跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1742:3a1e:c308:7608) 您好!臺灣時間:2024/12/08 08:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃仁佐
研究生(外文):Ren-Zuo Huang
論文名稱:應用虛擬場景於隔離環境微物件遠端操作系統
論文名稱(外文):Tele-manipulation of micro-object inisolated VR environment
指導教授:張仁宗張仁宗引用關係
指導教授(外文):Ren-Jung Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:83
中文關鍵詞:虛擬實境微夾持系統遠端操作視訊壓縮
外文關鍵詞:micro-grippervideo compressiontele-manipulationvirtual reality
相關次數:
  • 被引用被引用:2
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究利用「光機電系統控制實驗室」於歷年來研究之微夾持器,進行設計改良與微小化,並配合形狀記憶合金以致動高分子微夾持器與顯微鏡、機械臂整合為一微夾持系統,並利用機構設計改良系統之功能,達成隔離環境微物件操作之需求。

  藉由視訊壓縮之技術以提供操作者影像之資訊,並運用影像處理技術,獲取影像特徵,進一步建構虛擬場景,作為輔助使用者之介面。遠端操作部分則在伺服端與客戶端使用各種訊息加以溝通,藉此可以實現隔離環境之微物件遠端操作。
 In this thesis, the size of micro-compliant gripper developed by “Opto-Mechatronic System Control Laboratory” has been reduced and its design has been improved. By integrating optical microscope, manipulator, and micro-compliant gripper actuated by SMA, then it becomes a micro-manipulation system. Using mechanical design to enhance the function of system, and achieve the requirement of micro-manipulation in isolated environment.

 Utilizing the video compression technique can provide video information for operator. Using image processing technique to obtain the feature of image and then virtual scene could be established. Virtual scene and video information are auxiliary interfaces which can help operator to manipulate micro gripper. For remote operation, using various messages to communicate with server site and client site, then tele-manipulation of micro-object in isolated VR environment can be achieved.
中文摘要.......................................I
ABSTRACT......................................II
誌謝.........................................III
目錄..........................................IV
圖目錄.......................................VII
表目錄........................................XI
符號表.......................................XII
第一章 緒論....................................1
1-1 前言.......................................1
1-2 文獻回顧...................................2
1-3 研究目標...................................7
1-4 研究方法...................................7
1-5 本文架構...................................8
第二章 網路遠端操作系統........................9
2-1 時間基準控制理論...........................9
2-2 非時間基準控制理論........................10
2-3 網路概要..................................12
2-3-1 通訊協定................................12
2-3-2 客戶端/伺服器模型.......................15
2-4 Windows sockets API.......................17
第三章 微撓性夾持系統.........................22
3-1 微夾持器設計..............................23
3-2 機械臂控制................................24
3-3 搖桿控制..................................25
3-4 顯微鏡Z軸致動機構設計.....................26
第四章 視訊壓縮與影像校準.....................30
4-1 視訊擷取..................................30
4-2 畫面繪製..................................31
4-3 色彩轉換..................................32
4-4 視訊壓縮..................................33
4-4-1 H.263...................................33
4-4-2 H.263編碼架構...........................35
4-4-3 預測編碼(Predictive Coding) ............36
4-4-4 離散餘弦轉換............................38
4-4-5 量化(Quantization) .....................39
4-4-6 可變長度編碼(Variable Length Coding) ...40
4-4-7 H.263 解碼流程..........................41
4-4 光源調控..................................41
4-6 影像解析度校準............................42
4-7 機械臂座標校準............................45
第五章 影像參數估測與虛擬場景之建立...........48
5-1 夾持器位置估測............................48
5-2 微粒子參數估測............................50
5-3 OpenGL應用程式介面........................52
5-4 3D實體模型................................53
5-5 利用 Stencil緩衝區實現CSG模型.............54
5-6 場景亮度調控與視角轉換....................59
5-7 夾持器運動分析............................60
第六章 系統整合與實現.........................63
6-1 系統之軟體設計............................63
6-2 伺服端與客戶端之訊息溝通..................64
6-3 伺服端之微操縱系統環境....................66
6-4 遠端控制程式流程..........................67
6-5 場景測試..................................67
6-6 微操作之夾持流程..........................69
第七章 結論與未來展望.........................75
參考文獻......................................77
附錄..........................................81
自述..........................................83
[1] R. C. Goertz and R. Thompson, “Electronically controlled manipulator,”Nucleonics, pp.46-47, 1954.
[2] L. Li, B. Cox, M. Diftler, S. Shelton, and B. Rogers, “Development of a telepresence controlled ambidextrous robot for space applications,” IEEE International Conference on Robotics and Automation, Vol. 1, pp. 58-63, 1996.
[3] J. G. Webster and D. G. Hanger,“ Telepresence for touch and proprioception in teleoperator systems,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 18, No. 6, pp. 1020-1023, 1989.
[4] A. Goto, R. Inoue, T. Tezuka, and H. Yoshikawa, ”A Research on Tele-operation Using Virtual Reality, ” IEEE Int. Workshop on Robot and Human Communication, pp. 147-152, 1995.
[5] A. Sulzmann and J. Jacot, ”3D Computer Graphics Based Interface to Real Microscopic World for μ-Robot Telemanipulation and Position Control,” IEEE Int. Conf. on Systems, Man, and Cybernetics, pp. 286-291, 1995.
[6] Fumihito ARAI, “Micro Tri-axial Force sensor for 3D Bio-Micromanipulator,” International Conference on Robotics & Automation, IEEE, pp.2744-2749, 1999.
[7] A. Sulzmann, and J. Jacot, “3D computer graphics based interface to real microscope world for μ-robot telemanipulation and position control,” IEEE, pp. 286-291, 1995.
[8] T. Tanikawa,T. Arai, “Development of a micro-manipulation system having a two-fingered micro-hand,” Robotics and Automation, IEEE Transactions, pp.152 – 162, 1999.
[9] M. Sitti, and H. Hashimoto, “Two-dimensional fine particle positioning using a piezoresistive cantilever as micro / nano-manipulator,” IEEE, pp. 2729-2735, 1999.
[10] F. Arai, T. Sugiyama, and P. Luangiarmekorn, “3D viewpoint selection and bilateral control for bio-micromanipulation,” IEEE, pp. 189-198, 2000.
[11] Ando N, Gonda K, Shintani H, Hashimoto H, “ Development of the parallel manipulator workspace display system for tele-micromanipulation,” IEEE/RSJ International Conference, pp.2172 – 2177, 2001.
[12] S. Saito, H. Himeno, K. Takahashi, T. Onzawa, “Electrostatic detachment of a micro-object from a probe by applied voltage,” IEEE/RSJ International Conference, pp.1790 – 1795, 2002.
[13] B. Kim, H. Kang, and D. –H. Kim, “Flexible microassembly system based on hybrid manipulation scheme,” IEEE, pp. 2061-2066, 2003.
[14] Y. Yokokohji, T. Teruhiro, and T. Yoshikawa, ”Bilateral Control with Time-Varying Delay including Communication Blackout,” IEEE Int. Conf. on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp.285-292, 2002.
[15] G. Niemeyer, J. Jacques, and E. Slotine, ”Using Wave Variables for System Analysis and Robot Control,” IEEE Int. Conf. on Robotics and Automation, pp.1619-1625, 1997.
[16] H. C. Cho, J. H. Park, K. Kim, and J. O. Park, ”Sliding Mode-Based Impedance Controller for Bilateral Teleoperation under Varying Time-Delay, ” IEEE Int.Conf. on Robotics and Automation, pp. 1025-1030, 2001.
[17] J. H. Park and H. C. Cho, ”Sliding Mode Control of Bilateral Teleoperation Systems with Force-Reflection on the Internet,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1187-1192, 2000.
[18] R. J. Anderson and M. W. Spong, ”Bilateral Control of Teleoperators with Time Delay, ” IEEE Trans. on Robotics and Automation, Vol. 13, No. 5, pp.494-501, 1989.
[19] I. Elhajj, H. Hummert, N. Xi, W. J. Li, and Y. H. Liu, ”Synchronization and Control of Supermedia Transmission Via the Internet,” IEEE Int. Symposium on Intelligent Multimedia, Video and Speech Proceeding, pp. 320-323, 2001.
[20] I. Elhajj, N. Xi, and Y. H. Liu, ”Real-Time Control of Internet Based Teleoperation with Force Reflection,” IEEE Int. Conf. on Robotics and Automation, pp. 3284-3289, 2000.
[21] N. Xi and T. J. Tarn, ”Action Synchronization and Control of Internet Based Telerobotic Systems,” IEEE Int. Conf. on Robotics and Automation, pp.219-224, 1999.
[22]李文政,“遠端監控微撓性機械夾持系統之研究”,國立成功大學機械工程學系論文,中華民國九十一年。
[23] G. Cote, B. Erol, M. Gallant and F. Kossentini, “H.263+: Video Coding at Low Bit Rates,” IEEE transactions on circuits and systems for video technology, Vol. 8, No. 7, pp.849-866, 1998.
[24] M. Sonka, V. Hlavac, and R. Boyle, Image processing, Analysis, and Machine vision, PWS, 1998.
[25] R. C. Gonzalez and Richard E. Woods, Digital image processing, 2001.
[26] R. S. Wright, and M. Sweet, Opengl supper bible, Waite Group Press, 2000.
[27] T. F. Wiegand, “Interactive rendering of CSG models,” Eurographics, vol. 15, pp. 249-261, 1997.
[28]蘇育賢,“虛擬實境於形狀記憶合金高分子夾持系統之發展”,國立成功大學機械工程學系論文,中華民國九十三年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top