http://www.moeaec.gov.tw/02/01/energy/a1.htm 經濟部能源委員會,”能源白皮書”
http://www.rite.or.jp/English/E-home-frame.html RITE, Japan. “Overview”
http://www.enecho.meti.go.jp/english/ Agency for Natural Resources and Energy. ”The Energy and Resources Today”
http://www.eere.energy.gov/ U.S. Department of Energy, Efficiency and Renewable Energy Office. “Hydrogen, Fuel Cells & Infrastructure Technologies Program.”
http://www.kantei.go.jp/ Prime minister of Japan and his cabinet. “ Biotechnology Strategy Council”
http://www.iesvic.uvic.ca/ Integrated Energy Systems at the University of Victoria. “Energy System.”
http://www.h2.ca/en/PDF/ISO_TC_197_Hydrogen_technologies.pdf Draft Business Plan of ISO/TC 197 - Hydrogen technologies
http://www.afdc.doe.gov/ Alternative Fuels Data Center. “Alternative Fuels”
林佳玲(2000) 澱粉水解酵素對澱粉基質反應之探討。成功大學化工系碩士論文。施翠盈 (2002) 本土性梭菌屬產氫菌株之分離與生理特性研究,國立成功大學生物學研究所碩士論文。郁揆民 (2003) 紫色不含硫光合作用細菌產氫限制因子之研究,國立中興大學環境工程學研究所碩士論文。張仕旻(2002)利用薄膜反應器於高溫厭氧產氫生物程序之研究。成功大學環境工程學系碩士論文。梁德明 (2003)薄膜分離應用於厭氧生物產氫程序。國立成功大學環境工程學系博士論文。楊萬發(2002)台北市廚餘產源調查及廚餘特性分析。台北市環保局委託計畫。
趙禹杰(2004)澱粉及蛋白腖複合基質厭氧醱酵產氫程序之功能評估。成功大學環境工程學系碩士論文。
鄭凱尹 (2001) 高溫厭氧消化廚餘之研究,碩士論文,國立屏東科技大學環境工程與科學系研究所碩士論文。蕭嘉瑢 (2004) 複合基質厭氧氫發酵生物程序操控之功能評估及分生檢測生態之研究。國立成功大學環境工程學系碩士論文。簡青紅 (2003) 利用傳統培養方法和分子生物方法探討厭氧生物產氫反應槽的微生物社會結構,國立成功大學生物學研究所碩士論文。王永福、鄭幸雄、曾怡禎、白明德、蕭嘉瑢 (2002) 應用分子生物學方法研究分解複合基質之中溫產氫菌族群。第27屆廢水處理研討會論文集。
林明瑞、盧重興、賴欣宏、楊聰宏(2001) 不同操作條件對CSTR 醱酵產氫效率之影響及反應動力學之模擬研究。第二十六屆廢水處理研討會論文集。
張嘉修、范姜楷、林屏杰(2002)以中空纖維微過濾膜結合CSTR反應器進行產氫醱酵,第二十七屆廢水處理研討會論文集,台北。
黃俊霖、陳晉照、林秋裕、劉文佐 (2000) 以分子生物技術進行厭氧生物產氫菌群結構之研究. 第25屆廢水處理研討會論文集, 321-326。
鄭幸雄、白明德、趙禹杰, (2002) 厭氧生物氫發酵程序應用於處理廢棄活性污泥的生物產氫與有機物降解特性研究, 第二十七屆廢水處理技術研討會論文集。
Adams M. W. W., and E. I. Stiefel. (1998). Biological hydrogen production: not so elementary. Science. 282: 1842-1843.
Amann, R. I., Stromley, J., Devereux, R., Key, R. and Stahl, D. A. (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58:614-623
Amylase Research Society of Japan, In handbook of amylases and related enzymes: their sources, isolation methods, properties and applications/ 1st ed., Oxford, New York: pergamon Press, pp. 116-124, 1988
Andreas S. Bomarius, and Bettina R. Riebel (2003) Biocatalysis, Fundamentals and applications. Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim.
Andreesen J. R., H. Bahl, and G. Gottschalk. 1989. Introduction to the physiology and biochemistry of genus Clostridium. In: Clostridia, Minton N. P. and Clark J. D. (ed.) Plenum Press. New York. pp. 27-62.
Bahl, H. and P. Dürre. 1993. Biotechnology Vol. 1 Biological Fundamentals. pp. 286 – 323.
Bai, M. D., S. S. Cheng and S. M. Chang. 2001. Effect of peptone/glucose ratio on biohydrogen production through anaerobic fermenting mixture of glucose and peptone. Proceedings of 2nd International Water Association World Water Congress. Berlin. Germany.
Bai, M. D., S. S. Cheng, and I. C. Tseng. 2001. Biohydrogen produced due to peptone degradation by pretreated seed sludge. 2001 ASIAN WATERQUAL, IWA Asia-Pacific Regional Conference, Fukuoka, Japan.1, pp. 315-320.
Blanch, H. W. and D. S. Clark. 1996. Biochemical engineering. Marcel Dekker, Inc., New York.
Brosseau, J. D., and J. E. Zajic. 1982. Hydrogen-gas production with Citrobacter intermedius and Clostridium pasteurianum. Journal Chemical Technology and Biotechnology. 32: 496-502.
Bruce E. Rittmann, Perry L. McCarty, “Environmental Biotechnology: Principle and Applications International Edition 2001,” McGraw-Hill, New York (2001).
C. P. Leslie Grady, Jr., and Henry C. Lim, (1980) Biological wastewater treatment: theory and applications. New York /M. Dekker
Canganella, F. and J. Wiegel. 1993. The potential of thermophilic clostridia in biotechnology. In:The Clostridia and Biotechnology, D. R. Woods, (eds.), Butterworth-Heinemann.
Chang, F.Y. and Lin, C.Y (2003) Biohydrogenproduction using up-flow anaerobic sludge blanket reactor. International Journal of Hydrogen Energy 29(1). 33-39
Chary SJ, Reddy SM. (1985) Starch degrading enzymes of two species of Fusarium. Folia Microbiol;30:452
Chen, C.C., C.Y. Lin, and J.S. Chang. 2001. Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol.57, pp.56–64.
Cheng, S. S., I. C. Tseng., and M. D. Bai. 1999. Behavior study of anaerobic hydrogenation from different organic substrates with selected hydrogen production bacteria. Proc. of the 7th IWA Asic-Pacific Regional Conference, 1, Taipei, Taiwan. 759-764.
Coleman, G., M. A. Grant, (1966)“Characteristics of α-Amylase Formation by Bacillus subtilis,” Nature, Vol. 211, pp. 306-307.
Collins M.D., Lawson P.A., Willems A., Cordoba J.J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H. and Farrow J. A. E.(1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst. Bacteriol. 44: 812~826.
D.J. Batstone, J. Keller, I. Angelidaki, S. V. Kalyuzhnyi, S .G. Pavlostathis, A. Rozzi, W. T. M. Sanders, H. Slegrist, V. A. Vailin, “Biochemical process,” “Anaerobic Digestion Model NO.1,” IWA publishing, UK, p.12 (2002)
Daniel I. C. Wang, Charles L. Cooney, Arnold L. Demain, Peter Dunill, Arthur E. Humphrey, Malcolm D. Lilly. (1979) “Fermentation and enzyme technology” New York , John Wiley & Sons Inc.
Das, D., and T. N. Veziroglu. 2001. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy. 26: 13-28.
David L. Nelson, and Michael M. Cox, Lehninger Principles of Biochemistry, 4th edition, W.H. Freeman and Company, New York, 2004
Duangmanee, T., S. Padmasiri, J.J. Simmons, L. Raskin, S. Sung. 2002. Hydrogen production by anaerobic microbial communities exposed to repeated heat treatment. WEFTEC 75th Annual Conference.
Duangmanee, T., S. Padmasiri, J.J. Simmons, L. Raskin, S. Sung. 2002. Hydrogen production by anaerobic microbial communities exposed to repeated heat treatment. WEFTEC 75th Annual Conference.
Eaton, Andrew D., Clesceri, Lenore S., Greenberg, Arnold E., Franson, Mary Ann H., (1998)Standard methods for the examination of water and wastewate 20th ed. Washington, DC, American Public Health Association.
Edna M. Montgomery, F. R. Senti (1958). Seperaiton of Amylose from Amylopectin of Starch by an Extraction-sedimentation Procedure. Journal of Polymer Science. Vol. 28, 1-9
Fabiano, B., and P. Perego. 2002. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energy. 27: 149-156.
Fang, H. H. P. and H. Liu. 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82: 87-93.
Fang, H. H. P., H. Liu, and T. Zhang. 2002. Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng. 78: 44-52.
Fang, H. H. P., H. Liu, and T. Zhang. 2002a. Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng. 78: 44-52.
Fang, H. H. P., T. Zhang, and H. Liu. 2002b. Miccrobial diversity of a mesophilic hydrogen-producing sludge. Appl. Microbiol. Biotechnol. 58: 112-118.
Fang, H. H. P., Zhang, T. and Liu, H.. “Microbial diversity of a mesophilic hydrogen-producing sludge.” Applied Microbiology and Biotechnology 58, 112-128. (2002)
Fang, H. H. P., Zhang, T. and Liu, H.. “Microbial diversity of a mesophilic hydrogen-producing sludge.” Applied Microbiology and Biotechnology 58, 112-128. (2002)
Frederick, M. A. (1999). Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology 4th ed. New York, Wiley.
Fumiaki, T., J. D. Chang, N. Mizukami, S. T. Tatsuo, and H. Katsushige. 1993. Isolation of a hydrogen-producing bacterium Clostridium beijerinckii strain AM21B, from termites. Can. J. Microbiol. 39:726-730.
G.L. Millier. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31(3), pp. 426-428.
Girbal, L., and P. Soucaille. 1994. Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. J. Bacteriol. 176: 6433-6438.
Gottschalk, G. 1985. Bacterial Metabolism 2nd. Springer-Verlag New York Inc. p.276.
Guwy, A. J., F. R. Hawkes, D. L. Hawkes, and A. G. Rozzi. (1997). Hydrogen production in a high rate fluidized bed anaerobic digester. Wat. Res., 21(6), 1291-1298.
Herbert, D., P. J. Philipps., and R. E. Strange. (1971). Carbohydrate analysis. Methods Enzymol. 5B: 265-277.
Herbert, D., R. Elsworth, and R. C. Telling. 1956. The continuous culture of bacteria; a theoretical and experimental study. J. gen. Microbiol. 14:601-622.
Heyndrickx, M., De Vos, P., De Ley, J. 1991. Fermentation characteristics of Clostridium pasteurianum LMG 3285 grown on glucose and mannitol. J. Appl. Bacteriol. 70:3233-3241.
Hippe, H., J. R. Andreesen, and G. Gottschalk. 1991. The genera Clostridium, pp:1800-1978. In: Albert, B., G. T. Hans, D. Martin, H. Wim, and K. Karl-Heinz (eds.), The prokaryotes. Vol II. Springer-Verlag, New York.
J.H. Reith, R.H. Wijffels and H. Barten “Bio-Methane and Bio-Hydrogen” 2003 Dutch Biological Hydrogen Foundation on behalf of the contributing authors.
John W Peters “Structure and mechanism of iron-only hydrogenases” Current Opinion in Structural Biology 1999, 9:670–676
John W. Peters (1999) Structure and mechanism of iron-only hydrogenase. Current opinion in Structural Biology. Vol. 9, 670-676
Julian I. Rood, Bruce A. McCalne, J. Glenn Songer, Richard W. Titball. (1997) The Clostridia: molecular biology and pathogenesis. Academic press.
Kalia, V. C., S. R. Jain, A. Kumar, and A. P. Joshi. 1994. Fermentationof bio-waste to H2 by Bacillus lichenoformis. World J. Microbiol. Biotechnol. 10:224-227.
Kataoka, N., A. Miya., and K. Kiriyama. (1997). Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria. Proc. of the 8th International Conference on anaerobic digestion, 2, 383-390.
Kataoka, N., A. Miya., and K. Kiriyama. 1997. Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria. Proc. of the 8th International Conference on anaerobic digestion, 2, 383-390.
Kim TU, Gu BG, Jeong JY, Byun SM, Shin YC. (1995) Purification and characterization of a maltotetraose forming alkaline aamylase from an alkalophilic Bacillus sp. GM8901. Appl Environ Microbiol;61:3105/12
Kumar, N and D. Das. 2000. Production and purification of alpha-amylase from hydrogen -producing Enterobacter cloacae IIT-BT 08. Bioprocess Eng.;23,:pp.205-208.
Kuo-Shing Lee, Ji-Fang Wu, Yung-Sheng Lo, Yung-Chung Lo, Ping-Jei Lin, Jo-Shu Chang (2004) Anaerobic Hydrogen Production With an Efficient Carrier-Induced Granular Sludge Bed Bioreactor. Biotechnology and Bioengineering, Vol. 87, No. 5, 2004
Kuo-Shing Lee, Yung-Sheng Lo, Yung-Chung Lo, Ping-Jei Lin, Jo-Shu Chang (2003)H2 Production with anaerobic sludge using activated-carbon supported packed-bed bioreactors. Biotechnology Letters 25, 133-138
Lane, D. J. (1991). 16S/23S rRNA squencing. In: Nucleic Acid Techniques in Bacterial Systematics. Stackebrandt, E. and M. Goodfellow, (eds.), John Wiley and sons, New York. pp. 115-175.
Lay, J. J. (2000). Modeling and optimization of anaerobic digested sludge converting stach to hydrogen. Biotechnol Bioeng. 68: 269-278.
Lay, J. J. (2001). Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol and Bioeng ., 74(4):280-287.
Lay, J. J. 2001. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol and Bioeng ., 74(4):280-287.
Lay, J. J., Y. J. Lee, and T. Noike. (1999). Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Wat. Res. 11: 2579-2586.
Lay, J. J., Y. J. Lee, and T. Noike. 1999. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Wat. Res. 11: 2579-2586.
Lee, Y. J., T. Miyahara, and T. Noike. 2001. Effect of iron concentration on hydrogen fermentation. Bioresour Technol. 80: 227-231.
Liang, T. M., S. S. Cheng, and K. L. Wu. 2001a. Hydrogen production of chloroform inhibited granular sludge. Proc. of the IWA 2001 WATERQUAL Asia-Pacific Regional Conference, 1, Fukuoka, Japan. pp.863-868.
Lily, M. D., and P. Dunnill (1971). Biochemical Reactors. Process Biochem.. 6(8):29-32
Liu J. K., Liu, C. H. and Lin, C. S. (1997) The role of nitrogenase in a cyanide-degrading Klebsiella oxytoca strain. Proc. Natl. Sci. Counc. Repub. China 2:37-42
McInerney, M. J. 1988. Anaerobic hydrolysis and fermentation of fats and proteins. In: Biology of anaerobic microorganisms, Zehnder, A.J.B. (ed.), New York: Wiley.
Miller, D. N., J. E. Bryant, E. L. Madsen, and W. C. Ghiorse. (1999). Evaluation and optimatization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65:4715-5724.
Miyake, J. 1998. Biohydrogen. Zaborsky et al. (eds), Plenum Press, New York.
Mizuno, O., R. Dinsdale, F. R. Hawkes, D. L. Hawkes, and T. Noike. (2000). Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol. 73: 59-65.
Owen, W. F., Stuckey, D. C., Herly, JR. J. B., Young, L.Y., McCarty, P. L., (1979) “Bioassay for monitoring biochemical methane potential and anaerobic toxicity”, Water Res. 13, 485-492
Rachman, M. A., Y. Nakashimada, T. Kakizono, and N. Nishio. 1998. Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl. Microbiol. Biotechnol. 49:450-454.
Rani Gupta, Paresh Gigras, Harapriya Mohapatra, Vineet Kumar Goswami, Bhavna Chauhan, Microbial α-amylases: a biotechnological perspective, Process Biochemistry, Vol. 38 (2003) 1599-1616
Roychoudhruy, S., S. J. Parulekar, and W. A. Weigand. (1989)Cell Growth andα-Amylase Production Characteristic. Biotechnol. Bioeng. Vol.33, pp. 197-206.
Schwermann B, Pfau K, Liliensiek B, Schleyer M, Fischer T, Bakker(1994) EP. Purification, properties and structural aspects of a thermoacidophilic a-amylase from Alicyclobacillus acidocaldarius ATCC 27009. Insight into acidostability of proteins. Eur J Biochem ;226:981/91.
Sparling, R., D. Risbey, and H. M. Poggi-Varaldo. (1997). Hydrogen production from inhibited anaerobic composters. Int. J. Hydrogen Energy, 36(6/7), 41-47.
Speelmans, G., B. Poolman, T. Abee, and W. N. Konings. (1993). “Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions.” Proc. Natl. Acad. Sci. USA. 90, pp.7975-7979
Taguchi, F., Mizukami, N., Haseguwa, K., Saito-taki, T. and Morimoto, M. (1994) Effect of amylase accumulation on hydrogen production by Clostridium beijerinckii, strain AM21B. J. of fermentation and bioengineering. Vol. 77, No. 5, 565-567.
Taguchi, F., N. Mizukami, T. Saito-Takio, and K. Hasrgawa. 1995. Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No 2. Canadian Journal of Microbiology. 41: 536-540.
Tanisho, S., and Y. Ishiwata. (1994). Continuous hydrogen production from molasses by the bacterium Enterobacter aerogen. Int. J. Hydrogen Energy. 19: 807-812.
Tanisho, S., and Y. Ishiwata. 1994. Continuous hydrogen production from molasses by the bacterium Enterobacter aerogen. Int. J. Hydrogen Energy. 19: 807-812.
Tanisho, S., M. Kuromoto, and N. Kadokura. (1998). Effect of CO2 removal on hydrogen production by fermentation. Int. J. Hydrogen Energy. 23: 559-563.
Tanisho, S., M. Kuromoto, and N. Kadokura. 1998. Effect of CO2 removal on hydrogen production by fermentation. Int. J. Hydrogen Energy. 23: 559-563.
Tanisho, S., N. Wakao, and Y. Kosako. 1983. Biological hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energy. 16: 529-530.
Terracciano, J.S., W. J. A. Schreurs, and E. R. Kashket. “Membrance H+ conductance of Clostridium thermoaceticum and Clostridium thermoaceticum.” Appl. Environ. Microbiol. 53, pp.782-786(1987)
Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi. 2001. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl. Microbiol. Biotechnol. 57: 555-562.
Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi. 2001. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl. Microbiol. Biotechnol. 57: 555-562.
Ueno, Y., S. Otauka, and M. Morimoto. (1996). Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. Journal of Fermentation and Bioengineering. 82: 194-197.
Vihinen M, Mantsala P. (1989) Microbial amylolytic enzymes. Crit Rev Biochem Mol Biol;24:329/418.
Wang,Y. F., S. S. Cheng, I C. Tseng, M. D. Bai, and C. J. Hsiao. 2003. Comparison of Microbial Diversity of Hydrogen Fermentation Bioreactors Degrading Multiple Substrates (Glucose and Peptone). IWA Conference on ENVIRONMENTAL BIOTECHNOLOGY.
Yokoi, H., S. Mori, J. Hirose, S. Hayashi, and Y. Takasaki. 1998. H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol. Lett. 20:895-899.
Zhang, T., H. Liu, and H. H. P. Fang. 2003. Biohydrogen production from starch in wastewater under thermophilic condition. Journal of Environmental Management 69:149–156
Zwietering, M. H., I. Jongenburger, F. M. Rombouts, and K. Van’t Riet. (1990). Modeling of bacteria growth curve. Appl. Environ. Microbio. 56(6), pp.1875-1881.