跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/21 19:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴添興
研究生(外文):Tien-Hsing Lai
論文名稱:考慮接頭間隙之平面多迴路機構的誤差分析
論文名稱(外文):The Error Analysis of the Planar Multi-loop Mechanisms with Joint Clearances
指導教授:蔡明俊蔡明俊引用關係
指導教授(外文):Ming-June Tsai
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:85
中文關鍵詞:接頭間隙鈑鉗運動對互逆螺旋傳動性能瞬間構形位置誤差
外文關鍵詞:Position errorReciprocal screwWrenchTransmission performanceKinematical pairJoint clearanceInstantaneous configuration
相關次數:
  • 被引用被引用:2
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
  本研究的主旨,乃針對考慮接頭間隙(Clearance)的多迴路連桿機構作位置和傳動性能等之誤差分析。而以螺旋理論為基礎,應用互逆螺旋(reciprocal screw)的數學關係去協助求解機構之瞬時構形,建立一套適用於考慮接頭間隙的連桿機構之數學模式。由等值間隙桿(Equivalent Clearance Link)的概念,我們以虛擬間隙桿代替間隙,即把因為間隙多出的自由度,以等效的接頭自由度來取代,如此機構將成為多可動度之非拘束度機構。對受力狀況下之非拘束機構,以螺旋型式表示之虛功原理提出其位置分析之數學模式。在靜力平衡的考慮下,機構將會在任何瞬間構形保持靜力平衡。此時,任何機件所受之外加鈑鉗,將會與其所有接頭傳動鈑鉗保持平衡。

  本研究首先對考慮接頭間隙(Clearance)的多迴路連桿機構作可解性分析(solvability),經由分析接頭傳動鈑鉗和接頭扭轉螺旋所產生未知變數之數目,與鈑鉗平衡、接頭傳動鈑鉗和接頭扭轉螺旋互逆關係、位置封閉迴路等所產生方程式之數目相等,肯定的驗證本研究所提方法之可解性。另外,數值方法包括牛頓法和同倫法被用於求解非線性聯立方程組。

  本研究以具有不同輸入桿之六桿多迴路連桿機構為例,說明本研究所提出之求解方法。並對考慮和不考慮接頭間隙(Clearance)的連桿機構,相互比較其位置和傳動性能。在Watt-I機構例子中,由於傳動鈑鉗作用下機構出現跳躍點構形(Jump point) ,此種跳躍點構形明顯與一般跳躍點構形(停滯點)並不相同。

  對於傳動中考慮接頭間隙(Clearance)的多迴路連桿機構之位置和傳動性能等,本方法提供了有效的分析求解方式。
 This study introduces a generalized method for error analysis of multi-loop mechanisms with joint clearances. The transmission performance of linkages that have joint clearance is also analyzed. In the study, the joint clearance is treated as virtual link to simplify the study. Equivalent kinematical pairs are used to model the motion freedoms caused by the joint clearances. Under static condition, a mechanism should be in equilibrium at any configuration. The developed methodology uses the properties of reciprocal screws to determine the instantaneous configurations. The joint transmission wrench should equilibrate all externally applied wrenches for each link member. An extra set of constraint equations can be obtained since the joint transmission wrench screw should be reciprocal to the joint twist screw of the member.

 To solve the hyper-freedom linkage problem, we must first assure that the number of independent equations available is at least equal to the number of unknown variables. It has been proved that the number of unknown variables of transmission wrench screws and joint twist screws is equal to the number of wrench equilibrium equations、 reciprocal equations、 positional closed-loop equations and the link-length equations. Then the unknown variables of a mechanism, such as positions, can be solved with the equations simultaneously.

 Six-bar linkages with different specified input links are taken as examples. Positioning error with joint clearance is compared with that of the ideal mechanism. The joint contact “jump point ” configuration under the influence of transmission wrench screw is identified and it may not be at the conventional jump point (stationary) configuration of the mechanism.
Abstract i
中文摘要 iii
誌謝 iv
Table of Contents v
List of Tables viii
List of Figures ix
Nomenclature xi
Chapter 1 Introduction 1
1.1 Important effect of joint clearance 1
1.2 Literature reviews 1
1.3 Motives and objectives 4
1.4 Organization of this dissertation 5
Chapter 2 Fundamental Concepts and Screw Theory 7
2.1 Three types of dynamic mode 7
2.2 The equivalent joint clearance link (EJCL) 8
2.2.1 The R-joint 8
2.2.2 The P-joint 9
2.2.3 The S-joint 10
2.3 Fundamental concepts of screw theory 11
2.3.1 Line representation 11
2.3.2 Screw representation 12
2.3.3 Reciprocal screw 13
2.4 The transmission wrench screw (TWS) and joint twist screw (JTS) 14
2.5 The relation of the TWS and the JTS of multi-loop mechanisms 15
Chapter 3 The Error Analysis of Single Loop Multi-freedom Mechanisms 17
3.1 The single loop multi-freedom mechanisms 17
3.2 Joint transmission wrench screw and externally applied wrench screw 17
3.3 Reciprocal equations 19
3.4 Link-length equations 20
3.5 The Principle of Virtual Work (P.V.W.) 21
3.6 Numerical example and discussion 30
3.6.1 Example 3.1 30
3.6.2 Example 3.2 36
3.6.3 Example 3.3 39
Chapter 4 The Error Analysis of Multi-loop Mechanisms with Joint
Clearances 46
4.1 Problem statement 46
4.2 Analysis of solvability 46
4.3 The examples of some planar multi-loop mechanisms 48
4.4 Numerical examples of the multi-loop mechanisms 50
4.4.1 Example 4.1 50
4.4.2 Example 4.2 62
Chapter 5 Conclusions and Suggestions 70
5.1 Conclusions 70
5.2 Suggestions for feature research 71
References 72
Appendix A The thirty-two sets of solutions Appendix 76
Appendix B Numerical method 78
B-1 Newton method 78
B-2 Homotopy method 80
VITA 83
(VITA in Chinese) 84
Copyright Statement 85
1. Baumgarten, J. R. and Van Der Werff, K., “A Probabilistic Study Relating to Tolerance and Path Generation Error,” Mechanism and Machine Theory, Vol.20, No.1, pp.71-76 (1985).
2. Chakraborty, J., “Synthesis of Mechanical Error in Linkages,” Mechanism and Machine Theory, Vol.10, Nos.2/3, pp.155-165 (1975).
3. Dhande, S. G., and Chakraborty, J., “Analysis and Synthesis of Mechanical Error in Linkages-a Stochastic Approach,” Journal of Engineering for Industry, Transactions of the ASME, Vol.95, No.3, pp.672-676 (1973).
4. Garrett, R. E., and Hall, A. S., “Effects of Tolerances and Clearances in Linkage Design,” Journal of Engineering for Industry, Transactions of the ASME, Vol.91, No. 1, pp.198-202 (1969).
5. Lee, S. J. and Gilmore, B. J., “The Determination of the Probabilistic Properties of Velocities and Accelerations in Kinematic Chains with Uncertainty,” J. of Mechanical Design, Vol.113, pp.84-90 (1991).
6. Lee, S. J., Gilmore, B. J. and Otto, M. M., “Dimensional Tolerance Allocation of Stochastic Dynamic Mechanical Systems through Performance and Sensitivity Analysis,” ASME Journal of Mechanical Design, Vol.115, pp.392-402 (1993).
7. Rhyu, J. H. and Kwak, B. M., “Optimal Stochastic Design of Four-Bar Mechanisms for Tolerance and Clearance,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol.110, pp.255-262 (1988).
8. Zhu, J. and Ting, K. L., “Uncertainty Analysis of Planar and Spatial Robots with Joint Clearances,” Mechanism and Machine Theory, Vol.35, pp.1239-1256 (2000).
9. Bengisu, M., Hidayetoglu, T., and Akay, A., “A Theoretical and Experimental Investigation of Contact Loss in the Clearances of a Four-Bar Mechanism,” Journal of Mechanisms, Transmissions, and Automation in Design, Transactions of the ASME, Vol. 108, No. 2, pp. 237-244 (1986).
10. Li, Z., and Bai, S., “Amendments to a Criterion of Contact Loss Between Pairing Elements in Planar Linkages with Clearances,” Mechanism and Machine Theory, Vol.26, No.7, pp.669-676 (1991).
11. Li, Z., Li, L., and Bai, S., “A New Method of Predicting the Occurrence of Contact Loss Between Pairing Elements in Planar Linkages with Clearances,” Mechanism and Machine Theory, Vol.27, No.3, pp.295-301 (1992).
12. Farahanchi, F., and Shaw, S. W., “Chaotic and Periodic Dynamics of a Slider-Crank Mechanism with Slider Clearance,” Journal of Sound and Vibration, Vol. 177, No. 3, pp. 307-324 (1994).
13. Grant, S. J., and Fawcett, J. N., “Effects of Clearance at the Coupler-Rocker Bearing of a 4-Bar Linkage,” Mechanism and Machine Theory, Vol. 14, No. 2, pp. 99-110 (1979).
14. Seneviratne, L. D. and Earles, S. W. E., “Chaotic Behaviour Exhibited During Contact Loss in a Clearance Joint of a Four-bar Mechanism,” Mechanism and Machine Theory, Vol.27, No.3, pp.307-321 (1992).
15. Soong, K., and Tompson, B. S., “A Theoretical and Experimental Investigation of the Dynamic Response of a Slider-Crank Mechanism With Radial Clearance in the Gudgeo-Pin Joint,” Journal of Mechanical Design, Transactions of the ASME, Vol.112, No.2, pp.183-189 (1990).
16. Wilson, R., and Fawcett, J. N., “Dynamics of the Slider-Crank Mechanism with Clearance in the Sliding Bearing.” Mechanism and Machine Theory, Vol. 9, pp. 61-80 (1974).
17. Rhee, Jungkeun and Akay, Adnan.,“Dynamic Response of a Revolute Joint with Clearance.” Mechanism and Machine Theory, Vol. 31, pp. 121-134 (1996).
18. Flores, P., and Ambrosio, J., “Revolute Joints with Clearance in Multibody Systems,” Computers and Structures, Vol. 82, pp. 1359-1369 (2004).
19. Schwab, A.L., Meijaard, J.P., and Meijers, P., “A Comparison of Revolute Joint Clearance Models in the Dynamic Analysis of Rigid and Elastic Mechanical Systems,” Mechanism and Machine Theory, Vol.37, pp. 895-913 (2002).
20. Mikio, H., Hiroaki, F., Kiyoshi, O., and Miroshi, A., “Dynamic Characteristics of Planar Link Mechanisms with Clearances,” Bulletin of JSME, Vol. 29, No. 252, pp. 1895-1901 (1986).
21. Kolhatkar, S. A., and Yajnik, K. S., “The Effects of Play in the Joints of a Function-Generating Mechanism,” Journal of Mechanisms, Vol. 5, No. 4, pp. 521-532 (1970).
22. Mikio, H., Hiroaki, F., Kiyoshi, O., and Miroshi, A., “A Displacement Analysis of Spatial Four-bar Mechanisms with Clearances and Tolerances,” Bulletin of JSME, Vol. 28, No. 241, pp. 1535-1543 (1985).
23. Carlo, I., “Kinematic Clearance Sensitivity Analysis of Spatial Structures with Revolute Joints,” Journal of Mechanical Design, Transactions of the ASME, Vol. 124, No. 4, pp. 52-57 (2002)
24. Ting, K. L., Zhu, J., and Watkins, D., “The Effects of Joint Clearance on Position and Orientation Deviation of Linkages and Manipulators,” Mechanism and Machine Theory, Vol.35, pp.391-401 (2000).
25. Miedema, B., and Mansour, W. M. “Mechanical Joints With Clearance: a Three-Mode Model,” Journal of Engineering for Industry, Transactions of the ASME, Vol. 98, No. 4, pp. 1319-1323 (1976)
26. Hunt, K. H., Kinematic Geometry of Mechanisms, Oxford University Press, Toronto (1978).
27. Mallik, A. K., Ghosh, A., and Dittrich, G., Kinematic Analysis and Synthesis of Mechanisms, CRC Press, USA (1994).
28. Burdon, P., Kinematics and Dynamics of Planar Machinery, Rainbom-Bridge Company, Taiwan (1980).
29. Lee, H. W., “Investigation of the Motion and Force Transmission Performance of Mechanisms,” Ph. D. Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan (1993).
30. Wu, L. I., “Modified Transmission Angles of Planar Linkage Mechanisms,” ASME 21nd Biennial Mechanisms Conference, Chicago, Sep. 13-16, pp.131-140 (1990).
31. Wolfram Research Mathematica User’s Guide For Microsoft Windows, Wolfram Research (1994).
32. Burden, R. L., Douglas Faires, L., Numerical Analysis, Brooks/Cole publishing company, USA (1997).
33. Allgower, E. and Georg, K., Numerical Continuation Methods: an introduction, Springer-Verlag, New York, USA (1990).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top