跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 20:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許正良
研究生(外文):Cheng-Liang Hsu
論文名稱:氧化鋅奈米線及其參雜奈米線之合成及特性研究
論文名稱(外文):An investigation of synthesis and properties of the pure and doped ZnO nanowires
指導教授:張守進張守進引用關係
指導教授(外文):Shoou-Jinn Chang
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:113
中文關鍵詞:玻璃基板參雜奈米線氧化鋅
外文關鍵詞:glass substratedopednanowiresZnO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:504
  • 評分評分:
  • 下載下載:126
  • 收藏至我的研究室書目清單書目收藏:1
  在本論文中,藉由鎵參雜之氧化鋅薄膜作為緩衝層(buffer layer),成功的藉由VLS (Vapor-Liquid-Solid)技術將單晶氧化鋅(Zinc Oxide)奈米線之(nanowires)奈米線垂直生成於玻璃基板上。我們在600°C的成長溫度中,成功的控制了奈米線的選區成長,並且所成長的奈米線,其直徑及長度都相當的均勻。經由(XRD)的檢驗,氧化鋅奈米線只有出現在(002)的面,以及極小的半高寬。為了尋求更精密的檢定,我們將試片送至高解析穿透式電子顯微鏡(HRTEM)和室溫及變溫的PL(photoluminescence spectroscopy)量測,證明其結晶性、垂直性都相當的優良。進行電子場發射(field electron emission)的實驗,在電場14V/μm開始,就有明顯的場發射電流存在,而在電流密度0.1 mA/cm2時,其電壓只需24 V/μm,故我們深信氧化鋅具有場發射應用的潛力。隨後我們在較低溫的成長溫度520°C下,於ZnO:Ga/glass基板上成長出一樣垂直單晶的氧化鋅奈米線,其長度約2.0μm,直徑約70-150nm,其結構一樣是單晶的wurtzite structure,經由UV光來照射,發現照射光的電流值約為暗室電流植的67.5倍。

  高密度、垂直的氧化鋅奈米線選區成長於ZnO:Ga/Si3N4/SiO2/Si基板上,在採用兩階段的氧氣注入方式下,採用不同成長溫度來成長。可以很容易發現期間尖端為六角柱,當生成溫度越高時,其奈米線長度也跟著增加,但尖端的直徑卻隨之減少,故我們稱在500°C的奈米線形狀為管狀,而700°C所成長的奈米線稱為錐狀,經由PL、XRD、EDX都在在證明這些奈米線的品質是相當良好的。我們也成功的完成4軸對稱的氧化鋅陣列,控制成長的氧化鋅奈米線基本實驗奈米技術的一環,我們藉由介面的成功控制所想要的奈米線方線,而且不需要任何的催化劑或模版,只藉由TiN (100)的介面便可以完成。一個新的簡單成長垂直氧化鋅奈米線於TiN(111)的基板上,仍然不需要任何的催化劑,利用緩衝層的晶格結構與氧化鋅相似即可完成,而這兩種不同材料的晶格常數是相當相似,因此構成生長條件。

  高密度單晶垂直的鋁參雜氧化鋅奈米線被製造出來,其鋁含量約為1.05 atom %,試片是在550°C於ZnO:Ga/glass基板上生長,其晶格常數也因鋁的參雜而增加約0.25%,光學特性也因而改變,電子場發射的能力也因此大幅的增加,由16 V/μm變成10 V/μm的良好特性,並由此推論其功函數由5.3eV下降到3.39eV。

  採用高濃度的鎵加入合成氧化新奈米線時,觀察這合成的第二種現象的出現於垂直的氧化鋅奈米線上,其合成溫度為600˚C於ZnO/glass基板上,當鎵增加時,奈米線的長度因而減少,而X-ray有出現第二個材料的特性ZnGa2O4,也就是說,當鎵濃度僅僅為3.5 at. %,就會出現這第二個材料的物理特性,這說明氧化鋅不易出現高濃度的鎵參雜奈米線。高密度的氧化鋅與鋅鎵氧的core-shell結構,在600°C時合成於ZnO/glass基板上,X-ray可以很明顯的發現這兩種材料的峰值,而PL的結果也顯露出ZnGa2O4的對於PL的強度有很大幫助,但峰值卻也因此偏移到481 nm的位置。

  垂直排列整齊之磷參雜之氧化鋅奈米線,採用蒸發反應的方式,在550°C被合成於ZnO:Ga/glass基板上,經驗證磷參雜之氧化鋅奈米線為單晶結構würtzite,方向是向著c軸的方向,磷參雜的影響的奈米線的長度,但不影響其直徑,而且也改變的其PL現象。
 Vertical single crystal ZnO nanowires with uniform diameter and uniform length were selectively grown on ZnO:Ga/glass templates at 600°C by self-catalyzed vapor-liquid-solid (VLS) process without any metal catalyst. It was found that the ZnO nanowires are grown preferred oriented in the (002) direction with a small x-ray diffraction (XRD) full-width-half-maximum (FWHM). Photoluminescence (PL), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) measurements also confirmed good crystal quality of our ZnO nanowires. Field emitters using these ZnO nanowires were also fabricated. It was found that threshold field of the fabricated field emitters was 14 V/μm. With an applied electric field of 24 V/μm, it was found the emission current density was around 0.1 mA/cm2.

 Vertical single-crystal ZnO nanowires of were grown on ZnO:Ga/glass template by self-catalyzed vapor-liquid-solid (VLS) process at a low temperature of 520°C. It was found that length of these ZnO nanowires was around 2.0 μm while the diameter of these nanowires was in between 70 and 150 nm. It was also found that the ZnO nanowires were structurally uniform, defect free and well oriented with pure wurtzite structure. UV photodetectors were then fabricated using a simple scheme. It was found that photocurrent to dark current contrast ratio of our ZnO nanowires photodetector was 67.5.

 High density vertical single crystal ZnO nanowires were selectively grown on ZnO:Ga/Si3N4/SiO2/Si templates at various temperatures by two-step oxygen injection process of self-catalyzed vapor-liquid-solid (VLS) technology. It was found that tips of the ZnO nanowires are hexagon. It was also found that average length of the ZnO nanowires increased while average tip diameter of the ZnO nanowires decreased as the growth temperature increased. Furthermore, it was found that the ZnO nanowires grown at 500°C were “tube-shaped” while the ZnO nanowires grown at 700°C were “cone-shaped”. Photoluminescence (PL), x-ray diffraction (XRD) and energy depersive x-ray (EDX) results all indicate the quality of our ZnO nanowires is good.

  This work reports an approach to preparing well-ordered, 4-fold symmetric ZnO nanowires arrays. Controlling the growth of nanowires is fundamental to realizing the dream of nanotechnology. The characteristics of the interface can be used to fabricate extended and oriented nanowires. As well as using a catalyst or template, a suitable buffer layer can be chosen to facilitate the control of the productive process, even though the crystal structure of the TiN (100) thus obtained differed entirely from that of ZnO in this study.

 A new and simple means of growing vertical ZnO NW arrays from the surface of a substrate using a TiN (111) buffer layer, but without using any catalysis or template, was proposed, although the crystal structure thus obtained differed entirely from that of ZnO. Using buffer layers, which have an appropriate lattice mismatch to the crystal of deposits, will induce island growth. Furthermore, epitaxial nanowire can be grown under the anisotropic growth condition.

 High-density, single-crystal, vertically-aligned, Al-doped ZnO nanowires with an Al content of 1.05 atom % were synthesized on ZnO:Ga/glass templates at 550°C. Although introducing Al did not change the physical dimensions of the ZnO nanowires, the lattice constant increased by 0.25% and the optical properties of the ZnO nanowires were degraded. However, the experimental results also showed that the threshold emission field can be significantly decreased from 16 to 10 V/μm, and the work function, can also be reduced from 5.3 to 3.39 eV by introducing Al atoms into the ZnO nanowires.

 This investigation describes the synthesis and the formation of the second phase of high-density arrays of vertically aligned ZnO:Ga nanowires on ZnO/glass substrates at 600˚C. As the concentration of the Ga is increased, the nanowire became shorter without any change in its diameter. The formation of the second phase, ZnGa2O4 (JCPDS No. 38-1240), was verified by X-ray diffraction even though the concentration of the Ga was only 3.5 at. %. The formation of the second compound substantially influenced the physical properties of the nanowire.

 High-density vertically aligned ZnO/ZnGa2O4 core-shell nanorods were synthesized on ZnO/glass templates at 600°C by reactive evaporation. X-ray diffraction (XRD) spectra revealed the composition of the sample. The core-shell structure was observed by energy-dispersive X-ray spectroscopic (EDX) mapping. The photoluminescence (PL) spectrum exhibited a strong peak at around 481 nm and a very high luminescent intensity.

 Vertically well aligned P-doped ZnO nanowires were prepared on ZnO:Ga/glass templates at 550°C by reactive evaporation without metal catalysts. The P-doped ZnO nanowires were found to be single crystal with a würtzite structure, oriented in the c-axis direction. P doping shortened the physical lengths of the ZnO nanowires without changing their diameter. Furthermore, the introduction of P atoms resulted in a much weaker and broader ZnO band edge emission.
CHAPTER 1 Introduction 18
1-1. The Background of Nanotechnology 18
1-2. Intrduction to one dimension nanomaterials 20
CHAPTER 2 ZnO nanowires synthetize methods and analyze equipments introduction 33
2-1. Various ZnO nanowires synthetize methods 33
2-1-1. Chemical Vapor Deposition method 33
2-1-2. Template-assisted growth method 34
2-1-3. Solution-base synthesis method 34
2-1-4. Catalyst-driven molecular-beam-epitaxy method 35
2-1-5. Metalorganic Chemical Vapor Deposition method 35
2-1-6. Vapor-Liquid-Solid (VLS) method 35
2-1-7. Self-catalyzed VLS process 36
2-2. Experimental details and analyze equipments introduction 37
2-2-1. Field-Emission Scanning Electron Sicroscope 38
2-2-2. High resultion X-ray diffractometer 39
2-2-3. FEI DualBeam System DB-235 39
2-2-4. Field Emission transmission electron microscopy 40
2-2-5. Photoluminescence Spectroscopy 40
CHAPTER 3 Single crystal ZnO nanowires grown on ZnO:Ga/galss and ZnO:Ga/Si3N4/SiO2/Si substrate 44
3-1. Vertical single crystal ZnO nanowires grown on ZnO:Ga/glass templates 44
3-2. Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires 48
3-3. Selective growth of vertical ZnO nanowires on ZnO:Ga/Si3N4/SiO2/Si templates 51
3-4. Summarizes 54
CHAPTER 4 Epitaxial growth ZnO nanowire on TiN/Si Substrate 74
4-1. A New and Simple Means for Self-Assembled Nanostructure: Facilitated by Buffer Layer 74
4-2. Buffer facilitated epitaxial growth of ZnO nanowire 77
4-3. Summary 79
CHAPTER 5 Phosphorous, Aluminum and Gallium and doped ZnO nanowires synthesized on ZnO:Ga/glass templates 98
5-1. Vertically well aligned P-doped ZnO nanowires synthesized on ZnO:Ga/glass templates 98
5-2. Well aligned vertically Al-doped ZnO nanowires synthesized on ZnO:Ga/glass templates 101
5-3. Influence of the Formation of the Second Phase in ZnO:Ga Core-Shell Nanowire System 106
5-4. Summary 108
CHAPTER 6 Conclusion 130
Publication list 132
Chapter 1
[1] A. W. Goddard, D. W. Brenner, S. E. Lyshevski, G.. J. lafrate, “Handbook of Nanoscience engineering and technology”, CRC Press, Boca Raton, 1, 2003
[2] http://www.nano.gov/omb_nifty50.htm
[3] http://www.sc.doe.gov/production/bes/scale_of_things.html
[4] P. Mulvaney, “Not All That's Gold Does Glitter”, MRS Bulletin, vol.26, pp.1009-1015, 2001.
[5] P. A. Buffat and J.-P. Borel, “Size effect on the melting temperature of gold particles”, Phys. Rev. A, vol.13, pp.2287-2295, 1976.
[6] C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites”, J. Am. Chem. Soc. vol.115, pp.8706-8707, 1993.
[7] A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, “Melting in semiconductor nanocrystals”, Science, vol.256, pp.1425-1430, 1992.
[8] T. Takagahara and K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials, Phys. Rev. A, vol.46, pp.15578-15582, 1992.
[9] A. D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems”, Adv. Phys. Vol.51, pp799-890, 2002.
[10] Dingle, R., Proceedings of 13th International Conference on the Physics of Semiconductors, Rome, edited by F. G. Fumi (Rome: Topografia Marves) pp. 965-965. 1976.
[11] S. Iijima, Nature, “Helical microtubules of graphitic carbon”, vol.354, pp.56-58, 1991.
[12] R. Waser, “Nanoelectronic and information Technology, vol.3 pp.473-500, 2003.
[13] P. G.. Collins, M. S. Arnold, P. Avouris, “Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown”, Science, vol.292, pp.706-709, 2001.
[14] Yi Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks”, Science, vol.291, pp.851-853, 2001.
[15] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, C. M. Lieber, “Logic Gates and Computation from Assembled Nanowire Building Blocks”, Science, vol.294, pp.1313-1317, 2001.
[16] Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, C. M. Lieber “Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems”, Science, vol.302, pp.1377-1379, 2003.
[17] H. M. Kim, Y. H. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays”, Nano letters, vol.4, pp.1059-1062, 2004.

Chapter 2
[1] Y. Chen, D. M. Bagnall, H. Feick, N. Tran, E. Weber, P. Yang, ” Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater., vol.13, pp.113-116, 2001.
[2] W. I. Park, Y. H. Jun, S. W. Jung, and G.-C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods”, Appl. Phys. Lett., vol.82, pp.964-966. 2003.
[3] L. Vayssieres, K. Keis, A. Hagfeldt, S. E. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes“, Chem. Mater, vol.13, pp.4386-4395, 2001.
[4] J. C. Johnson; H. Q. Yan, P. Yang, R. J. Saykally, ”Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides”, J. Phys. Chem. B, vol.107, pp.8816-8828, 2003.
[5] J. J. Wu, S. C. Liu, “ Catalyst-Free Growth and Characterization of ZnO Nanorods“, J Phys Chem. B, vol.106, pp.9546-9551, 2002.
[6] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature“, Appl. Phys. Lett. vol.81, pp.3648-3650, 2002.
[7] J. J. Wu, S. C. Liu, “ Low-temperature and catalyst-free synthesis of well-aligned ZnO nanorods on Si (100)“, J. Mater. Chem., vol.12, pp.3125-3129, 2002.
[8] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, ” Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties”, Appl. Phys. Lett. vol.76, pp.2011-2013, 2000.
[9] L. Vayssieres, “ Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions“, Adv. Mater., vol.15, pp.464-466, 2003.
[10] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, and P. H. Fleming, “Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy”, Appl. Phys. Lett., vol.81, pp.3046-3048, 2002.
[11] W. I. Park, S. J. An, J. L. Yang, G. C. Yi, “ Photoluminescent Properties of ZnO/Zn0.8Mg0.2O Nanorod Single-Quantum-Well Structures“, J. Phys. Chem. B, vol.108, pp.15457-15460, 2004.
[12] W.I. PARK, Y. H. Jun, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett. vol. 80, pp. 4232-4234, June 2002.
[13] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. vol. 13, pp. 113-116, Jan. 2001.
[14] P. X. Gao, Z. L. Wang, “ Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process“, J. Phys. Chem. B, vol.108, pp.7534-7537, 2004.
[15] C. L. Hsu, S. J. Chang, Y. K. Tseng, C. J. Huang and I. C. Chen,” Vertical single crystal ZnO nanowires grown on ZnO:Ga/glass templates”, Accepted by IEEE Tran. Nanotechnology
[16] S. C. and J. J. Wu, “Low-temperature and catalyst-free synthesis of well-aligned ZnO nanorods on Si (100)”, J. Mater. Chem., vol.12, pp.3125-3129, 2002.
[17] T. N. Xu, H. Z. Wu, Y. F. Lao, D. J. Qiu, N. B. Chen, N. Dai, “Anodic-aluminium-oxide template-assisted growth of ZnO nanodots on Si (100) at low temperature”, Chinese phys. Letters, vol.21, pp.1327-1329, 2004.
[18] S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. W. Emanaetoglu, and Y. Lu, “Selective MOCVD growth of ZnO nanotips”, IEEE Trans. Nanotechnol., vol.2, pp.50-54, 2003.
[19] Y. Wu, P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth”, J. Am. Chem. Soc., vol.123, pp.3165-3166, 2001.
[20] J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, “Synthesis of Uniform Hexagonal Prismatic ZnO Whiskers,” Chem. Mater. Vol. 14, pp. 1216-1219, Feb 2002.
[21] B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett. Vol. 81, pp.757-759, July 2002.
[22] http://www.jeol.com/sem/semprods/jsm6500f.html
[23] http://www.nano.nsysu.edu.tw/nano/equipment/HRXRD.html
[24] http://www.feicompany.com/systems/index.aspx
[25] http://www.jeol.com/tem/temprods/jem2100f.html

Chapter 3
[1] C. C. Chen, C. C. Yeh, “Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires,” Adv. Mater. vol. 12, pp. 738-741, May 2000.
[2] J. Zhu, S. Fan, ”Nanostructure of GaN and SiC nanowires based on carbon nanotubes” J. Mate. Res. vol. 14, pp. 1175-1177, April 1999.
[3] X. F. Duan, C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater. vol. 12, pp. 298-302, Feb. 2000.
[4] Y. Homma, P. Finnie, T. Ogino, H. Noda, T. Urisu, “Aligned island formation using step-band networks on Si(111),” J. Appl. Phys. vol. 83, pp. 3083-3088, Sep. 1999.
[5] Z. R. Dai, Z. W. Pan, Z. L. Wang, ” Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation,” Adv. Funct. Mater. vol. 13, pp. 9-24, Jan. 2003.
[6] Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton, H. Terrones, “Generation of hollow crystalline tungsten oxide fibres” Applied Physics A: Materials Science and Processing, vol. 70, pp 231-233, Feb, 2000.
[7] Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, X. Z. Gai, Q. L. Hang, G. C. Xiong, S. Q. Feng,” Nano-scale GeO2 wires synthesized by physical evaporation,” Chem. Phys. Lett. vol. 303, pp 311-314, April 1999.
[8] Z. W. Pan, Z. R. Dai, Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science vol. 291, pp 1947-1949, March 2001.
[9] J. J. Wu, S.-C. Liu, “Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition“ Adv. Mater. vol. 14, pp. 215-218, Jan. 2002.
[10] H. Yumoto, T. Sako, Y. Gotoh, K. Nishiyama, T. Kaneko, “Growth mechanism of vapor-liquid-solid (VLS) grown indium tin oxide (ITO) whiskers along the substrate” J. Crystal Growth vol. 203, pp. 136-140, May 1999.
[11] V. Valcarcel, A. Souto, F. Guitian, “Development of Single-Crystal -Al2O3 Fibers by Vapor-Liquid-Solid Deposition (VLS) from Aluminum and Powdered Silica,“ Adv. Mater. vol. 10, pp. 138-140, Jan. 1999.
[12] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. vol. 13, pp. 113-116, Jan. 2001.
[13] C. Geng, Y. Jiang, Y. Yao, X. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, S. T. Lee,” Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates,“ Adv. Funct. Mater. vol. 14, pp. 589-594, Jun. 2004
[14] Y. K. Tseng, H. C. Hsu, W. F. Hsieh, K. S. Liu, I. C. Chen, “Two-setp oxygen injection process for growing ZnO nanorods” J. Mater. Res. vol. 18, pp. 2837-2844, Dec. 2003.
[15] Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, I. C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. vol. 13, pp. 811-814, Oct. 2003.
[16] P. Yang, “Semiconductor nanowire array,” Proceedings of SPIE - The International Society for Optical Eng. vol. 4806, pp. 222-224, July 2002.
[17] J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, “Synthesis of Uniform Hexagonal Prismatic ZnO Whiskers,” Chem. Mater. Vol. 14, pp. 1216-1219, Feb 2002.
[18] B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett. Vol. 81, pp.757-759, July 2002.
[19] S. C. Lyu, Y. Zhang, H. Ruh, H.-J. Lee, H.-W. Shim, E.-K. Suh, C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires”, Chem. Phys. Lett. vol. 363, pp. 134-138, Sep. 2002.
[20] B. J. Jin, S. H. Bae, S. Y. Lee, S. Im, “Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition”, Mater. Sci. Eng. B vol. 71, pp. 301-305, Feb 2000.
[21] H.-J. Egelhaaf, D. Oelkrug, “Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO,” J. Crystal Growth, vol. 161, pp. 190-194, Apr. 1996.
[22] W.I. PARK, Y. H. Jun, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett. vol. 80, pp. 4232-4234, June 2002.
[23] T. Minami, T. Miyata, T. Yamamoto, “Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering,” Surf. Coat. Technol. vol. 108-109, pp. 588-593, Oct. 1998.
[24] P. G. Collins, A. Zettl, “Unique characteristics of cold cathode-carbon-nanotube matrix field emitters,” PHYSICAL REVIEW B vol. 55, pp.9391-9399, April 1997.
[25] M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame and L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers”, Appl. Phys. Lett., vol.60, pp.2917-2919, 1992.
[26] E. Monroy, F. Calle, E. Munoz and F. Omnes, ” AlGaN metal–semiconductor–metal photodiodes”, Appl. Phys. Lett., vol.74, pp. 3401-3403, 1999.
[27] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars and U. K. Mishra, ” High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett., vol.75, pp.247-249, 1999.
[28] E. Monroy, F. Vigue, F. Calle, J. I. Izpura, E. Munoz and J. P. Faurie, “Time response analysis of ZnSe-based Schottky barrier photodetectors”, Appl. Phys. Lett., vol.77, pp.2761-2763, 2000.
[29] F. Vigue, E. Tournie, J. P. Faurie, E. Monroy, F. Calle and E. Munoz, “Visible-blind ultraviolet photodetectors based on ZnMgBeSe Schottky barrier diodes”, Appl. Phys. Lett., vol.78, pp.4190-4192, 2001.
[30] I. K. Sou, M. C. W. Wu, T. Sun, K. S. Wong and G. K. L. Wong, “Molecular-beam-epitaxy-grown ZnMgS ultraviolet photodetectors” Appl. Phys. Lett., vol.78, pp.1811-1813, 2001.
[31] M. D. Whitfield, S. S. Chan and R. B. Jackman, “Thin film diamond photodiode for ultraviolet light detection”, Appl. Phys. Lett., vol.68, pp.290-292, 1996.
[32] H. Ohta, M. Kamiya, T. Kamiya, M. Hirano and H. Hosono, “UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO”, Thin Solid Films, vol.445, pp.317-321, 2003.
[33] H. Kind, H. Yang, B. Messer, M. Law and P. Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches”, Adv. Mater., vol.14, pp.158-160, 2002.
[34] Q. H. Li, Q. Wan, Y. K. Liang and T. H. Wang, ” Electronic transport through individual ZnO nanowires”, Appl. Phys. Lett., vol.84, pp.4556-4558, 2004.
[35] C. L. Hsu, S. J. Chang, Y. K. Tseng, C. J. Huang and I. C. Chen,” Vertical single crystal ZnO nanowires grown on ZnO:Ga/glass templates”, Accepted by IEEE Tran. Nanotechnology
[36] S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, H. W. Shim, E. K. Suh and C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires”, Chem. Phys. Lett., vol.363, pp.134-138, 2002.
[37] B. J. Jin, S. H. Bae, S. Y. Lee and S. Im, “Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition”, Mater. Sci. Eng. B, vol.71, pp.301-305, 2000.
[38] H. J. Egelhaaf, and D. Oelkrug, “Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO”, J. Crystal Growth, vol.161, pp.190-194, 1996.
[39] Y. K. Tseng, H. C. Hsu, W. F. Hsieh, K. S. Liu, I. C. Chen, “Two-step oxygen injection process for growing ZnO nanorods”, J. Mater. Res., vol.18, pp.2837-2844, 2003.
[40] S. C. Lyu, Y. Zhang, H. Ruh, H.-J. Lee, H.-W. Shim, E.-K. Suh, C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires”, Chem. Phys. Lett., vol.363, pp.134-138, 2002.
[41] B. J. Jin, S. H. Bae, S. Y. Lee, S. Im, “Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition”, Mater. Sci. Eng. B, vol.71, pp.301-305, 2000.

Chapter 4
[1] T. Thurn-Albrecht, J. Schotter, G. A. Kästle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, and T. P. Russell, “Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates”, Science, vol.290, pp.2126-2129, 2000.
[2] Nicholas A. Melosh, Akram Boukai, Frederic Diana, Brian Gerardot, Antonio Badolato, Pierre M. Petroff, and James R. Heath, “Ultrahigh-Density Nanowire Lattices and Circuits”, Science, vol.300, pp.112-115, 2003.
[3] J. S. Jie, G. Z. Wang, Q. T. Wang, Y. M. Chen, X. H. Han, X. P. Wang, J. G. Hou, “Synthesis and Characterization of Aligned ZnO Nanorods on Porous Aluminum Oxide Template”, J. Phys. Chem. B, vol.108, pp.11976-11980, 2004.
[4] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science, vol.292, pp.1897-1899, 2001.
[5] P. Gao, Z. L. Wang, “Self-Assembled Nanowire-Nanoribbon Junction Arrays of ZnO”, J. Phys. Chem B. vol.106, pp.12653-12658, 2002.
[6] J. C. Johnson, K. P. Knutsen, H. Yan, M. Law, T. Zhang, P. Yang, R. J. Saykally, “Ultrafast Carrier Dynamics in Single ZnO Nanowire and Nanoribbon Lasers”, Nano Lett., vol.4, pp.197-204, 2004.
[7] Wang, X.; Summers, C. J.; Wang, Z. L., “ Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays“, Nano Lett., vol.4, pp.423-426, 2004.
[8] P. X. Gao, Z. L. Wang, “ Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process“, J. Phys. Chem. B, vol.108, pp.7534-7537, 2004.
[9] B. Messer, J. H. Song, P. Yang, “Microchannel Networks for Nanowire Patterning“, J. Am. Chem. Soc., vol.122, pp.10232-10233, 2000.
[10] Y. Huang, X. Duan, Q. Wei, C. M. Lieber, “ Directed Assembly of One-Dimensional Nanostructures into Functional Networks“, Science, vol.291, pp.630-633, 2001.
[11] D. Whang, S. Jin, Y. Wu, C. M. Lieber, “ Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems“, Nano Lett., vol.3, pp.1255-1259, 2003.
[12] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, “ Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices“, Nature, vol.409, pp.66-69, 2001.
[13] L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, “ Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO“, J. Phys. Chem. B, vol.105, pp.3350-3352, 2001.
[14] W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods“, Appl. Phys. Lett., vol.80, pp.4232-4234, 2002.
[15] Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, I. C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. vol. 13, pp. 811-814, Oct. 2003.
[16] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays“, Angew. Chem. Int. Ed., vol.42, pp.3031-3034, 2003.
[17] S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers“, Appl. Phys. Lett. vol.84, pp.3241-3243, 2003.
[18] A. Mikkelsen, N. Sköld, L. Ouattara, M. Borgström, J. N. Andersen, L. Samuelson, W. Seifert, E. Lundgren,“ Direct imaging of the atomic structure inside a nanowire by scanning tunnelling microscopy“, Nature Mater. Vol.3, pp.519-523, 2004.
[19] T. Pauporté, D. Lincot, ”Heteroepitaxial electrodeposition of zinc oxide films on gallium nitride”, Appl. Phys. Lett. vol.75, pp.3817-3819, 1999.
[20] W. I. Park, G. C. Yi, ” Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN”, Adv. Mater. Vol.16, pp.87-90, 2004.
[21] Y. R. Lin, S. T. Wu, ” Growth of aluminum nitride films at low temperature” J. Cryst. Growth, vol.252, pp.433-439, 2003.
[22] Y. K. Tseng, H. C. Hsu, W. F. Hsieh, K. S. Liu, I. C. Chen, “Two-setp oxygen injection process for growing ZnO nanorods” J. Mater. Res. vol. 18, pp. 2837-2844, Dec. 2003.
[23] Y. R. Lin, Y. K. Tseng, S. S. Yang, S. T. Wu, C. L. Hsu, S. J. Chang, “Buffer facilitated epitaxial growth of ZnO nanowire”, vol.5, pp.579-583, 2005.
[24] Y. Ding, Z. L. Wang,” Structure Analysis of Nanowires and Nanobelts by Transmission Electron Microscopy”, J. Phys. Chem. B, vol.108, pp.12280-12291, 2004.
[25] D. R. Gaskell, “Introduction to the Thermodynamics of Materials”, third ed., TAYLOR & FRANCIS, p. 169 & p. 548. 1995.
[26] C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, S. T. Lee, ” High-Density, Ordered Ultraviolet Light-Emitting ZnO Nanowire Arrays”, Adv. Mater., vol.15, pp.838-841, 2003.
[27] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, “ Room-Temperature Ultraviolet Nanowire Nanolasers“, Science, vol.292, pp.1897-1899, 2001.
[28] P. X. Gao, Y. Ding, Z. L. Wang, ” Crystallographic Orientation-Aligned ZnO Nanorods Grown by a Tin Catalyst”, Nano Lett., vol.3, pp.1315-1320, 2003.
[29] J. C. Johnson, K. P. Knutsen, H. Yan, M. Law, T. Zhang, P. Yang, R. J. Saykally, “Ultrafast Carrier Dynamics in Single ZnO Nanowire and Nanoribbon Lasers”, Nano Lett., vol.4, pp.197-204, 2004.
[30] Wang, X.; Summers, C. J.; Wang, Z. L., “ Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays“, Nano Lett., vol.4, pp.423-426, 2004.
[31] H. T. Ng, J. Han, T. Yanada, P. Nguyen, Y. P. Chen, M. Meyyappan, “ Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor“, Nano Lett., vol.4, pp.1247-1252, 2004.
[32] L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, “ Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO“, J. Phys. Chem. B, vol.105, pp.3350-3352, 2001.
[33] L. Vayssieres, “ Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions“, Adv. Mater., vol.15, pp.464-466, 2003.
[34] W.I. PARK, Y. H. Jun, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett. vol. 80, pp. 4232-4234, June 2002.
[35] Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, I. C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. vol. 13, pp. 811-814, Oct. 2003.
[36] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays“, Angew. Chem. Int. Ed., vol.42, pp.3031-3034, 2003.
[37] S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers“, Appl. Phys. Lett. vol.84, pp.3241-3243, 2003.
[38] W. I. Park, G. C. Yi, ” Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN”, Adv. Mater. Vol.16, pp.87-90, 2004.
[39] B. P. Luther, S. E. Mohney, T. N. Jackson, ” Titanium and titanium nitride contacts to n-type gallium nitride”, Semicond. Sci. Tech., vol.13, pp.1322-1327, 1998.
[40] A. Sherman, ” Growth and properties of LPCVD titanium nitride as a diffusion barrier for silicon device technology”, J. Electrochem. Soc., vol.137, pp. 1892-1897, 1990.
[41] R. I. Hegde, R. W. Fiordalice, E. O. Travis, P. J. Tobin, J. Vac. Sci. Technol. B, vol.11, pp.1287, 1993.
[42] Y. R. Lin, S. T. Wu, ” Growth of aluminum nitride films at low temperature” J. Cryst. Growth, vol.252, pp.433-439, 2003.
[43] Y. K. Tseng, H. C. Hsu, W. F. Hsieh, K. S. Liu, I. C. Chen, “Two-setp oxygen injection process for growing ZnO nanorods” J. Mater. Res. vol. 18, pp. 2837-2844, Dec. 2003.
[44] S. W. Kim, S. Fujita, S. Fujita, ”Self-assembled three-dimensional ZnO nanosize islands on Si substrates with SiO2 intermediate layer by metalorganic chemical vapor deposition”, Jpn. J. Appj. Phys., vol.41, pp.L543-545, 2002.

Chapter 5
[1] J. Wu, S. Liu, C. Wu, K. Chen, L. Chen, “Heterostructures of ZnO–Zn coaxial nanocables and ZnO nanotubes”, Appl. Phys. Lett. vol.81, pp.1312-1314, 2002.
[2] X. Y. Kong, Y Ding, Z. L. Wang,” Metal-Semiconductor Zn-ZnO Core-Shell Nanobelts and Nanotubes”, J. Phys. Chem. B, vol.108, pp.570-574, 2004.
[3] P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, “Controlled Growth of ZnO Nanowires and Their Optical Properties”, Adv. Func. Mater., vol.12, pp.323-331, 2002.
[4] X. Y. Kong, Z. L. Wang, “Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanosprings, and nanospirals”, Appl. Phys. Lett. vol.84, pp.975-977, 2004.
[5] L. Vayssieres, “ Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions“, Adv. Mater., vol.15, pp.464-466, 2003.
[6] X. D. Wang, P. X. Gao, J. Li, C. J. Summers, Z. L. Wang,” Rectangular Porous ZnO-ZnS Nanocables and ZnS Nanotubes”, Adv. Mater., vol.14, pp.1732-1735, 2002.
[7] Z. Gui, J. Liu, Z. Z. Wang, L. Song, H. Yuan, W. C. Fan, D. Y. Chen,” From Muticomponent Precursor to Nanoparticle Nanoribbons of ZnO”, J. Phys. Chem. B, vol.109, pp.1113-1117, 2005.
[8] C. X. Xu, X. W. Sun, B. J. Chen, P. Shum, S. Li, X. Hu, ”Nanostructural zinc oxide and its electrical and optical properties”, J. Appl. Phys. vol.95, pp.661-666, 2004.
[9] M. Yan, H. T. Zhang, E. J. Widjaja, and R. P. H. Chang, “Self-assembly of well-aligned gallium-doped zinc oxide nanorods”, J. Appl. Phys., vol.94, pp.5240-5246, 2003.
[10] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng, I. C. Chen, “Well aligned vertically Al-doped ZnO nanowires synthesized on ZnO:Ga/glass templates”, accepted by J. Electrchem. Soc.
[11] J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang and E. L. Garfunkel, ”Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition”, Appl. Phys. Lett., vol.83, pp.3401-3403, 2003.
[12] J. Jie, G. Wang, X. Han, Q. Yu, Y. Liao, G. Li, J. G. Hou,” Indium-doped zinc oxide nanobelts”, Chem, Phys. Lett, vol.387, pp.466-470, 2004.
[13] S. M. Zhou, X. H. Zhang, X. M. Meng, K. Zou, X. Fan, S. K. Wu, S. T. Lee,” The fabrication and optical properties of highly crystalline ultra-long Cu-doped ZnO nanowires”, Nanotechnology, vol.15, pp.1152-1160, 2004.
[14] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, X. G. Gao, J. P. Li, ” Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires”, Appl. Phys. Lett., vol.84, pp.3085-3087, 2004.
[15] C. Ronning, P. X. Gao, Y. Ding, Z. L. Wang, D. Schwen,” Manganese-doped ZnO nanobelts for spintronics”, Appl. Phys. Lett., vol.84, pp.783-785 (2004)
[16] J. J. Wu, S. C. Liu, M. H. Yang, “Room-temperature ferromagnetism in well-aligned Zn1–xCoxO nanorods”, Appl. Phys. Lett., vol.85, pp.1027-1029, 2004.
[17] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell, ” Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy”, Appl. Phys. Lett., vol.81, pp.1830-1832, 2002.
[18] Y. R. Ryu, T. S. Lee, H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition “, Appl. Phys. Lett., vol.83, pp.87-89, 2003.
[19] W. Lee, M. C. Jeong, J. M. Myoung, “Optical characteristics of arsenic-doped ZnO nanowires”, Appl. Phys. Lett., vol.85, pp.6167-6169, 2004.
[20] C. L. Hsu, S. J. Chang, Y. K. Tseng, C. J. Huang and I. C. Chen,” Vertical single crystal ZnO nanowires grown on ZnO:Ga/glass templates”, Accepted by IEEE Tran. Nanotechnology.
[21] S. C. Lyu, Y. Zhang, H. Ruh, H.-J. Lee, H.-W. Shim, E.-K. Suh, C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires”, Chem. Phys. Lett., vol.363, pp.134-138, 2002.
[22] B. J. Jin, S. H. Bae, S. Y. Lee, S. Im, “Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition”, Mater. Sci. Eng. B vol. 71, pp. 301-305, 2000.
[23] S. lijima, Nature, “Helical microtubules of graphitic carbon”, vol.354, pp.56-58, 1991.
[24] X. F. Duan, C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater. vol. 12, pp. 298-302, Feb. 2000.
[25] C. C. Chen, C. C. Yeh, “Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires,” Adv. Mater. vol. 12, pp. 738-741, May 2000.
[26] H. Cao, J. Y. Xu, D. Z. Zhang, S. H. Chang, S. T. Ho, E. W. Seelig, X. Liu, R. P. H. Chang, ” Spatial Confinement of Laser Light in Active Random Media”, phys. Rev. Lett., vol.84, pp.5584-5587, 2000.
[27] L. F. Dong, Z. L. Cui, Z. K. Zhang, ” Gas sensing properties of nano-ZnO prepared by arc plasma method”, Nanostruct. Mater., vol.8, pp.815-823, 1997.
[28] H. Kind, H. Yang, B. Messer, M. Law and P. Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches”, Adv. Mater., vol.14, pp.158-160, 2002.
[29] J. Wu and S. Liu, ” Catalyst-Free Growth and Characterization of ZnO Nanorods”, J. Phys. Chem. B, vol.106, pp.9546-9551, 2002
[30] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, ” Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties”, Appl. Phys. Lett. vol.76, pp.2011-2013, 2000.
[31] L. Vayssieres, “ Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions“, Adv. Mater., vol.15, pp.464-466, 2003.
[32] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, and P. H. Fleming, “Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy”, Appl. Phys. Lett., vol.81, pp.3046-3048, 2002.
[33] W. I. Park, Y. H. Jun, S. W. Jung, and G.-C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods”, Appl. Phys. Lett., vol.82, pp.964-966. 2003.
[34] S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. W. Emanaetoglu, and Y. Lu, “Selective MOCVD growth of ZnO nanotips”, IEEE Trans. Nanotechnol., vol.2, pp.50-54, 2003.
[35] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. vol. 13, pp. 113-116, Jan. 2001.
[36] C. Geng, Y. Jiang, Y. Yao, X. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, S. T. Lee,” Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates,“ Adv. Funct. Mater. vol. 14, pp. 589-594, Jun. 2004.
[37] C. L. Hsu, S. J. Chang, Y. K. Tseng, C. J. Huang and I. C. Chen,” Vertical single crystal ZnO nanowires grown on ZnO:Ga/glass templates”, Accepted by IEEE Tran. Nanotechnology
[38] Y. H. Tang, T. K. Sham, A. Ju¨rgensen, Y. F.Hu, C. S. Lee, S. T. Lee, ” Phosphorus-doped silicon nanowires studied by near edge x-ray absorption fine structure spectroscopy”, Appl. Phys. Lett., vol.80, pp.3709-3711, 2002.
[39] H. W. Seo, S. Y. Bae, J. Park, H. Yang, M. Kang, S. Kim, J. C. Park, S. Y. Lee, ” Nitrogen-doped gallium phosphide nanobelts”, Appl. Phys. Lett., vol.82, pp.3752-3754, 2003.
[40] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, “ Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices“, Nature, vol.409, pp.66-69, 2001.
[41] J. C. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia, N. L. Rupesinghe, W. K. Hsu, N. Grobert, H. Terrones, and G. A. J. Amaratunga, ” Enhanced Electron Field Emission in B-doped Carbon Nanotubes”, Nano Lett., vol.2, pp.1191-1195, 2002.
[42] D. D. D. Ma, C. S. Lee, and S. T. Lee, ” Scanning tunneling microscopic study of boron-doped silicon nanowires”, Appl. Phys. Lett., vol.79, pp.2468-2470, 2001.
[43] S. Y. Bae, H. W. Seo, J. Park, ” Vertically Aligned Sulfur-Doped ZnO Nanowires Synthesized via Chemical Vapor Deposition”, J. Phys. Chem. B, vol.108, pp.5206-5210, 2004.
[44] M. Yan, H. T. Zhang, E. J. Widjaja, and R. P. H. Chang, “Self-assembly of well-aligned gallium-doped zinc oxide nanorods”, J. Appl. Phys., vol.94, pp.5240-5246, 2003.
[45] J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang and E. L. Garfunkel, ”Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition”, Appl. Phys. Lett., vol.83, pp.3401-3403, 2003.
[46] Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, I. C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. vol. 13, pp. 811-814, Oct. 2003.
[47] Y. K. Tseng, I. N. Lin, K. S. Liu, T. S. Lin, I. C. Chen, “Low-temperature growth of ZnO nanowires”, J. Mater. Res., vol.18, pp.714-718, 2003.
[48] G. J. Fang, D, Li, B. L. Yao, “Influence of post-deposition annealing on the properties of transparent conductive nanocrystalline ZAO thin films prepared by RF magnetron sputtering with highly conductive ceramic target”, Thin Solid films, vol.418, pp.156-162, 2002.
[49] S. C. Lyu, Y. Zhang, H. Ruh, H.-J. Lee, H.-W. Shim, E.-K. Suh, C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires”, Chem. Phys. Lett., vol. 363, pp. 134-138, Sep. 2002.
[50] B. J. Jin, S. H. Bae, S. Y. Lee, S. Im, “Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition”, Mater. Sci. Eng. B vol. 71, pp. 301-305, Feb 2000.
[51] T. Minami, T. Miysta and T. Yamamoto, “Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering”, Surf. Coat. Technol., vol.108-109, pp.583-587, 1998.
[52] Y. Chen, D. M. Bagnall, H. Feick, N. Tran, E. Weber, P. Yang, ” Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater., vol.13, pp.113-116, 2001.
[53] W. I. Park, Y. H. Jun, S. W. Jung, and G.-C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods”, Appl. Phys. Lett., vol.82, pp.964-966. 2003.
[54] L. Vayssieres, K. Keis, A. Hagfeldt, S. E. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes“, Chem. Mater, vol.13, pp.4386-4395, 2001.
[55] J. C. Johnson; H. Q. Yan, P. Yang, R. J. Saykally, ”Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides”, J. Phys. Chem. B, vol.107, pp.8816-8828, 2003.
[56] J. J. Wu, S. C. Liu, “ Catalyst-Free Growth and Characterization of ZnO Nanorods“, J Phys Chem. B, vol.106, pp.9546-9551, 2002.
[57] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature“, Appl. Phys. Lett. vol.81, pp.3648-3650, 2002.
[58] J. J. Wu, S. C. Liu, “ Low-temperature and catalyst-free synthesis of well-aligned ZnO nanorods on Si (100)“, J. Mater. Chem., vol.12, pp.3125-3129, 2002.
[59] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, ” Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties”, Appl. Phys. Lett. vol.76, pp.2011-2013, 2000.
[60] L. Vayssieres, “ Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions“, Adv. Mater., vol.15, pp.464-466, 2003.
[61] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, and P. H. Fleming, “Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy”, Appl. Phys. Lett., vol.81, pp.3046-3048, 2002.
[62] W. I. Park, S. J. An, J. L. Yang, G. C. Yi, “ Photoluminescent Properties of ZnO/Zn0.8Mg0.2O Nanorod Single-Quantum-Well Structures“, J. Phys. Chem. B, vol.108, pp.15457-15460, 2004.
[63] W.I. PARK, Y. H. Jun, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett. vol. 80, pp. 4232-4234, June 2002.
[64] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. vol. 13, pp. 113-116, Jan. 2001.
[65] P. X. Gao, Z. L. Wang, “ Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process“, J. Phys. Chem. B, vol.108, pp.7534-7537, 2004.
[66] C. L. Hsu, S. J. Chang, Y. K. Tseng, C. J. Huang and I. C. Chen,” Vertical single crystal ZnO nanowires grown on ZnO:Ga/glass templates”, Accepted by IEEE Tran. Nanotechnology
[67] S. Y. Bae, C. W. Na, J. H. Kang, J. Park, “ Comparative Structure and Optical Properties of Ga-, In-, and Sn-Doped ZnO Nanowires Synthesized via Thermal Evaporation“, J. Phys. Chem. B, vol.109, pp.2526-2531, 2005.
[68] J. S. Jie, G. Z. Wang, X. H. Han, J. G. Hou, “ Synthesis and Characterization of ZnO:In Nanowires with Superlattice Structure“, J. Phys. Chem. B, vol.108, pp.17027-17031, 2004.
[69] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, “ Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices“, Nature, vol.409, pp.66-69, 2001.
[70] J. C. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia, N. L. Rupesinghe, W. K. Hsu, N. Grobert, H. Terrones, and G. A. J. Amaratunga, ” Enhanced Electron Field Emission in B-doped Carbon Nanotubes”, Nano Lett., vol.2, pp.1191-1195, 2002.
[71] P. M. Rafailov, M. Stoll, C. Thomsen, ” Strain Determination in Electrochemically Doped Single-Walled Carbon Nanotubes via Raman Spectroscopy”, J. Phys. Chem. B, vol.108, pp.19241-19245, 2004.
[72] S. Y. Bae, H. W. Seo, J. Park, ”Vertically Aligned Sulfur-Doped ZnO Nanowires Synthesized via Chemical Vapor Deposition”, J Phys. Chem. B, vol.108, pp.5206-5210, 2004.
[73] M. Yan, H. T. Zhang, E. J. Widjaja, and R. P. H. Chang, “Self-assembly of well-aligned gallium-doped zinc oxide nanorods”, J. Appl. Phys., vol.94, pp.5240-5246, 2003.
[74] J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, E. L. Garfunkel, “Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition“, Appl. Phys. Lett., vol.83, pp.3401-3403, 2003.
[75] Y. E. Lee, D. P. Norton, C. Park, C. M. Rouleau, ”Blue photoluminescence in ZnGa2O4 thin-film phosphors”, J Appl. Phys., vol.89, pp.1653-1656, 2001.
[76] S. H. Yang, ” Electrophoretic Prepared ZnGa2O4 Phosphor Film for FED”, J Electrochem. Soc. vol.150, pp.H250-H253, 2003.
[77] S. H. Wu, H. C. Cheng, ” Preparation and Characterization of Nanosized ZnGa2O4 Phosphors”, J Electrochem. Soc. vol.151, pp.H159-H163, 2004.
[78] S. Itoh, H. Toki, Y. Sato, K. Morimoto, T. Kishino, ” ZnGa2O4 phosphor for low-voltage blue cathodoluminescence”, J. Electrochem. Soc., vol.138, pp.1509-1512, 1991.
[79] L. E. Shea, R. K. Datta, J. J. Brown, ” Photoluminescence of Mn2+-activated ZnGa2O4“, J. Electrochem. Soc., vol.141, pp.1950-1954, 1993.
[80] T. K. Tran, W. Park, J. W. Tomm, B. K. Wagner, S. M. Jacobsen, C. J. Summers, N. P. Yocom, S. K. McClelland, ” Photoluminescence properties of ZnGa2O4:Mn powder phosphors”, J. Appl. Phys., vol.78, pp.5691-5695, 1995.
[81] I. K. Jeong, H. L. Park, S. I. Mho,” Two self-activated optical centers of blue emission in zinc gallate”, Solid State Commun., vol.105, pp.179-183, 1998.
[82] T. Ohtake, N. Sonoyama, T. Sakata,” Electrochemical luminescence of ZnGa2O4 and ZnGa2O4:Mn electrodes”, Chem. Phys. Lett., vol.298, pp.395-399, 1998.
[83] S. Y. Bae, H. W. Seo, C. W. Na, J. Park, ” Synthesis of blue-light-emitting ZnGa2O4 nanowires using chemical vapor deposition”, Chem. Commun. Vol.16, pp.1834-1835, 2004.
[84] Y. E. Lee, D. P. Norton, C. Park, C. M. Rouleau, ”Blue photoluminescence in ZnGa2O4 thin-film phosphors”, J Appl. Phys., vol.89, pp.1653-1656, 2001.
[85] S. H. Yang, ” Electrophoretic Prepared ZnGa2O4 Phosphor Film for FED”, J Electrochem. Soc. vol.150, pp.H250-H253, 2003.
[86] S. H. Wu, H. C. Cheng, ” Preparation and Characterization of Nanosized ZnGa2O4 Phosphors”, J Electrochem. Soc. vol.151, pp.H159-H163, 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李瑞金、張美智(2004)。從文化觀點探討東南亞外籍配偶在台灣之生活適應,社區發展季刊,105,頁101-108。
2. 李佳玟(2004b)。壓迫與解放:美國種族主義中的認同政治(下)。成大法學,8,頁109-155。
3. 孫煒(2004)。全球化對於非政府組織的影響及其回應,理論與政策,17(3),頁103-117。
4. 許仟(2000)。多元文化的歐洲社會。社教雙月刊,100,頁28-32。
5. 梁崇民(2004)。歐盟對於少數人權之保障—少數民族、少數語言個案分析。歐美研究,34(1),頁51-93。
6. 馬藹萱(2003)。尋求交會的光芒-評夏曉鵑著《流離尋岸-資本國際化下的『外籍新娘』現象》,政治與社會哲學評論,6,頁231-237。
7. 邱汝娜、林維言(2004)。邁向多元與包容的社會-談現階段外籍與大陸配偶的照顧輔導措施,社區發展季刊,105期,頁6~19。
8. 莫藜藜、賴珮玲(2004)。台灣社會「少子化」與外籍配偶子女的問題初探,社區發展季刊,105,頁55-65。
9. 余建華(2000)。多元文化的民族衝突與矛盾:加拿大魁北克問題。歷史月刊,151,頁97-103。
10. 陳瑞貴(2001)。全球化下多元文化性的可能。國際論壇,2,頁93-108。
11. 陳靜瑜(2004b)。在美國之中國移民與日本移民之比較(下)。海華與東南亞研究,4(3),頁35-64。
12. 陳靜瑜(2004a)。在美國之中國移民與日本移民之比較(上)。海華與東南亞研究,4(2),頁1-32。
13. 陳建甫(2003)。邁向多元族裔社會的教育願景與情節分析:外籍新娘與下一代所面臨的同化迷失。教育研究月刊,110,頁135-143。
14. 陳正芬(2002)。老人福利推動聯盟在未立案養護機構法制化過程中的倡導角色之分析。社會政策與社會工作學刊,6(2),頁223~266。
15. 章玉琴(1999)。多元文化論公民觀及公民教育觀之探究。公民訓育學報,8,頁343-370。