# 臺灣博碩士論文加值系統

(44.192.48.196) 您好！臺灣時間：2024/06/23 19:30

:::

### 詳目顯示

:

• 被引用:0
• 點閱:228
• 評分:
• 下載:34
• 書目收藏:0
 本文分別探討一等溫傾斜板及具飽和多孔性介質等溫傾斜板之液態薄膜蒸發問題，以數值方法分析相關參數對熱質傳特性之影響。研究範圍包括下列幾個重點：　　一、探討淋水於一傾斜等溫板，淋水量、空氣流量、傾斜角度等參數對熱流場之影響。數值分析於流動方向(x方向)的對流項用上游法(upstream difference method)來差分，y方向的對流項及擴散項則用中央差分法(central difference method)，所得到之差分式利用Box method方法求解。數值結果得到當淋水量小及傾斜角度小，則水薄膜厚度及介面速度的變化明顯，此時空氣－液體介面溫度、濕度均較高，截面蒸發量亦較大。當淋水量為空氣0.3%時，有淋水情況相對於乾流場能夠增加8%至22%的熱傳量，而數值與實驗誤差約為20%。　　二、探討具飽和含水之多孔性介質等溫傾斜板熱流場，考慮非達西定律中之慣性效應(inertia effect)、邊界效應(boundary effect)。分析孔隙率e、多孔性介質厚度d、環境相對濕度f等相關參數對此機構熱質傳遞之影響。結果發現在低孔隙率、低薄膜厚度時有較高的介面溫度及濕度，平均紐賽數 及平均薛爾塢數 均較大，環境相對濕度較低之情況下會造成較高之 值及較低之 值。另外，熱質傳遞能力亦隨著路易斯數Le增加而增加。
 Abstract　Two main topics have been studied numerically in this thesis：First is to study the co-current liquid film evaporation along an inclined plate. The second is to evaluate the heat and mass enhancement of liquid film evaporation by covering a porous layer. The present investigations include：　　(1) For the liquid film evaporation along an inclined plate, the parametric analyses such as the inlet water flow rate, inlet air flow rate and the angle of inclination are examined in detail. For numerical analysis, the upstream scheme is used to model the convection term in flow direction (x direction), while the second-order central difference schemes are employed for the transverse convection and diffusion terms. The discretization equations are solved by the Box method. The numerical results show that the variations of liquid film thickness and liquid velocity are significant for lower inlet liquid mass flow rate and inclination angle. And the interfacial temperature and concentration are increased for such above situations. In addition, as the liquid mass flow rate is 0.3% of the air flow, the heat transfer enhancement is about to 8%~22%. Compared with the experimental results, the error of numerical results are within 20%　(2) For the liquid film evaporation covered with a porous layer, the non-Darcy inertia and boundary effects are included. The corresponding parametric analyses on features such as gas inlet conditions (Reynolds number and ambient relative humidity f) and the structural properties of the porous material (porosity e and thickness of the porous layer d) on the performance of liquid film evaporation are examined in detail. The results show that both the average Nusselt and Sherwood numbers are increased with the decrease of e, d and f. In addition, as the Lewis number increases (Le>1), a larger heat transfer rate and mass flow rate are achieved.
 目 錄摘要 I英文摘要 II致謝 IV目錄 V表目錄 VII圖目錄 VIII符號說明 XII1.1 研究目的及背景 11.2 文獻回顧 2第二章 多孔性介質之簡介 82.1 達西定律 82.2 非達西定律 9第三章 理論分析 153.1 有噴霧時濕盤管理論分析 153.2 傾斜板置入流體飽和多孔性介質理論分析 223.3 熱質傳係數之計算 27第四章 數值方法 324.1 一般流體薄膜蒸發數值方法 324.2 具多孔性介質蒸發方法 35第五章 結果與討論 405.1 一般流體薄膜蒸發數值結果 405.2 數值與實驗比較之結果 425.3 具多孔性介質薄膜蒸發數值結果 43第六章 結論 73參考文獻 75自述 80
 參考文獻1. Goldstein, M. E., Yang W, J., and Clark, J. A., "Momentumand Heat Transfer in Laminar Flow of Gas with Liquid-Droplet Suspension Over a Circular Cylinder", J. Heat Transfer, 89C, pp.185-194, 1967.2. Chandra, V., and Savery, C. W., "Force Convection Heat and Mass Transfer from a Falling Film to a Laminar ExternalBoundary Layer", Int. J. Heat Mass Transfer, No.17, pp.1549-1557, 1974.3. Chandra, V., "Mass, Momentum and Heat Transfer from a Falling Film to a Countercurrent Air Steam", Ph.D. Thesis, Dept. of Mech. Eng., Drexel University, 1975.4. Maclaine-Cross, I. L., and Banks, P. J., "Coupled Heat and Mass Transfer in Regenerators-prediction Using an Analogy with Heat Transfer", J. Heat Mass Transfer, Vol.15, pp.1225-1242, 1972.5. Maclaine-Cross, I. L., and Banks, P. J., "A General Theory of Wet Surface Heat Exchangers and its Application to Regenerative Evaporative Cooling", ASME J. of Heat Transfer, Vol.103, pp.579-585, 1981.6. Wassel, A. T., and Mills, A. F., "Design Methodology for a Counter-current Falling Film Evaporative Condenser". ASME J. of Heat Transfer, Vol. 109, pp.784-787, 1987.7. Schroppel J., and Thiele F., “On the Calculation of Momentum, Heat and Mass Transfer in Laminar and Turbulent Boundary layer Flow along a Vaporizing Liquid Film”, Numerical Heat Transfer, Vol.6, pp.475-496, 1983.8. Chow, L. C., and Chung, J. N., “Evaporation of Water into a Laminar Stream of Air and Superheated Steam”, Int. J. Heat Mass Transfer, Vol.26, pp.373-380, 1983.9. Haji, M., and Chow, L. C., “Experimental Measurement of Water Evaporation Rates into Air and Superheated Steam”, ASME J. Heat Transfer, Vol.110, pp.237-242, 1988.10. Oshima ,T., Iuchi , Yoshida ,S., A. and Takamatsu ,K., Design calculation method of air-cooled heat exchangers with water spray, Heat Transfer-Jap. Res., Vol. 1, pp. 47-55, 1972.11. Tree ,D. R., Goldshmit ,V. W., Garrett ,R. W. and Kach ,E., Effect of water sprays on heat transfer of a fin and tube heat exchanger, Proc. 6th International Heat Transfer Conference, HX-26, pp. 339-344, 1978.12. Tsay, Y. L., "Analysis of Heat and Mass Transfer in a Countercurrent-flow Wet Surface Heat Exchanger ", Int. J. Heat and Fluid Transfer,, Vol.15, pp.149-156, 1994.13. Tsay, Y. L., "Heat Transfer Enhancement through Liquid Film Evaporation into Countercurrent Moist Air Flow in a Vertical Plate Channel", Heat and Mass Transfer, Vol.30, pp.473-480, 1995.14. Yan, W. M., "Effects of Film Vaporization on Turbulent Mixed Convection Heat and Mass Transfer in a Vertical Channel", Int. J. Heat Mass Transfer, Vol.38, No.4, pp.713-722, 1995.15. Yan, W. M., "Evaporative Cooling of Liquid Film in Turbulent Mixed Convection Channel Flows", Int. J. Heat Mass Transfer, Vol.41, pp.3719-3729, 1998.16. Agunaoun, A., Daif, A., Barriol, R., and Daguenet, M., “Evaporation en convection forcée d'un film mince s'écoulant en régime permanent, laminaire et sans onde, sur une surface plane inclinée “, Int. J. Heat Mass Transfer, Vol.33, pp.2947-2956, 1994.17. Yan, W. M., Soong, C. Y., "Convective Heat and Mass Transfer along an Inclined Heated Plate with Film Evaporation", Int. J. Heat Mass Transfer, Vol.38, pp.1261-1269, 1995.18. Mezaache, E., and Daguenet, M., “Effects of Inlet Conditions on Film Evaporation along an Inclined Plate”, Solar Energy, in press, 200419. Char, M. I., Lin, J. D.,Chen H. T., “Conjugate Mixed Convection Laminar non-Darcy Film Condensation along a Vertical Plate in a Porous Medium”, Int. J. of Engineering Science, Vol.39, pp. 897-912, 2001.20 Diky, N. A., Koloskova, N. Y., Tuz, V. E., and Dubrovskaya, V. V., “Heat and Mass Transfer and Hydrodynamics of Liquid Evaporation in Contact Apparatus with a Porous Packing”, Experimental Thermal and Fluid Science, Vol.13, pp.85-91, 1996.21 K. Vafai and C. L. Tien, Boundary and inertia effects on flow and heat transfer in porous media, Int. J. Heat Mass Transfer 24,195-203, 1981.22. Zhao, T. S., “Coupled Heat and Mass Transfer of a Stagnation Point Flow in a Heated Porous Bed with Liquid Film Evaporation”, Int. J. Heat Mass Transfer, Vol.42, pp.861-872, 1999.23. Vafai, R. L. Alkire, and C. L. Tien, An experimential investigation of heat transfer in variable porosity media, ASME, J. Heat Transfer 107, 642-647, 1985.24. H. Darcy, Les frontaines publiques de la ville de Dijon, Dalmont, paris, 1856.25. J. C. Slattery, Flow of viscoelastic fluids through porous medium, AIChE J., Vol.13,pp.1066-1071, 196726. S. Whitaker, Diffusion and dispersion in porous medium, AIChE J., Vol.13,pp.420-427, 196727. P. Forchheimer, Wasserbewegung durch Boden, Forschtlft Ver. D. Ing.,Vol.45,pp.1782-1788, 190128. S. Ergun, Fluid flow through packed columns, Chem. Engng. Progress, Vol.48, pp. 89-94, 195229. K. Vafai and C.L. Tien, Boundary and inertia effects on flow and heat transfer in porous media, Int. J. Heat Mass Transfer, Vol.24, pp.195-203, 198130. H.C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res., Vol.1, pp.27-34, 194731.T. S. Lundgren, Slow flow through stationary random beds and suspensions of spheres, J. of Fluid Mech., Vol.51, pp.273-299, 197232. V. Prasad, N. Kladias, A. Bandyopanhara and Q. Tian, Evaluation of correlation for stagnant thermal conductivity of liquid-saturated porous beds of spheres, Int. J. Heat Mass Transfer, 32, 1793-1796, 198933. P. Zehner and E.U. , Waermeleleitfahigkeit von schuettungen bei massigen temperaturen, Chem. Ingr. Tech., 42, 933-941, 197034. V. Prasad, Convective flow interaction and heat transfer between fluid and porous layers, NATO Advanced Study Institute on Convective Heat and Mass Transfer in Porous Medium, Izmir, Turkey, 199035. C. T. Hsu and P. Cheng, Thermal dispersion in a porous medium, Int. J. Heat Mass Transfer, Vol.33, PP.1587-1597, 199036. Bird, R. B.；Stewart, W. E.；Lightfoot, E. N.：Transport Phenomena. Chap. 2, Wiley, New York, 196037. D.A. Nield； A. Bejan：Convection in Porous Media. Chap. 1, Springer-Verlag, New York, 199238. Chang, C. J., Lin T. F. and Yan, W.M.: Natural convection flows in a vertical, open tube resulting from combined buoyancy effects of thermal and mass diffusion. Int. J. Heat Mass Transfer 29, 1543-1522, 198639. 邱育暐，李宏文，張錦裕，橢圓鰭管式熱交換器於乾盤管及噴霧狀態下之熱液動性能研究，中國機械工程學會第二十一屆全國學術研討會，AII, pp.961-966，高雄，台灣， Nov., 26~27，2004。
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 多孔性介質中自然對流與強制對流熱質傳現象之研究 2 垃圾乾燥過程之數值計算

 無相關期刊

 1 時空守恆法於電泳分離和聚焦之應用 2 多孔性介質於垂直平板之薄膜蒸發及於底部加熱之封閉空間自然對流研究 3 衛教介入改變父母處理發燒行為之成效 4 含噴霧效應之鰭管式熱交換器性能測試與分析 5 Bulge材料測試系統之設計製作與其在高分子薄膜材料機械性質檢測之研究 6 鎳基合金殼狀鑄件的熱矯直分析 7 應用功能分析與型態學圖表法建立概念設計輔助系統 8 應用CAD軟體API建立設計概念具體化輔助系統 9 混合微分轉換/有限差分法在非線性暫態熱傳問題之研究 10 植晶機之取晶過程分析 11 分子動力學模擬研究奈米碳管之電子束輻照焊接 12 防止後撞頸椎鞭甩傷害之安全座椅設計研究 13 從產品生命週期階段觀點提出改良的TRIZ為基礎之綠色創新設計方法研究 14 全場式光學外差干涉儀應用於量測雙折射晶體光學參數之設計與研究 15 共路徑外差干涉儀順序量測雙折射晶體光學參數之設計與研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室