|
1.Ames, J. S. and Murnaghan, F. D., Theoretical Mechanics, Ginn and Co. 1929, (Dover Publications, 1958.) 2.Angeles, J., Spatial Kinematic Chains-Analysis, Synthesis and Optimization, Springer-Verlag, Berlin, 1982. 3.Ball, R. S., A Treatise of the Theory of Screws, Cambridge University Press, Cambridge, England, 1900. 4.Beggs, J. S., Advanced Mechanism, Macmillan, New York, 1966. 5.Bottema, O. and Roth, B., Theoretical Kinematics, North Holland Publication, Amsterdam, 1979. 6.Boullion, T. L. and Odell, P. L., Generalized Inverse Matrices, John Wiley & Sons, Canada, 1971. 7.Chasles, M., “Note sur les propriétés générales du systéme de deux corps semblables entre eux, places d’une manière quelconque dans l’espace; et sur le déplcaement fini, ou infiniment petit d’un corps solide libre,” Bulletin des Sciences Mathématiques de Férussac, Vol. ⅩⅣ, pp. 321-336, 1831. 8.Dimentberg, F. M., The Screw Calculus and Its Application in Mechanics (in Russian Izdat. Nauka, Moscow), 1965, English Translation, N.A.S.A., 1968. 9.Eberharter, J. K. and Ravani, B., “Kinematic Registration Using Line Geometry,” Proceeding of the 28th ASME Biennial Mechanisms Robotics Conference, 2004. 10.Horn, K. P., “Closed-form Solution of Absolute Orientation Using Unit Quaternions,” Opt. Soc. Am. A, Vol. 4, No. 4, pp. 629-642, 1987. 11.Huang, C., “On the Finite Screw System of the Third Order Associated with a Revolute-Revolute Chain,” Journal of Mechanical Design, Trans. ASME, Vol. 2, pp. 81-89, 19943. 12.Huang, C. and Roth, B., “Analytic Expression for the Finite Screw System,” Mechanism and Machine Theory, Vol.29, pp. 207-222, 1994. 13.Huang, C. and Chen, C. M., “The Linear Representation of the Screw Triangle—A Unification of Finite and Infinitesimal Kinematics,” Journal of Mechanical Design, Trans. ASME, Vol. 117, pp. 554-560, 1995. 14.Huang, C., “Derivation of Screw Systems for Displacing Plane Element,” Mechanism and Machine Theory, Vol. 35, pp. 1445-1453, 2000. 15.Huang, C. and Wang, J. C., “The Finite Screw System Associated With the Displacement of a Line,” Journal of Mechanical Design, Trans. ASME, Vol. 125, pp. 105-109, 2003. 16.Huang, C., Sugimoto, K., and Parkin, I., “The Correspondence between Finite Screw Systems and Projective Spaces,” Proceeding of CK2005, International Workshop on Computational Kinematics, Cassino, May 4-6, 2005. 17.Laub, A. J. and Shiflett, G. R., “A Linear Algebra Approach to the Analysis of Rigid Body Velocity from Initial Position and Finial Position Data,” Journal of Applied Mechanics, Trans. ASME, Vol. 49, pp. 213-216, 1982. 18.Ohwovoriole, M. S. and Roth, B., “An Extension of Screw Theory,” Journal of Mechanical Design, Trans. ASME, Vol. 103, pp. 725-735, 1981. 19.Parkin, I. A., “A Third Conformation with the Screw System: Finite Twist Displacements of a Directed Line and Point,” Mechanism and Machine Theory, Vol. 27, No. 2, pp. 177-188, 1992. 20.Plücker, J., “On a New Geometry of Space,” Phil. Trans., Vol. clv., pp. 725-791, 1865. 21.Ravani, B. and Ge, Q. J., “Computation of Spatial Displacements from Geometric Features,” ASME J. Mechanical Design, Vol. 115, No. 1, pp. 95-102, 1993. 22.Ravani, B. and Ge, Q. J., “Computation of Spatial Displacements from Redundant Geometric Features,” Journal of Mechanical Design, Trans. ASME, Vol. 116, pp. 1073-1080, 1994. 23.Roth, B., “On the Screw Axes and Other Special Lines Associated with Spatial Displacement of a Rigid Body,” Journal of Engineering for Industry, Trans. ASME, Series B, Vol. 89, No. 1, pp. 102-110, 1967. 24.Roth, B., “Screw, Motors, and Wrenches That Cannot Be Bought in a Hardware Store,” Robotics Research, the First International Symposium, Edited by Brady, M. and Paul, R. MIT Press, pp. 679-694, 1984. 25.Spoor, C. W. and Veldpaus, F. E., “Rigid Body Motion Calculated from Spatial Co-ordinate of Makers,” Journal of Biomechanical, Vol. 13, pp. 391-393, 1980. 26.Strang, G., Linear Algebra and Its Applications, Academic Press, New York, 1980. 27.Tsai, L. W. and Roth, B., “Incompletely Specified Displacement : Geometry and Spatial Linkage Synthesis,” Journal of Engineering for Industry, Trans. ASME, Vol. 95, Series B, Vol. 2, pp. 603-611, 1973. 28.Yang, A. T., Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms, Doctoral Dissertation, Department of Mechanical Engineering, Columbia University, New York, 1963. 29.林義雄著,初等線性代數,吳秀娥,第三冊:向量、仿射空間,1983。
|