跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王子強
研究生(外文):Tzu-Chiang Wang
論文名稱:外部對流邊界條件下圓管內相變化微粒懸浮流體之共軛熱傳分析
論文名稱(外文):Conjugate Heat Transfer Analysis of PCM Suspensions in a Circular Duct with External Convection Boundary Condition
指導教授:何清政
指導教授(外文):Ching-Jenq Ho
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:66
中文關鍵詞:相變化微粒對流邊界
外文關鍵詞:Phase Change Materialconvection boundary
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
  本文主旨為利用數值方法探討外部對流邊界條件下圓管內相變化微粒懸浮流體之共軛熱傳現象。數值模擬所考慮的相關參數及其範圍為:相變化懸浮微粒體積濃度(0~0.2)、比爾特數 (0.1~100)、史蒂芬數 (0.01~0.2)、貝克勒數 (100~1000)、管壁面厚度比 (0~0.5)及熱傳導係數比 (0.1~10)。結果發現在考慮管壁熱傳導效應下相變化微粒濃度、史蒂芬數、比爾特數、貝克勒數與管壁熱傳導係數比之變化量均對於管內相變化微粒流體對流熱傳影響甚巨,並且在比爾特數0.1、史蒂芬數0.01、貝克勒數100 、管壁熱傳導係數比0.1 ∼ 10 條件之下其流體與能量變化最為明顯。而文中也發現到於低貝克勒數、高管壁與純流體熱傳導係數比下,相變化懸浮流體熱傳效應會有明顯的往前、後延伸之現象,並且能夠幫助降低於下游出口完全絕熱段之溫度。而由文中內壁面紐賽線圖之分佈結果看來,具有較高的流體潛熱量(懸浮微粒體積濃度0.2、史蒂芬數為0.01)下,會幫助內壁面之熱傳效果提升。
 This study aims to investigate numerically the effect of conjugate heat transfer on forced convection of phase-change materials (PCM) suspensions in a circular duct with external convection boundary condition. Wall conduction as well as the axial conduction of the numerical model is taken into consideration. Numerical simulations have been undertaken for the pertinent dimensionless parameters in the ranges as follows: the volumetric concentration of the PCM particles (0~0.2), the Stefan number (0.01~0.2), the Peclet number (100~1000), the dimensionless wall thickness (0~0.5), the thermal conductivity ratio of the wall to the PCM suspending fluid (0.1~10). The result shows that the parameters of the PCM suspension fluid such like the volumetric concentration of the PCM particles, the Stefan number, the Peclet number and the thermal conductivity ratio of the wall to the PCM suspension fluid can strongly effect the convection heat transfer behaviors. At low Peclet number and high thermal conductivity ratio, it was found that significant heat conduction effect tends to extend upstream and hence the PCM particles start to freeze prior to entering the heat transfer section.
中文摘要……………................. I
英文摘要……………................ II
致謝…………..................... III
目錄…………….................... IV
圖目錄……………................. VII
表目錄………………................ XI
符號表………….................... XII


第一章 序論

1-1 研究動機………………..…… 1
1-2 文獻回顧…………………..… 2
1-3 本文架構……………….…… 8



第二章 理論模式與數值方法

2-1 物理模型…………………….. 9
2-2 數學模式…………….….…… 10
2-2-1 基本假設……………….…… 10
2-2-2 統御方程式與邊界條件……… 11
2-3 相關熱傳物理量之定義……… 14
2-4 數值方法……….…….……… 20
2-5 數值不準度測試..…………… 23

第三章 結果與討論

I、無管壁下相變化懸浮流體之效應

3-1 無管壁下相變化懸浮微粒濃度之效應……………….……… 28
3-2 無管壁下外管壁面比爾特數(Biot Number)之效應…….…..……. 28
3-3 無管壁下懸浮流體史蒂芬數(Stefan Number)之效應…..… 29
3-4 無管壁下懸浮流體貝克勒數(Pe)之效應………………….…… 29

II、管壁厚度對相變化懸浮流體之效應

3-5 相變化懸浮微粒濃度之效應...... 29
3-6 外管壁面比爾特數(Biot Number)之效應……………..……. 31
3-7 懸浮流體史蒂芬數(Stefan Number)之效應…..………………......…… 33
3-8 懸浮流體貝克勒數(Pe)之效應………………………….…… 34
3-9 管壁厚度比之效應… 35
3-10 管壁與純流體熱傳導係數比之效應… 36

第四章 結論與未來展望

4-1 結論……………….…… 56
4-2 未來展望………….…… 57

參考文獻………….………….…… 58
附錄A 格點測試結果
1、P. Charunyakorn, S. Sengupta and S. K. Roy, “ Forced convection heat transfer in microencapsulated phase change materials slurries: flow in circular ducts ,” Int. J. Heat Mass Transfer, Vol. 34, No. 3, pp. 819-833, 1991.

2、M. Goel, S. K. Roy and S. Sengupta, “ Laminar forced conduction heat transfer in micro-capsulated phase change material suspensions,” Int. J. Heat Mass Transfer, Vol. 37, No. 4, pp 593-604, 1994.

3、S.K. Roy and B.L. Avanic, “ Laminar forced convection heat transfer with phase change material emulsions ,” Int. Comum. Heat Mass Transfer, Vol. 24, No. 5, pp. 653-662, 1997.

4、H. Inaba, M. J. Kim and A. Horbie, “ Heat transfer characteristics of latent microcapsule-water mixed slurry flowing in a pipe with constant wall heat flux ,”日本機械學會論文集(B編), 68卷665號, pp. 161-168, 2002.

5、H. Inaba, M. J. Kim and A. Horbie, “ Cold heat storage characteristics of latent heat microcapsule-water mixture flowing in a pipe constant temperature wall ,” 日本機械學會論文集(B編), 68卷673號, pp.2606-2613, 2002.

6、C. J. Ho, J. F. Lin and S. Y. Chiu, “ Heat transfer of solid-liquid phase-change material suspensions in circular pipes: effects of wall conduction , “Numerical Heat Transfer, Part A, Vol.45, pp.171-190, 2004.

7、Y. Yamagishi, H. Takeuchi, and A. T. Pyatenko, “ Characteristics of microencapsulated PCM slurry as a heat-transfer fluid ,” AIChe Journal, Vol. 45, No. 4, pp. 696-707, 1999.

8、B. P. Leonard, ” A stable and accurate convective modeling procedure based on quadratic upstream interpolation, ” Comput. Meth. Appl. Mech. Eng, Vol. 19, pp.59-98, 1979.

9、W. M. Kays and M. E. Crawford, “ Convective Heat and Mass Transfer, ” McGraw-Hill, NY, 1980.

10、邱勝彥, “ 內含懸浮相變化微粒之矩形熱虹迴路熱傳特性之數值分析 ,”國立成功大學機械工程研究所碩士論文, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top