prismatic ZnO Whiskers,” Chem. Mater. Vol. 14, pp. 1216-1219, Feb 2002. [21] B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett. Vol. 81, pp.757-759, July 2002. [22] http://www.jeol.com/sem/semprods/jsm6500f.html [23] http://www.nano.nsysu.edu.tw/nano/equipment/HRXRD.html [24] http://www.feicompany.com/systems/index.aspx [25] http://www.jeol.com/tem/temprods/jem2100f.html
Chapter 3 [1] C. C. Chen, C. C. Yeh, “Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires,” Adv. Mater. vol. 12, pp. 738-741, May 2000. [2] J. Zhu, S. Fan, ”Nanostructure of GaN and SiC nanowires based on carbon nanotubes” J. Mate. Res. vol. 14, pp. 1175-1177, April 1999. [3] X. F. Duan, C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater. vol. 12, pp. 298-302, Feb. 2000. [4] Y. Homma, P. Finnie, T. Ogino, H. Noda, T. Urisu, “Aligned island formation using step-band networks on Si(111),” J. Appl. Phys. vol. 83, pp. 3083-3088, Sep. 1999. [5] Z. R. Dai, Z. W. Pan, Z. L. Wang, ” Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation,” Adv. Funct. Mater. vol. 13, pp. 9-24, Jan. 2003. [6] Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton, H. Terrones, “Generation of hollow crystalline tungsten oxide fibres” Applied Physics A: Materials Science and Processing, vol. 70, pp 231-233, Feb, 2000. [7] Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, X. Z. Gai, Q. L. Hang, G. C. Xiong, S. Q. Feng,” Nano-scale GeO2 wires synthesized by physical evaporation,” Chem. Phys. Lett. vol. 303, pp 311-314, April 1999. [8] Z. W. Pan, Z. R. Dai, Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science vol. 291, pp 1947-1949, March 2001. [9] J. J. Wu, S.-C. Liu, “Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition“ Adv. Mater. vol. 14, pp. 215-218, Jan. 2002. [10] H. Yumoto, T. Sako, Y. Gotoh, K. Nishiyama, T. Kaneko, “Growth mechanism of vapor-liquid-solid (VLS) grown indium tin oxide (ITO) whiskers along the substrate” J. Crystal Growth vol. 203, pp. 136-140, May 1999. [11] V. Valcarcel, A. Souto, F. Guitian, “Development of Single-Crystal -Al2O3 Fibers by Vapor-Liquid-Solid Deposition (VLS) from Aluminum and Powdered Silica,“ Adv. Mater. vol. 10, pp. 138-140, Jan. 1999. [12] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. vol. 13, pp. 113-116, Jan. 2001. [13] C. Geng, Y. Jiang, Y. Yao, X. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, S. T. Lee,” Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates,“ Adv. Funct. Mater. vol. 14, pp. 589-594, Jun. 2004 [14] Y. K. Tseng, H. C. Hsu, W. F. Hsieh, K. S. Liu, I. C. Chen, “Two-setp oxygen injection process for growing ZnO nanorods” J. Mater. Res. vol. 18, pp. 2837-2844, Dec. 2003. [15] Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, I. C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. vol. 13, pp. 811-814, Oct. 2003. [16] P. Yang, “Semiconductor nanowire array,” Proceedings of SPIE - The International Society for Optical Eng. vol. 4806, pp. 222-224, July 2002. [17] J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, “Synthesis of Uniform Hexagonal Prismatic ZnO Whiskers,” Chem. Mater. Vol. 14, pp. 1216-1219, Feb 2002. [18] B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett. Vol. 81, pp.757-759, July 2002. [19] S. C. Lyu, Y. Zhang, H. Ruh, H.-J. Lee, H.-W. Shim, E.-K. Suh, C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires”, Chem. Phys. Lett. vol. 363, pp. 134-138, Sep. 2002. [20] B. J. Jin, S. H. Bae, S. Y. Lee, S. Im, “Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition”, Mater. Sci. Eng. B vol. 71, pp. 301-305, Feb 2000. [21] H.-J. Egelhaaf, D. Oelkrug, “Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO,” J. Crystal Growth, vol. 161, pp. 190-194, Apr. 1996. [22] W.I. PARK, Y. H. Jun, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett. vol. 80, pp. 4232-4234, June 2002. [23] T. Minami, T. Miyata, T. Yamamoto, “Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering,” Surf. Coat. Technol. vol. 108-109, pp. 588-593, Oct. 1998. [24] P. G. Collins, A. Zettl, “Unique characteristics of cold cathode-carbon-nanotube matrix field emitters,” PHYSICAL REVIEW B vol. 55, pp.9391-9399, April 1997. [25] M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame and L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers”, Appl. Phys. Lett., vol.60, pp.2917-2919, 1992. [26] E. Monroy, F. Calle, E. Munoz and F. Omnes, ” AlGaN metal–semiconductor–metal photodiodes”, Appl. Phys. Lett., vol.74, pp. 3401-3403, 1999. [27] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars and U. K. Mishra, ” High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett., vol.75, pp.247-249, 1999. [28] E. Monroy, F. Vigue, F. Calle, J. I. Izpura, E. Munoz and J. P. Faurie, “Time response analysis of ZnSe-based Schottky barrier photodetectors”, Appl. Phys. Lett., vol.77, pp.2761-2763, 2000. [29] F. Vigue, E. Tournie, J. P. Faurie, E. Monroy, F. Calle and E. Munoz, “Visible-blind ultraviolet photodetectors based on ZnMgBeSe Schottky barrier diodes”, Appl. Phys. Lett., vol.78, pp.4190-4192, 2001. [30] I. K. Sou, M. C. W. Wu, T. Sun, K. S. Wong and G. K. L. Wong, “Molecular-beam-epitaxy-grown ZnMgS ultraviolet photodetectors” Appl. Phys. Lett., vol.78, pp.1811-1813, 2001. [31] M. D. Whitfield, S. S. Chan and R. B. Jackman, “Thin film diamond photodiode for ultraviolet light detection”, Appl. Phys. Lett., vol.68, pp.290-292, 1996. [32] H. Ohta, M. Kamiya, T. Kamiya, M. Hirano and H. Hosono, “UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO”, Thin Solid Films, vol.445, pp.317-321, 2003. [33] H. Kind, H. Yang, B. Messer, M. Law and P. Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches”, Adv. Mater., vol.14, pp.158-160, 2002. [34] Q. H. Li, Q. Wan, Y. K. Liang and T. H. Wang, ” Electronic transport through individual ZnO nanowires”, Appl. Phys. Lett., vol.84, pp.4556-4558, 2004. [35] C. L. Hsu, S. J. Chang, Y. K. Tseng, C. J. Huang and I. C. Chen,” Vertical single crystal ZnO nanowires grown on ZnO:Ga/glass templates”, Accepted by IEEE Tran. Nanotechnology [36] S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, H. W. Shim, E. K. Suh and C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires”, Chem. Phys. Lett., vol.363, pp.134-138, 2002. [37] B. J. Jin, S. H. Bae, S. Y. Lee and S. Im, “Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition”, Mater. Sci. Eng. B, vol.71, pp.301-305, 2000. [38] H. J. Egelhaaf, and D. Oelkrug, “Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO”, J. Crystal Growth, vol.161, pp.190-194, 1996. [39] Y. K. Tseng, H. C. Hsu, W. F. Hsieh, K. S. Liu, I. C. Chen, “Two-step oxygen injection process for growing ZnO nanorods”, J. Mater. Res., vol.18, pp.2837-2844, 2003. [40] S. C. Lyu, Y. Zhang, H. Ruh, H.-J. Lee, H.-W. Shim, E.-K. Suh, C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires”, Chem. Phys. Lett., vol.363, pp.134-138, 2002. [41] B. J. Jin, S. H. Bae, S. Y. Lee, S. Im, “Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition”, Mater. Sci. Eng. B, vol.71, pp.301-305, 2000.
Chapter 4 [1] T. Thurn-Albrecht, J. Schotter, G. A. Kästle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, and T. P. Russell, “Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates”, Science, vol.290, pp.2126-2129, 2000. [2] Nicholas A. Melosh, Akram Boukai, Frederic Diana, Brian Gerardot, Antonio Badolato, Pierre M. Petroff, and James R. Heath, “Ultrahigh-Density Nanowire Lattices and Circuits”, Science, vol.300, pp.112-115, 2003. [3] J. S. Jie, G. Z. Wang, Q. T. Wang, Y. M. Chen, X. H. Han, X. P. Wang, J. G. Hou, “Synthesis and Characterization of Aligned ZnO Nanorods on Porous Aluminum Oxide Template”, J. Phys. Chem. B, vol.108, pp.11976-11980, 2004. [4] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science, vol.292, pp.1897-1899, 2001. [5] P. Gao, Z. L. Wang, “Self-Assembled Nanowire-Nanoribbon Junction Arrays of ZnO”, J. Phys. Chem B. vol.106, pp.12653-12658, 2002. [6] J. C. Johnson, K. P. Knutsen, H. Yan, M. Law, T. Zhang, P. Yang, R. J. Saykally, “Ultrafast Carrier Dynamics in Single ZnO Nanowire and Nanoribbon Lasers”, Nano Lett., vol.4, pp.197-204, 2004. [7] Wang, X.; Summers, C. J.; Wang, Z. L., “ Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays“, Nano Lett., vol.4, pp.423-426, 2004. [8] P. X. Gao, Z. L. Wang, “ Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process“, J. Phys. Chem. B, vol.108, pp.7534-7537, 2004. [9] B. Messer, J. H. Song, P. Yang, “Microchannel Networks for Nanowire Patterning“, J. Am. Chem. Soc., vol.122, pp.10232-10233, 2000. [10] Y. Huang, X. Duan, Q. Wei, C. M. Lieber, “ Directed Assembly of One-Dimensional Nanostructures into Functional Networks“, Science, vol.291, pp.630-633, 2001. [11] D. Whang, S. Jin, Y. Wu, C. M. Lieber, “ Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems“, Nano Lett., vol.3, pp.1255-1259, 2003. [12] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, “ Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices“, Nature, vol.409, pp.66-69, 2001. [13] L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, “ Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO“, J. Phys. Chem. B, vol.105, pp.3350-3352, 2001. [14] W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods“, Appl. Phys. Lett., vol.80, pp.4232-4234, 2002. [15] Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, I. C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. vol. 13, pp. 811-814, Oct. 2003. [16] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays“, Angew. Chem. Int. Ed., vol.42, pp.3031-3034, 2003. [17] S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers“, Appl. Phys. Lett. vol.84, pp.3241-3243, 2003. [18] A. Mikkelsen, N. Sköld, L. Ouattara, M. Borgström, J. N. Andersen, L. Samuelson, W. Seifert, E. Lundgren,“ Direct imaging of the atomic structure inside a nanowire by scanning tunnelling microscopy“, Nature Mater. Vol.3, pp.519-523, 2004. [19] T. Pauporté, D. Lincot, ”Heteroepitaxial electrodeposition of zinc oxide films on gallium nitride”, Appl. Phys. Lett. vol.75, pp.3817-3819, 1999. [20] W. I. Park, G. C. Yi, ” Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN”, Adv. Mater. Vol.16, pp.87-90, 2004. [21] Y. R. Lin, S. T. Wu, ” Growth of aluminum nitride films at low temperature” J. Cryst. Growth, vol.252, pp.433-439, 2003. [22] Y. K. Tseng, H. C. Hsu, W. F. Hsieh, K. S. Liu, I. C. Chen, “Two-setp oxygen injection process for growing ZnO nanorods” J. Mater. Res. vol. 18, pp. 2837-2844, Dec. 2003. [23] Y. R. Lin, Y. K. Tseng, S. S. Yang, S. T. Wu, C. L. Hsu, S. J. Chang, “Buffer facilitated epitaxial growth of ZnO nanowire”, vol.5, pp.579-583, 2005. [24] Y. Ding, Z. L. Wang,” Structure Analysis of Nanowires and Nanobelts by Transmission Electron Microscopy”, J. Phys. Chem. B, vol.108, pp.12280-12291, 2004. [25] D. R. Gaskell, “Introduction to the Thermodynamics of Materials”, third ed., TAYLOR & FRANCIS, p. 169 & p. 548. 1995. [26] C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, S. T. Lee, ” High-Density, Ordered Ultraviolet Light-Emitting ZnO Nanowire Arrays”, Adv. Mater., vol.15, pp.838-841, 2003. [27] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, “ Room-Temperature Ultraviolet Nanowire Nanolasers“, Science, vol.292, pp.1897-1899, 2001. [28] P. X. Gao, Y. Ding, Z. L. Wang, ” Crystallographic Orientation-Aligned ZnO Nanorods Grown by a Tin Catalyst”, Nano Lett., vol.3, pp.1315-1320, 2003. [29] J. C. Johnson, K. P. Knutsen, H. Yan, M. Law, T. Zhang, P. Yang, R. J. Saykally, “Ultrafast Carrier Dynamics in Single ZnO Nanowire and Nanoribbon Lasers”, Nano Lett., vol.4, pp.197-204, 2004. [30] Wang, X.; Summers, C. J.; Wang, Z. L., “ Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays“, Nano Lett., vol.4, pp.423-426, 2004. [31] H. T. Ng, J. Han, T. Yanada, P. Nguyen, Y. P. Chen, M. Meyyappan, “ Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor“, Nano Lett., vol.4, pp.1247-1252, 2004. [32] L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, “ Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO“, J. Phys. Chem. B, vol.105, pp.3350-3352, 2001. [33] L. Vayssieres, “ Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions“, Adv. Mater., vol.15, pp.464-466, 2003. [34] W.I. PARK, Y. H. Jun, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett. vol. 80, pp. 4232-4234, June 2002. [35] Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, I. C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. vol. 13, pp. 811-814, Oct. 2003. [36] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays“, Angew. Chem. Int. Ed., vol.42, pp.3031-3034, 2003. [37] S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers“, Appl. Phys. Lett. vol.84, pp.3241-3243, 2003. [38] W. I. Park, G. C. Yi, ” Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN”, Adv. Mater. Vol.16, pp.87-90, 2004. [39] B. P. Luther, S. E. Mohney, T. N. Jackson, ” Titanium and titanium nitride contacts to n-type gallium nitride”, Semicond. Sci. Tech., vol.13, pp.1322-1327, 1998. [40] A. Sherman, ” Growth and properties of LPCVD titanium nitride as a diffusion barrier for silicon device technology”, J. Electrochem. Soc., vol.137, pp. 1892-1897, 1990. [41] R. I. Hegde, R. W. Fiordalice, E. O. Travis, P. J. Tobin, J. Vac. Sci. Technol. B, vol.11, pp.1287, 1993. [42] Y. R. Lin, S. T. Wu, ” Growth of aluminum nitride films at low temperature” J. Cryst. Growth, vol.252, pp.433-439, 2003. [43] Y. K. Tseng, H. C. Hsu, W. F. Hsieh, K. S. Liu, I. C. Chen, “Two-setp oxygen injection process for growing ZnO nanorods” J. Mater. Res. vol. 18, pp. 2837-2844, Dec. 2003. [44] S. W. Kim, S. Fujita, S. Fujita, ”Self-assembled three-dimensional ZnO nanosize islands on Si substrates with SiO2 intermediate layer by metalorganic chemical vapor deposition”, Jpn. J. Appj. Phys., vol.41, pp.L543-545, 2002.
Chapter 5 [1] J. Wu, S. Liu, C. Wu, K. Chen, L. Chen, “Heterostructures of ZnO–Zn coaxial nanocables and ZnO nanotubes”, Appl. Phys. Lett. vol.81, pp.1312-1314, 2002. [2] X. Y. Kong, Y Ding, Z. L. Wang,” Metal-Semiconductor Zn-ZnO Core-Shell Nanobelts and Nanotubes”, J. Phys. Chem. B, vol.108, pp.570-574, 2004. [3] P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, “Controlled Growth of ZnO Nanowires and Their Optical Properties”, Adv. Func. Mater., vol.12, pp.323-331, 2002. [4] X. Y. Kong, Z. L. Wang, “Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanosprings, and nanospirals”, Appl. Phys. Lett. vol.84, pp.975-977, 2004. [5] L. Vayssieres, “ Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions“, Adv. Mater., vol.15, pp.464-466, 2003. [6] X. D. Wang, P. X. Gao, J. Li, C. J. Summers, Z. L. Wang,” Rectangular Porous ZnO-ZnS Nanocables and ZnS Nanotubes”, Adv. Mater., vol.14, pp.1732-1735, 2002. [7] Z. Gui, J. Liu, Z. Z. Wang, L. Song, H. Yuan, W. C. Fan, D. Y. Chen,” From Muticomponent Precursor to Nanoparticle Nanoribbons of ZnO”, J. Phys. Chem. B, vol.109, pp.1113-1117, 2005. [8] C. X. Xu, X. W. Sun, B. J. Chen, P. Shum, S. Li, X. Hu, ”Nanostructural zinc oxide and its electrical and optical properties”, J. Appl. Phys. vol.95, pp.661-666, 2004. [9] M. Yan, H. T. Zhang, E. J. Widjaja, and R. P. H. Chang, “Self-assembly of well-aligned gallium-doped zinc oxide nanorods”, J. Appl. Phys., vol.94, pp.5240-5246, 2003. [10] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng, I. C. Chen, “Well aligned vertically Al-doped ZnO nanowires synthesized on ZnO:Ga/glass templates”, accepted by J. Electrchem. Soc. [11] J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang and E. L. Garfunkel, ”Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition”, Appl. Phys. Lett., vol.83, pp.3401-3403, 2003. [12] J. Jie, G. Wang, X. Han, Q. Yu, Y. Liao, G. Li, J. G. Hou,” Indium-doped zinc oxide nanobelts”, Chem, Phys. Lett, vol.387, pp.466-470, 2004. [13] S. M. Zhou, X. H. Zhang, X. M. Meng, K. Zou, X. Fan, S. K. Wu, S. T. Lee,” The fabrication and optical properties of highly crystalline ultra-long Cu-doped ZnO nanowires”, Nanotechnology, vol.15, pp.1152-1160, 2004. [14] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, X. G. Gao, J. P. Li, ” Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires”, Appl. Phys. Lett., vol.84, pp.3085-3087, 2004. [15] C. Ronning, P. X. Gao, Y. Ding, Z. L. Wang, D. Schwen,” Manganese-doped ZnO nanobelts for spintronics”, Appl. Phys. Lett., vol.84, pp.783-785 (2004) [16] J. J. Wu, S. C. Liu, M. H. Yang, “Room-temperature ferromagnetism in well-aligned Zn1–xCoxO nanorods”, Appl. Phys. Lett., vol.85, pp.1027-1029, 2004. [17] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell, ” Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy”, Appl. Phys. Lett., vol.81, pp.1830-1832, 2002. [18] Y. R. Ryu, T. S. Lee, H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition “, Appl. Phys. Lett., vol.83, pp.87-89, 2003. [19] W. Lee, M. C. Jeong, J. M. Myoung, “Optical characteristics of arsenic-doped ZnO nanowires”, Appl. Phys. Lett., vol.85, pp.6167-6169, 2004. [20] C. L. Hsu, S. J. Chang, Y. K. Tseng, C. J. Huang and I. C. Chen,” Vertical single crystal ZnO nanowires grown on ZnO:Ga/glass templates”, Accepted by IEEE Tran. Nanotechnology. [21] S. C. Lyu, Y. Zhang, H. Ruh, H.-J. Lee, H.-W. Shim, E.-K. Suh, C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires”, Chem. Phys. Lett., vol.363, pp.134-138, 2002. [22] B. J. Jin, S. H. Bae, S. Y. Lee, S. Im, “Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition”, Mater. Sci. Eng. B vol. 71, pp. 301-305, 2000. [23] S. lijima, Nature, “Helical microtubules of graphitic carbon”, vol.354, pp.56-58, 1991. [24] X. F. Duan, C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater. vol. 12, pp. 298-302, Feb. 2000. [25] C. C. Chen, C. C. Yeh, “Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires,” Adv. Mater. vol. 12, pp. 738-741, May 2000. [26] H. Cao, J. Y. Xu, D. Z. Zhang, S. H. Chang, S. T. Ho, E. W. Seelig, X. Liu, R. P. H. Chang, ” Spatial Confinement of Laser Light in Active Random Media”, phys. Rev. Lett., vol.84, pp.5584-5587, 2000. [27] L. F. Dong, Z. L. Cui, Z. K. Zhang, ” Gas sensing properties of nano-ZnO prepared by arc plasma method”, Nanostruct. Mater., vol.8, pp.815-823, 1997. [28] H. Kind, H. Yang, B. Messer, M. Law and P. Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches”, Adv. Mater., vol.14, pp.158-160, 2002. [29] J. Wu and S. Liu, ” Catalyst-Free Growth and Characterization of ZnO Nanorods”, J. Phys. Chem. B, vol.106, pp.9546-9551, 2002 [30] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, ” Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties”, Appl. Phys. Lett. vol.76, pp.2011-2013, 2000. [31] L. Vayssieres, “ Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions“, Adv. Mater., vol.15, pp.464-466, 2003. [32] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, and P. H. Fleming, “Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy”, Appl. Phys. Lett., vol.81, pp.3046-3048, 2002. [33] W. I. Park, Y. H. Jun, S. W. Jung, and G.-C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods”, Appl. Phys. Lett., vol.82, pp.964-966. 2003. [34] S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. W. Emanaetoglu, and Y. Lu, “Selective MOCVD growth of ZnO nanotips”, IEEE Trans. Nanotechnol., vol.2, pp.50-54, 2003. [35] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. vol. 13, pp. 113-116, Jan. 2001. [36] C. Geng, Y. Jiang, Y. Yao, X. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, S. T. Lee,” Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates,“ Adv. Funct. Mater. vol. 14, pp. 589-594, Jun. 2004. [37] C. L. Hsu, S. J. Chang, Y. K. Tseng, C. J. Huang and I. C. Chen,” Vertical single crystal ZnO nanowires grown on ZnO:Ga/glass templates”, Accepted by IEEE Tran. Nanotechnology [38] Y. H. Tang, T. K. Sham, A. Ju¨rgensen, Y. F.Hu, C. S. Lee, S. T. Lee, ” Phosphorus-doped silicon nanowires studied by near edge x-ray absorption fine structure spectroscopy”, Appl. Phys. Lett., vol.80, pp.3709-3711, 2002. [39] H. W. Seo, S. Y. Bae, J. Park, H. Yang, M. Kang, S. Kim, J. C. Park, S. Y. Lee, ” Nitrogen-doped gallium phosphide nanobelts”, Appl. Phys. Lett., vol.82, pp.3752-3754, 2003. [40] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, “ Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices“, Nature, vol.409, pp.66-69, 2001. [41] J. C. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia, N. L. Rupesinghe, W. K. Hsu, N. Grobert, H. Terrones, and G. A. J. Amaratunga, ” Enhanced Electron Field Emission in B-doped Carbon Nanotubes”, Nano Lett., vol.2, pp.1191-1195, 2002. [42] D. D. D. Ma, C. S. Lee, and S. T. Lee, ” Scanning tunneling microscopic study of boron-doped silicon nanowires”, Appl. Phys. Lett., vol.79, pp.2468-2470, 2001. [43] S. Y. Bae, H. W. Seo, J. Park, ” Vertically Aligned Sulfur-Doped ZnO Nanowires Synthesized via Chemical Vapor Deposition”, J. Phys. Chem. B, vol.108, pp.5206-5210, 2004. [44] M. Yan, H. T. Zhang, E. J. Widjaja, and R. P. H. Chang, “Self-assembly of well-aligned gallium-doped zinc oxide nanorods”, J. Appl. Phys., vol.94, pp.5240-5246, 2003. [45] J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang and E. L. Garfunkel, ”Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition”, Appl. Phys. Lett., vol.83, pp.3401-3403, 2003. [46] Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, I. C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. vol. 13, pp. 811-814, Oct. 2003. [47] Y. K. Tseng, I. N. Lin, K. S. Liu, T. S. Lin, I. C. Chen, “Low-temperature growth of ZnO nanowires”, J. Mater. Res., vol.18, pp.714-718, 2003. [48] G. J. Fang, D, Li, B. L. Yao, “Influence of post-deposition annealing on the properties of transparent conductive nanocrystalline ZAO thin films prepared by RF magnetron sputtering with highly conductive ceramic target”, Thin Solid films, vol.418, pp.156-162, 2002. [49] S. C. Lyu, Y. Zhang, H. Ruh, H.-J. Lee, H.-W. Shim, E.-K. Suh, C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires”, Chem. Phys. Lett., vol. 363, pp. 134-138, Sep. 2002. [50] B. J. Jin, S. H. Bae, S. Y. Lee, S. Im, “Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition”, Mater. Sci. Eng. B vol. 71, pp. 301-305, Feb 2000. [51] T. Minami, T. Miysta and T. Yamamoto, “Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering”, Surf. Coat. Technol., vol.108-109, pp.583-587, 1998. [52] Y. Chen, D. M. Bagnall, H. Feick, N. Tran, E. Weber, P. Yang, ” Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater., vol.13, pp.113-116, 2001. [53] W. I. Park, Y. H. Jun, S. W. Jung, and G.-C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods”, Appl. Phys. Lett., vol.82, pp.964-966. 2003. [54] L. Vayssieres, K. Keis, A. Hagfeldt, S. E. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes“, Chem. Mater, vol.13, pp.4386-4395, 2001. [55] J. C. Johnson; H. Q. Yan, P. Yang, R. J. Saykally, ”Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides”, J. Phys. Chem. B, vol.107, pp.8816-8828, 2003. [56] J. J. Wu, S. C. Liu, “ Catalyst-Free Growth and Characterization of ZnO Nanorods“, J Phys Chem. B, vol.106, pp.9546-9551, 2002. [57] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature“, Appl. Phys. Lett. vol.81, pp.3648-3650, 2002. [58] J. J. Wu, S. C. Liu, “ Low-temperature and catalyst-free synthesis of well-aligned ZnO nanorods on Si (100)“, J. Mater. Chem., vol.12, pp.3125-3129, 2002. [59] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, ” Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties”, Appl. Phys. Lett. vol.76, pp.2011-2013, 2000. [60] L. Vayssieres, “ Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions“, Adv. Mater., vol.15, pp.464-466, 2003. [61] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, and P. H. Fleming, “Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy”, Appl. Phys. Lett., vol.81, pp.3046-3048, 2002. [62] W. I. Park, S. J. An, J. L. Yang, G. C. Yi, “ Photoluminescent Properties of ZnO/Zn0.8Mg0.2O Nanorod Single-Quantum-Well Structures“, J. Phys. Chem. B, vol.108, pp.15457-15460, 2004. [63] W.I. PARK, Y. H. Jun, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett. vol. 80, pp. 4232-4234, June 2002. [64] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. vol. 13, pp. 113-116, Jan. 2001. [65] P. X. Gao, Z. L. Wang, “ Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process“, J. Phys. Chem. B, vol.108, pp.7534-7537, 2004. [66] C. L. Hsu, S. J. Chang, Y. K. Tseng, C. J. Huang and I. C. Chen,” Vertical single crystal ZnO nanowires grown on ZnO:Ga/glass templates”, Accepted by IEEE Tran. Nanotechnology [67] S. Y. Bae, C. W. Na, J. H. Kang, J. Park, “ Comparative Structure and Optical Properties of Ga-, In-, and Sn-Doped ZnO Nanowires Synthesized via Thermal Evaporation“, J. Phys. Chem. B, vol.109, pp.2526-2531, 2005. [68] J. S. Jie, G. Z. Wang, X. H. Han, J. G. Hou, “ Synthesis and Characterization of ZnO:In Nanowires with Superlattice Structure“, J. Phys. Chem. B, vol.108, pp.17027-17031, 2004. [69] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, “ Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices“, Nature, vol.409, pp.66-69, 2001. [70] J. C. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia, N. L. Rupesinghe, W. K. Hsu, N. Grobert, H. Terrones, and G. A. J. Amaratunga, ” Enhanced Electron Field Emission in B-doped Carbon Nanotubes”, Nano Lett., vol.2, pp.1191-1195, 2002. [71] P. M. Rafailov, M. Stoll, C. Thomsen, ” Strain Determination in Electrochemically Doped Single-Walled Carbon Nanotubes via Raman Spectroscopy”, J. Phys. Chem. B, vol.108, pp.19241-19245, 2004. [72] S. Y. Bae, H. W. Seo, J. Park, ”Vertically Aligned Sulfur-Doped ZnO Nanowires Synthesized via Chemical Vapor Deposition”, J Phys. Chem. B, vol.108, pp.5206-5210, 2004. [73] M. Yan, H. T. Zhang, E. J. Widjaja, and R. P. H. Chang, “Self-assembly of well-aligned gallium-doped zinc oxide nanorods”, J. Appl. Phys., vol.94, pp.5240-5246, 2003. [74] J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, E. L. Garfunkel, “Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition“, Appl. Phys. Lett., vol.83, pp.3401-3403, 2003. [75] Y. E. Lee, D. P. Norton, C. Park, C. M. Rouleau, ”Blue photoluminescence in ZnGa2O4 thin-film phosphors”, J Appl. Phys., vol.89, pp.1653-1656, 2001. [76] S. H. Yang, ” Electrophoretic Prepared ZnGa2O4 Phosphor Film for FED”, J Electrochem. Soc. vol.150, pp.H250-H253, 2003. [77] S. H. Wu, H. C. Cheng, ” Preparation and Characterization of Nanosized ZnGa2O4 Phosphors”, J Electrochem. Soc. vol.151, pp.H159-H163, 2004. [78] S. Itoh, H. Toki, Y. Sato, K. Morimoto, T. Kishino, ” ZnGa2O4 phosphor for low-voltage blue cathodoluminescence”, J. Electrochem. Soc., vol.138, pp.1509-1512, 1991. [79] L. E. Shea, R. K. Datta, J. J. Brown, ” Photoluminescence of Mn2+-activated ZnGa2O4“, J. Electrochem. Soc., vol.141, pp.1950-1954, 1993. [80] T. K. Tran, W. Park, J. W. Tomm, B. K. Wagner, S. M. Jacobsen, C. J. Summers, N. P. Yocom, S. K. McClelland, ” Photoluminescence properties of ZnGa2O4:Mn powder phosphors”, J. Appl. Phys., vol.78, pp.5691-5695, 1995. [81] I. K. Jeong, H. L. Park, S. I. Mho,” Two self-activated optical centers of blue emission in zinc gallate”, Solid State Commun., vol.105, pp.179-183, 1998. [82] T. Ohtake, N. Sonoyama, T. Sakata,” Electrochemical luminescence of ZnGa2O4 and ZnGa2O4:Mn electrodes”, Chem. Phys. Lett., vol.298, pp.395-399, 1998. [83] S. Y. Bae, H. W. Seo, C. W. Na, J. Park, ” Synthesis of blue-light-emitting ZnGa2O4 nanowires using chemical vapor deposition”, Chem. Commun. Vol.16, pp.1834-1835, 2004. [84] Y. E. Lee, D. P. Norton, C. Park, C. M. Rouleau, ”Blue photoluminescence in ZnGa2O4 thin-film phosphors”, J Appl. Phys., vol.89, pp.1653-1656, 2001. [85] S. H. Yang, ” Electrophoretic Prepared ZnGa2O4 Phosphor Film for FED”, J Electrochem. Soc. vol.150, pp.H250-H253, 2003. [86] S. H. Wu, H. C. Cheng, ” Preparation and Characterization of Nanosized ZnGa2O4 Phosphors”, J Electrochem. Soc. vol.151, pp.H159-H163, 2004.
|