# 臺灣博碩士論文加值系統

(44.192.48.196) 您好！臺灣時間：2024/06/14 17:22

:::

### 詳目顯示

:
 Twitter

• 被引用:0
• 點閱:154
• 評分:
• 下載:9
• 書目收藏:0
 這篇文章的目的是要去學習有關對流型的非線性薛丁格方程的奇異極限。首先，我們可以利用兩種不同的方法，去獲得對流型非線性薛丁格方程的一些守恆律。然後利用疊代的方法，在一段時間內，我們可以建立出古典解的局部存在性並且也可以把解的唯一性都證明完成。最後，我們去證明有關半古典解的極限。
 The purpose of this paper is to the study of singular limit for the convective NLS equation.　First, we use two different methods to get conservation laws of the convective NLS equation.　And then the local existence in time of the classical solutions can be established via an iteration method and the uniqueness of the solution is also proved.　At last we prove the semiclassical limit of the solution.
 Contents1. Introduction 42. Hydrodynamical Structure of the NLS Equation 53. Local Smooth Solution 84. Semiclassical Limit of Smooth Solution 18
 [1] T. Colin and A. Soyeur, Some singular limits forevolutionary Ginzburg-Landau equations, Asymptotic Analysis,13(1996),361-372.[2] B. Desjardins, C.-K. Lin and T. C. Tso,Semiclassical limit of the derivative nonlinear Schr"odingerequation, Math. Models Methods Appl. Sci., 10(2000), 261--285.[3] B. Desjardins and C.-K. Lin,On the semiclassical limit of the general modified NLS equation,J. Math. Anal. Appl., 260(2001), 546--571.[4] V. D. Djordjevic and L. G. Redekopp,On two-dimensional packets of capillary-gravity waves, J. FluidMech., 79(1977), 703--714.[5] H. D. Doebner and G. A. Goldin,On a general nonlinear Schr"odinger equation admitting diffusioncurrents, Physics Letter A, 162(1992), 397--401.[6] I. Gasser, C.-K. Lin and P. Markowich,A review of dispersive limit of the (non)linear Schr"odinger-typeequation, Taiwanese J. of Mathematics, 4(2000), 501--529.[7] L. Gill,Vector order parameter for an unpolarized laser and its vectorialtopological defects, Physical Review Letters, 70(1993), 162--165.[8] E. Grenier,Semiclassical limit of the nonlinear Schr"odinger equation insmall time, Proc. Amer. Math. Soc., 126(1998), 523--530.[9] M. Haelterman and A. P. Sheppard,Bifurcations of the dark soliton and polarization domain walls innonlinear dispersive media, Physical Review E, 49(1994),4512--4518.[10] S. Jin, C. D. Levermore and D. W. McLaughlin,The semiclassical limit of the defocusing NLS hierarchy, Comm.Pure Appl. Math., 52(1999), 613--654.[11] A. J"ungel and S. Wang, Convergence of nonlinearSchr"odinger-Poisson systems to the compressible Euler equations.Comm. Partial Differential Equations 28(2003), 1005--1022.[12] T. Kato,The Cauchy problem for quasilinear symmetric hyperbolic systems,Arch. Rational Mech. Anal., 58(19??), 181--205.[13] C. Kenig, G. Ponce and L. Vega,Oscillatory integrals and regularity of dispersive equations,Indiana Univ. Math. J., 40(1991), 33--67.[14] S. Klainerman and A. Majda,Singular limits and quasilinear systems with large parameter andthe incompressible limit of compressible fluids, Comm. Pure andAppl. Math., 34(1981), 481--524.[15] P. Laurencot,On a nonlinear Schr"odinger equation arising in the theory ofwater wave, Nonlinear Analysis, Theory, Methods & Applications,24(1995), 509--527.[16] J.-H. Lee and C.-K. Lin,The behavior of solutions of NLS equation of derivative type inthe semiclassical limit, Chaos, Solitons & Fractals, 13(2002),1475--1492.[17] J.-H. Lee, C.-K. Lin and Oktay K. Pashaev,Shock waves, Chiral solitons and semiclassical limit ofone-dimensional anyons, Chaos, Solitons & Fractals, 19(2004),109--128.[18] H.-L. Li and C.-K. Lin,Semiclassical limit and well-posedness of nonlinearSchr"odinger-Poisson systems, E. Journal of DifferentialEquations, 2003(2003), 1--17.[19] H.-L. Li and C.-K. Lin,Zero Debye length asymptotic of the quantum hydrodynamic model forsemiconductors, Comm. Math. Physics, (2004) to appear.[20] C.-K. Lin, On the fluid-dynamical analogue of the general nonlinearSchr"odinger equation, Southeast Asia Bulletin of Mathematics,22(1998), 45--56.[21] C.-K. Lin, Remark on the singularity of the nonlinear Schr"odingerequation: hydrodynamical approach, Southeast Asia Bulletin ofMathematics, 22(1998), 161--170.[22] F.-H. Lin, and T. C. Lin,Vortices in two-dimensional Bose-Einstein condensates, AMS/IPStudies in Advanced Mathematics, 29(2002), 87--114.[23] F.-H. Lin, and J. X. Xin,On the incompressible fluid limit and the vortex motion law of thenonlinear Schr"odinger equation, Commun. in Math. Phys.,200(1999), 249--274.[24] Y. C. Ma,The complete solution of the long wave-short wave resonanceequations, Stud. Appl. Math., 59(1978), 201--221.[25] A. Majda,Compressible Fluid Flow and Systems of Conservation Laws inSeveral Space Variables, emph{Appl. Math. Sci.}, { f 53},Springer-Verlag, (1984).[26] N. Masmoudi and K. Nakanishi, From nonlinear Klein-Gordonequation to a system of coupled nonlinear Schr"odinger equations.Math. Ann. 324 (2002), no. 2, 359--389.[27] T. Ogawa,Global well-posedness and conservation laws for the water waveinteraction equation, Proceeding of the Royal Society ofEdinburgh, 127A(1997), 368--384.[28] L. M. Pismen,Structure and dynamics of defects in 2D complex vector field,Physica D, 73(1994), 244--258.[29] L. M. Pismen,Vortices in Nonlinear Fields, emph{International Series ofMonographs on Physics} { f 100}, Clarendon Press, Oxford (1999).[30] N. Sepulveda,Solitary waves in the resonant phenomenon between a surfacegravity wave packet and an internal gravity wave, Phys. Fluids,30(1987), 1984--1992.[31] C. Sulem and P.-L. Sulem,The Nonlinear Schr"odinger Equation, emph{Appl. Math. Sci.} { f139}, Springer-Verlag, (1999).
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 1 3. 李存修、張淑婉，(民國83年3月)，上市公司發行轉換公司債之考慮因素及與公司價值之關係，證券市場發展，第22期，pp.279-305。 2 3. 李存修、張淑婉，(民國83年3月)，上市公司發行轉換公司債之考慮因素及與公司價值之關係，證券市場發展，第22期，pp.279-305。 3 7. 陳隆麒、敦敏華、菅瑞昌，(民國86年1月)，發行可轉換公司債與現金增資之比較探討，證券市場發展，第9卷第1期， pp.31-61。 4 7. 陳隆麒、敦敏華、菅瑞昌，(民國86年1月)，發行可轉換公司債與現金增資之比較探討，證券市場發展，第9卷第1期， pp.31-61。 5 10. 顏錫銘、林江亮，(民國85年10月)，臺灣企業宣告發行海內外可轉換公司債之財務特質，證券金融，第51期，p35-68。 6 10. 顏錫銘、林江亮，(民國85年10月)，臺灣企業宣告發行海內外可轉換公司債之財務特質，證券金融，第51期，p35-68。

 1 多值函數在拓樸向量空間上可行概凸集的定點理論 2 斜坡地形變化對孤立波溯升高度的影響 3 在樹圖中求解限重最大密度子樹問題及其相關問題 4 退休金資訊揭露與市場價值及生命週期之關連性 5 孤立波造波之研究 6 半導體奈米線與其異質結構之成長與鑑定 7 應用風險值於共同基金投資風險與績效指標之研究 8 協同式工程知識管理實現技術研發 9 新型超音波技術應用於人體骨頭組織之量化評估 10 肩關節骨骼肌肉系統動態圖像模擬及生物力學分析 11 芝麻油對大鼠經盲腸結紮穿刺所引發敗血症之保護作用 12 結合生命週期評估及生態效益之分析研究－以鋼鐵廠製品為例 13 機構系統功能解之具體導向合成方法 14 民宿建築企劃專案管理評估模式建立之研究 15 三族氮化物系列光電元件之研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室