跳到主要內容

臺灣博碩士論文加值系統

(100.26.176.111) 您好!臺灣時間:2024/07/16 14:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳青峰
研究生(外文):Ching-Feng Wu
論文名稱:渦流與注入流體位置對微型混合器效率之影響
論文名稱(外文):The effect of vortex and injection position on the efficiency of micromixers
指導教授:吳志陽鍾震桂
指導教授(外文):Zhi-Yang WuChen-Kuei Chung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:81
中文關鍵詞:微型混合器微流體混合效率微模造
外文關鍵詞:micromixermicrofluidmixing efficiencymicro moldong
相關次數:
  • 被引用被引用:4
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:1
  本文探討被動式微型混合器中,改變流道結構、擋板尺寸以及流體注入位置使流體產生較佳的混合效果。並且利用熱流數值模擬軟體(CFD-ACE+)模擬計算流場之狀態,以供預測微型混合器效率之參考。
  製程中,採用SU-8厚膜光阻以微影製程在矽晶圓上製作微型混合器之母模;再以聚二甲基矽氧烷(polydimethysiloxane,PDMS)為材料,翻模製作微型混合器,並與流道上蓋接合。最後,檢測混合效率的方式則是用影像軟體分析流道中不同位置之灰階色值,以判定其混合效果。
  為了研究流道結構對混合的影響,將擋板尺寸、流體之注入位置、入口流速、與混合室長寬比改變,然後比較各種變數對微型混合器混合效率之影響。根據數值模擬與實驗之結果,可以發現擋板的高度與數目會對混合效果產生最大的影響。與其餘之微型混合器相較,本微型混合器結構簡單、易製造。因此,可以推論本微型混合器在雷諾數50以下時,比其他型式混合器更好。
 In this thesis, we investigate a novel passive micromixer for better efficiency of mixing by tuning the structures of microfluidic channels with baffles and side injection. Furthermore, simulating the situation of the flows by software CFD-ACE+ provides the forecast of the mixing efficiency of the micromixer.
 In fabrication, SU-8 thick film photoresist is used to fabricate the mold of the micromixers on the silicon wafer by photolithography. Then, we transfer the mold structure of the micromixer to polydimethysiloxane (PDMS), and bond it with a cover layer of PDMS. Finally, the mixing performance has been demonstrated with an image analyzing software to quantify the gray value distribution in the exit section.
 To study the effect of structure on mixing, we change the size of baffles, the injection positions, the speed of the injected liquid and the length-width ratio of mixing rooms. Then, we compare the effect of those variables on the mixing efficiency of the micromixer. The numerical simulation and the experimental results show that the number and height of baffles dominates the mixing efficiency. Compare with other micromixers, the novel micromixer’s structure is simple and easy to fabricate. Thus, we may conclude that the present micromixers have better performance than others for the cases with Re<50.
中文摘要..................................................Ⅰ
英文摘要..................................................Ⅱ
誌謝......................................................Ⅳ
目錄......................................................Ⅴ
表目錄....................................................Ⅷ
圖目錄....................................................Ⅸ
符號說明................................................ⅩⅣ

第一章 緒論................................................1
1-1 研究背景...............................................1
1-2 文獻回顧...............................................1
1-3 研究動機...............................................5
1-4 本文架構...............................................6

第二章 微型混合器之設計與數值模擬.........................7
2-1 基本假設...............................................7
2-2 數值方法與模擬.........................................7
2-2-1 CFD-GEOM建立格點.....................................8
2-2-2 CFD-ACE+之邊界條件、收斂條件與運算...................9
2-2-3 CFD-VIEW之後處理.....................................9
2-3 混合效率指標..........................................10
2-4 微型混合器之設計......................................11

第三章 數值模擬結果分析...................................13
3-1 數值測試..............................................13
3-2 擋板對混合的影響......................................14
3-2-1 擋板高度對混合的影響................................14
3-2-2 擋板厚度對混合的影響................................15
3-2-3 擋板數目對混合的影響................................16
3-3 乙醇之不同注入位置對混合的影響........................17
3-4 入口流速對混合的影響..................................17
3-5 混合室長寬比對混合的影響..............................18

第四章 微型混合器之製作與測試.............................19
4-1 光罩製作..............................................19
4-2 以SU-8製作微型混合器之流道母模........................20
4-3 以PDMS翻模製作微型混合器..............................24
4-4 氧電漿處理接合法......................................25
4-5 微型混合器之測試......................................25
4-5-1 影像擷取裝置........................................25
4-5-2 微量式注射幫浦......................................26
4-5-3 實驗測試............................................26
4-5-4 影像分析............................................27

第五章 實驗結果及其與模擬結果之比較.......................28
5-1 擋板設置的影響........................................28
5-2 實驗結果之討論........................................28
5-3 實驗與數值模擬結果的比較..............................29

第六章 結論與展望........................................31
6-1 結論..................................................31
6-2 展望..................................................32

參考文獻..................................................78
1.G. T. A. Kovacs, “Micromachined transducers sourcebook,”McGraw-Hill, New York, p. 808, 1998.
2.Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto and R. Maeda, “Ultrasonic micromixer for microfluidic systems,” Sensors and Actuators, A: Physical, Vol.93, No. 3, pp. 266-272, 2001.
3.V. Vivek, Y. Zeng and E. S. Kim, “Novel acoustic-wave micromixer,” IEEE International Micro Electro Mechanical Systems Conference, Miyazaki, Japan, pp.668-673, 2000.
4.H. Jagannathan, G. G. Yaralioglu, A. S. Ergun and B. T. Khuri-Yakub,“Micro-fluidic channels with integrated ultrasonic transducers,” Proceedings
of the IEEE Ultrasonics Symposium, Vol. 2, pp. 859-862, 2001.
5.H. Y. Wu and C. H. Liu, “A novel electrokinetic micromixer,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems,
Boston, U.S.A., pp. 631-634, 2003.
6.L. H. Lu, K. S. Ryu and C. Liu, “A magnetic microstirrer and array for microfluidic mixing,” Journal of Microelectromechanical Systems, Vol. 11, No. 5, pp. 462-469, 2002.
7.P. Huang and K. S. Breuer, “Performance and scaling of an electro-osmotic mixer,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, U.S.A., pp. 663-666, 2003.
8.N. A. Patankar and H. H. Hu, “Numerical simulation of electroosmotic flow,”Analytical Chemistry, Vol. 70, No. 9, 1998.
9.B. R. Thomas and S. Ghodbane, “Evaluation of a mixed micellar electrokinetic capillary electrophoresis method for validated pharmaceutical quality control,” Journal of Liquid hromatography, Vol. 16, No.9-10, pp. 1983-2006,
1993.
10.J. Auerswald and H. F. Knapp, “Quantitative assessment of dielectrophoresis as a micro fluidic retention and separation technique for beads and human blood erythrocytes,” Vol. 67-68, pp. 879-886, 2003.
11.J. H. Tsai and L. Lin, “Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump,” Sensors and Actuators A:Physical, Vol. 97-98, pp. 665-671, 2002.
12.M. Koch, D. Chatelain, A. G. R. Evans and A. Brunnschweiler, “Two simple micromixers based on silicon,” Journal of Micromechanics and Microengineering, Vol. 8, pp. 123-126, 1998.
13.N. Schwesinger, T. Frank and H. Wurmus, “A modular microfluidi system with an integrated micromixer,” Journal of Micromechanics and Microengineering, Vol.6, pp. 99-102, 1996.
14.S. C. Jacobson, T. E. McKnight and J. M. Ramsey, “Microfluidic devices for electrokinetically driven parallel and serial mixing,” Analytical Chemistry, Vol.71, pp. 4455-4459, 1999.
15.B. He, R. J. Burke, X. Zhang, R. Zhang and F. E. Regnier, “A picoliter-volume mixer for microfluidic analytical systems,” Analytical Chemistry, Vol.73, pp. 1942-1947, 2001.
16.T. J. Johnson, D. Ross and L. E. Locascio, “Rapid microfluidic mixing,” Analytical Chemistry, Vol.74, pp. 45-51, 2002.
17.D. Gobby, P. Angeli and A. Gavriilidis, “Mixing characteristics of T-type microfluidic mixers,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 126-132, 2001.
18.X. Niu and Y. K. Lee, “Efficient spatial-temporal chaotic mixing in microchannels,” Journal of Micromechanics and Microengineering, Vol. 13, pp. 454-462, 2003.
19.A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone and G. M. Whitesides, “Chaotic mixer for microchannels,” Science, Vol. 295, pp. 647-651, 2002.
20.G. A. C. M. Spierings, J. Haisma, F. J. H. M. and Kruis, “Direct bonding of organic polymeric materials,” Philips Journal of Research, Vol. 49, pp. 139-149, 1995.
21.Y. C. Chan, M. Carles, N. J. Sucher, M. Wong and Y. Zohar, “Design and fabrication of an integrated microsystem for microcapillary electrophoresis,” Journal of Micromechanics and Microengineering, Vol. 13, pp. 914-921, 2003.
22.J. Wei, H. Xie, M. L. Nai, C. K. Wong and L. C. Lee, “Low temperature wafer anodic bonding,”Journal of Micromechanics and Microengineering, Vol. 13, pp. 217-222, 2003.
23.B. Bilenberg, T. Nielsen, B. Clausen and A. Kirstensen, “PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics,” Journal of Micromechanics and Microengineering, Vol. 14, pp. 814-818, 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊