跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/14 00:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李學霖
研究生(外文):Shiue-Lin Li
論文名稱:單醣與聚醣類混合蛋白腖基質於厭氧產氫程序分解機制之比較研究
論文名稱(外文):Comparative Study on Fermentation Mechanism of Glucose or Starch with Peptone in Anaerobic Hydrogenation Process
指導教授:鄭幸雄鄭幸雄引用關係
指導教授(外文):Sheng-Shung Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:126
中文關鍵詞:鹽份澱粉水解酵素CSTR水力停留時間尾端修飾限制片段長度多形性廚餘葡萄糖澱粉蛋白腖
外文關鍵詞:PeptoneStarchNaClAmylaseGlucoseT-RFLPFood wasteHydraulic retention timeCSTR
相關次數:
  • 被引用被引用:8
  • 點閱點閱:353
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:1
本研究在描述單醣類基質(葡萄糖)混合蛋白腖與聚醣類(澱粉)混合蛋白腖基質之人工配置基質在批次實驗中產氫機之異同。本研究同時也探討到澱粉與蛋白腖連續流產氫之功能評估。最後利用廚餘產氫之可行性分析延伸本研究至應用性基質的產氫探討。

  利用批次實驗對葡萄糖混合蛋白腖基質進行批次實驗之產氫機制探討。發現丁酸為主要之發酵副產物,產量為156 mg Hbu/ g CODa。在批次實驗中所得之氫氣產率為122.41 mL H2 /gVSS-hr。在利用蛋白腖為單一基質時,則發現有耗氫之現象,且主要之發酵副產物為乙酸。
利用尾端修飾限制片段長度多形性之方法對一進流葡萄糖與蛋白腖之連續產氫系統進行產氫菌微生物結構分析,發現在大部份試程中主要之產氫菌皆為Clostridium Cluster I、 Cluster II、Cluster III為最主要的菌群。此外,在部份試程中有發現Desulfotomaculum – like的菌群出現。
利用葡萄糖與蛋白腖基質探討產氫菌對鹽份的影響,發現在外加氯化鈉濃度為10 g/L時,有最大產氫量及產氫速率。

  利用批次實驗對聚醣類混合蛋白腖基質進行探討,發現有耗氫現象之發生,在揮發酸表現方面,以丙酸為最大量之揮發酸,產量為99.37 mg HPr/ g CODa;氫氣產量為39 mL H2/g CODa,最大產氫速率為25mL H2 /gVSS-hr。在水解酵素的測定方面,產氫菌之澱粉水解酵素大部份是屬於Cell bound的型式,且與生長成正相關。藉由還原醣的分析結果,可以概略的描述產氫菌進行水解時之作用情形。
  在本研究中亦操作一CSTR反應槽進行以估計在不同水力停留時間(HRT)下連續厭氧產氫發酵之功能評估。操作的結果發現產氫的結果跟水力停留時間有其密切的關係。在水力停留時間長於9小時下,即使澱粉與蛋白腖被降解的較完全,但整體系統觀察到並無淨產氫生成。在水力停留時間操作在3小時,觀測之產氫速率為435 mmol H2/L/day,在這試程中之產氫量明顯大於其他試程。以尾端修飾限制片段長度多形性方法分析不同試程中之菌群結構,發現以澱粉混合蛋白腖之反應槽內有相當繁複的生物多樣性,在水力停留時間為最短(3小時)之試程反而觀察到更多樣性之生物族群。此外,在大部份的試程中皆以Clostridium Cluster I、 Cluster II、Cluster III為最主要的菌群。使用掃描式電子顯微鏡做菌相觀察,可以發現在大部份試程中皆以似Clostridium菌屬之桿菌菌相為主。
  
在本研究中也進行廚餘高溫發酵之可行性探討。在此取一廚餘發酵甲烷槽之污泥為植種來源,以破碎後之素食便當做為基質,進行高溫氫發酵批次實驗。發現可以得到良好的氫氣產量與氫氣產率。同時也藉由尾端修飾限制片段長度多形性的方法,發現在廚餘甲烷槽中也含有Clostridium Cluster I、 Cluster II、Cluster III等近似產氫菌的菌群。
This study is to describe the different hydrogen fermentation mechanism between monosaccharide (glucose) mixed with peptone and polysaccharide (starch) mixed with peptone, as artificial multiple substrates, in the batch test. This study also covered the performance evaluation of continuous hydrogen fermentation system feed with starch and peptone. Finally extended to the feasibility study of apply substrate-food waste.

The first part studied glucose and peptone fermentation mechanism by batch test. After fermentation, butyrate is the major by-product in the bulk solution, and the yield is 156 mg Hbu/ g CODa. The hydrogen producing rate is 122.41mL H2 /gVSS-hr. Use peptone as sole substrate in batch test, the hydrogen consuming phenomena is observed. The major by-product is acetate.
The molecular method, terminal restriction fragment length polymorpholysium (T-RFLP), was used to investigate the dynamic of microbial ecology of the biohydrogen fermentation process. The TRFLP results indicated that Clostridium clusters I and II presented in the fermentor at all HRT conditions. Desulfotomaculum – like can also be found in some of these operation periods.
The multiple substrate of glucose and peptone is also be used to study the effect of NaCl in hydrogen fermentation. The result shows it comes the maximum hydrogen yield and producing rate when the additional NaCl concentration is 10 g/L.

In this study of starch and peptone fermentation, the hydrogen consuming phenomena is observed in batch test. After fermentation, propionate is the major by-product in the bulk solution, and the yield is 99.37 mg HPr/ g CODa. The hydrogen producing rate is 25mL H2 /gVSS-hr. To detect the amylase activity, it is found that α-amylase characteristics of HPBs is more cell bound type and growth associated. By the data of reducing sugar analysis, the hydrolysis mechanism of HPBs can be generally described.
The performance of the anaerobic hydrogen fermentation process was evaluated at different hydraulic retention times (HRTs) using a continuous stirred tank reactor (CSTR) type fermentor fed with starch and peptone. The results of anaerobic fermentor operations indicated that hydrogen production performance were strongly dependent on HRTs. At HRTs longer than 9 hours, no net hydrogen production was observed in the fermentor although enormous amount of starch and peptone was consumed. At HRT of 3 hours, the CSTR had a hydrogen production rate of 435 mmol/L/d which was significantly higher than those observed at other HRT conditions. The TRFLP results indicated that Clostridium clusters I and II presented in the fermentor at all HRT conditions and were, presumably, responsible for hydrogen production from starch fermentation. The SEM observation, discovered the microbial morphology is rod-like shape and supposed to be Clostridium-like microorganism.

This study include the feasibility of food waste thermophilic hydrogen fermentation. The sludge from the food waste methanogenesis tank is taken as the inoculation, and the content of the vegetarian lunch box is mashed as the substrate. it gets great hydrogen yield and great hydrogen producing rate. By T-RFLP method, it can find Clostridium cluster I, cluster II, and cluster III, which is similarity to hydrogen producing bacterium.
摘要
Abstract
致謝

第一章 前言........................... 1

第二章 文獻回顧.......................... 3
  2-1再生資源能源化之趨勢及重要性............... 3
  2-2厭氧消化機制及應用.................... 7
  2-3厭氧產氫機制及應用.................... 8
2-3-1碳水化合物厭氧代謝發酵機制.............. 9
3-3-2含氮物質厭氧發酵代謝途徑............. 12
2-4.厭氧產氫微生物...................... 16
   2-4-1產氫生物之種類.................... 16
   2-4-2厭氧發酵產氫微生物.................. 17
2-5分子生物方法應用於氫發酵程序微生物生態之研究... 18
  2-6 厭氧產氫反應槽之設計................ 24
2-6-1發酵槽分類.................... 24
   2-6-2 CSTR產氫槽的動力參數求解.............. 24
   2-6-2中溫厭氧生物氫發酵槽雙基質動力模式........ 26
   2-6-3應用薄膜反應槽於生物產氫發酵........... 29
   2-6-4 UASB產氫反應槽................... 29
   2-6-5擔體誘發式顆粒污泥床............. 30
2-6-6 各類厭氧產氫發酵槽之功能比較.......... 31
  2-7.澱粉水解酵素動力及環境因子影響........... 33
2-7-1 澱粉結構.................... 33
2-7-2 澱粉水解酵素.................. 34
2-7-3酵素動力學.................... 36
2-7-4 酵素可逆之抑制型態............... 37
2-7-5環境因子於水解酵素之影響............. 39
2-8 生物產氫程序之應用................. 41
2-8-1厭氧發酵程序結合光合反應程序........... 41
2-8-2一般厭氧氫發酵程序................ 42
2-8-3 薄膜程序組合與厭氧氫發酵程序.......... 42
2-8-4水解與產氫程序結合................ 43

第三章 研究方法與設備............... 45
3-1.中溫厭氧生物氫發酵槽............... 45
3-1-1 2.5公升連續流攪拌反應器(Continuous-Flow Stirred Tank Reactor, CSTR, 2.5L)...................
45
3-1-2 25公升連續流攪拌反應器(Continuous-Flow Stirred Tank Reactor, CSTR, 25L)....................
45
  3-2 水質分析項目與使用儀器.................... 46
   3-2-1 一般水質分析項目...................  46
   3-2-2 儀器分析....................... 48
3-3 生化氫氣產能試驗(Biochemical Hydrogen Potential test, BHP test)........................
51
3-4 生物活性量測數據整理方式.............. 52
  3-5 掃描式電子顯微鏡.................... 53
3-6 分子生物檢測技術...................... 54
3-6-1總DNA 萃取.................... 54
3-6-2聚合酵素連鎖反應.................. 57
3-6-3尾端修飾限制片段長度多形性(T-RFLP)....... 58
3-7 水解酵素分析....................... 61
3-8 生物電化學方法...................... 62

第四章 葡萄糖與蛋白腖基質產氫程序之研究..... 65
  4-1葡萄糖與蛋白腖基質產氫發酵機制之探討........... 65
4-1-1 葡萄糖與蛋白腖複合基質於批次氫發酵機制探討.........................
65
4-1-2 蛋白腖單一基質於批次氫發酵機制探討....... 67
  4-2以T-RFLP探討葡萄糖混合蛋白腖基質產氫反應槽菌群結構的變動.......................
70
  4-4氧氫發酵程序中NaCl之影響............... 74

第五章 澱粉與蛋白腖基質產氫程序之研究......... 79
  5-1澱粉與葡萄糖混合蛋白腖基質產氫發酵機制之比較....................... 79
  5-2α型水解酵素活性分析與水解機制探討.......... 84
5-3中溫CSTR進流澱粉及蛋白腖之生物產氫發酵功能評估............................
88
5-3-1 不同進流濃度下之產氫發酵槽之功能比較...... 91
5-3-2 不同體積負荷下之產氫發酵槽之功能比較...... 95
5-3-3以T-RFLP探討澱粉混合蛋白腖基質產氫反應槽菌群結構的變動.......................
102
   5-3-4中溫厭氧生物氫發酵槽菌相觀察.......... 104

第六章 廚餘產氫可行性研究................. 107
  6-1廚餘高溫厭氧產氫可行性分析............. 107
  6-2以T-RFLP分析廚餘消化槽中之產氫族群分布....... 110
6-3 廚餘產氫之應用性及可行性討論............ 111

第七章 結論與建議......................... 113

參考文獻............................. 117
自述.......................... 125
http://www.moeaec.gov.tw/02/01/energy/a1.htm 經濟部能源委員會,”能源白皮書”
http://www.rite.or.jp/English/E-home-frame.html RITE, Japan. “Overview”
http://www.enecho.meti.go.jp/english/ Agency for Natural Resources and Energy. ”The Energy and Resources Today”
http://www.eere.energy.gov/ U.S. Department of Energy, Efficiency and Renewable Energy Office. “Hydrogen, Fuel Cells & Infrastructure Technologies Program.”
http://www.kantei.go.jp/ Prime minister of Japan and his cabinet. “ Biotechnology Strategy Council”
http://www.iesvic.uvic.ca/ Integrated Energy Systems at the University of Victoria. “Energy System.”
http://www.h2.ca/en/PDF/ISO_TC_197_Hydrogen_technologies.pdf Draft Business Plan of ISO/TC 197 - Hydrogen technologies
http://www.afdc.doe.gov/ Alternative Fuels Data Center. “Alternative Fuels”
林佳玲(2000) 澱粉水解酵素對澱粉基質反應之探討。成功大學化工系碩士論文。
施翠盈 (2002) 本土性梭菌屬產氫菌株之分離與生理特性研究,國立成功大學生物學研究所碩士論文。
郁揆民 (2003) 紫色不含硫光合作用細菌產氫限制因子之研究,國立中興大學環境工程學研究所碩士論文。
張仕旻(2002)利用薄膜反應器於高溫厭氧產氫生物程序之研究。成功大學環境工程學系碩士論文。
梁德明 (2003)薄膜分離應用於厭氧生物產氫程序。國立成功大學環境工程學系博士論文。
楊萬發(2002)台北市廚餘產源調查及廚餘特性分析。台北市環保局委託計畫。
趙禹杰(2004)澱粉及蛋白腖複合基質厭氧醱酵產氫程序之功能評估。成功大學環境工程學系碩士論文。
鄭凱尹 (2001) 高溫厭氧消化廚餘之研究,碩士論文,國立屏東科技大學環境工程與科學系研究所碩士論文。
蕭嘉瑢 (2004) 複合基質厭氧氫發酵生物程序操控之功能評估及分生檢測生態之研究。國立成功大學環境工程學系碩士論文。
簡青紅 (2003) 利用傳統培養方法和分子生物方法探討厭氧生物產氫反應槽的微生物社會結構,國立成功大學生物學研究所碩士論文。
王永福、鄭幸雄、曾怡禎、白明德、蕭嘉瑢 (2002) 應用分子生物學方法研究分解複合基質之中溫產氫菌族群。第27屆廢水處理研討會論文集。
林明瑞、盧重興、賴欣宏、楊聰宏(2001) 不同操作條件對CSTR 醱酵產氫效率之影響及反應動力學之模擬研究。第二十六屆廢水處理研討會論文集。
張嘉修、范姜楷、林屏杰(2002)以中空纖維微過濾膜結合CSTR反應器進行產氫醱酵,第二十七屆廢水處理研討會論文集,台北。
黃俊霖、陳晉照、林秋裕、劉文佐 (2000) 以分子生物技術進行厭氧生物產氫菌群結構之研究. 第25屆廢水處理研討會論文集, 321-326。
鄭幸雄、白明德、趙禹杰, (2002) 厭氧生物氫發酵程序應用於處理廢棄活性污泥的生物產氫與有機物降解特性研究, 第二十七屆廢水處理技術研討會論文集。
Adams M. W. W., and E. I. Stiefel. (1998). Biological hydrogen production: not so elementary. Science. 282: 1842-1843.
Amann, R. I., Stromley, J., Devereux, R., Key, R. and Stahl, D. A. (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58:614-623
Amylase Research Society of Japan, In handbook of amylases and related enzymes: their sources, isolation methods, properties and applications/ 1st ed., Oxford, New York: pergamon Press, pp. 116-124, 1988
Andreas S. Bomarius, and Bettina R. Riebel (2003) Biocatalysis, Fundamentals and applications. Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim.
Andreesen J. R., H. Bahl, and G. Gottschalk. 1989. Introduction to the physiology and biochemistry of genus Clostridium. In: Clostridia, Minton N. P. and Clark J. D. (ed.) Plenum Press. New York. pp. 27-62.
Bahl, H. and P. Dürre. 1993. Biotechnology Vol. 1 Biological Fundamentals. pp. 286 – 323.
Bai, M. D., S. S. Cheng and S. M. Chang. 2001. Effect of peptone/glucose ratio on biohydrogen production through anaerobic fermenting mixture of glucose and peptone. Proceedings of 2nd International Water Association World Water Congress. Berlin. Germany.
Bai, M. D., S. S. Cheng, and I. C. Tseng. 2001. Biohydrogen produced due to peptone degradation by pretreated seed sludge. 2001 ASIAN WATERQUAL, IWA Asia-Pacific Regional Conference, Fukuoka, Japan.1, pp. 315-320.
Blanch, H. W. and D. S. Clark. 1996. Biochemical engineering. Marcel Dekker, Inc., New York.
Brosseau, J. D., and J. E. Zajic. 1982. Hydrogen-gas production with Citrobacter intermedius and Clostridium pasteurianum. Journal Chemical Technology and Biotechnology. 32: 496-502.
Bruce E. Rittmann, Perry L. McCarty, “Environmental Biotechnology: Principle and Applications International Edition 2001,” McGraw-Hill, New York (2001).
C. P. Leslie Grady, Jr., and Henry C. Lim, (1980) Biological wastewater treatment: theory and applications. New York /M. Dekker
Canganella, F. and J. Wiegel. 1993. The potential of thermophilic clostridia in biotechnology. In:The Clostridia and Biotechnology, D. R. Woods, (eds.), Butterworth-Heinemann.
Chang, F.Y. and Lin, C.Y (2003) Biohydrogenproduction using up-flow anaerobic sludge blanket reactor. International Journal of Hydrogen Energy 29(1). 33-39
Chary SJ, Reddy SM. (1985) Starch degrading enzymes of two species of Fusarium. Folia Microbiol;30:452
Chen, C.C., C.Y. Lin, and J.S. Chang. 2001. Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol.57, pp.56–64.
Cheng, S. S., I. C. Tseng., and M. D. Bai. 1999. Behavior study of anaerobic hydrogenation from different organic substrates with selected hydrogen production bacteria. Proc. of the 7th IWA Asic-Pacific Regional Conference, 1, Taipei, Taiwan. 759-764.
Coleman, G., M. A. Grant, (1966)“Characteristics of α-Amylase Formation by Bacillus subtilis,” Nature, Vol. 211, pp. 306-307.
Collins M.D., Lawson P.A., Willems A., Cordoba J.J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H. and Farrow J. A. E.(1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst. Bacteriol. 44: 812~826.
D.J. Batstone, J. Keller, I. Angelidaki, S. V. Kalyuzhnyi, S .G. Pavlostathis, A. Rozzi, W. T. M. Sanders, H. Slegrist, V. A. Vailin, “Biochemical process,” “Anaerobic Digestion Model NO.1,” IWA publishing, UK, p.12 (2002)
Daniel I. C. Wang, Charles L. Cooney, Arnold L. Demain, Peter Dunill, Arthur E. Humphrey, Malcolm D. Lilly. (1979) “Fermentation and enzyme technology” New York , John Wiley & Sons Inc.
Das, D., and T. N. Veziroglu. 2001. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy. 26: 13-28.
David L. Nelson, and Michael M. Cox, Lehninger Principles of Biochemistry, 4th edition, W.H. Freeman and Company, New York, 2004
Duangmanee, T., S. Padmasiri, J.J. Simmons, L. Raskin, S. Sung. 2002. Hydrogen production by anaerobic microbial communities exposed to repeated heat treatment. WEFTEC 75th Annual Conference.
Duangmanee, T., S. Padmasiri, J.J. Simmons, L. Raskin, S. Sung. 2002. Hydrogen production by anaerobic microbial communities exposed to repeated heat treatment. WEFTEC 75th Annual Conference.
Eaton, Andrew D., Clesceri, Lenore S., Greenberg, Arnold E., Franson, Mary Ann H., (1998)Standard methods for the examination of water and wastewate 20th ed. Washington, DC, American Public Health Association.
Edna M. Montgomery, F. R. Senti (1958). Seperaiton of Amylose from Amylopectin of Starch by an Extraction-sedimentation Procedure. Journal of Polymer Science. Vol. 28, 1-9
Fabiano, B., and P. Perego. 2002. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energy. 27: 149-156.
Fang, H. H. P. and H. Liu. 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82: 87-93.
Fang, H. H. P., H. Liu, and T. Zhang. 2002. Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng. 78: 44-52.
Fang, H. H. P., H. Liu, and T. Zhang. 2002a. Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng. 78: 44-52.
Fang, H. H. P., T. Zhang, and H. Liu. 2002b. Miccrobial diversity of a mesophilic hydrogen-producing sludge. Appl. Microbiol. Biotechnol. 58: 112-118.
Fang, H. H. P., Zhang, T. and Liu, H.. “Microbial diversity of a mesophilic hydrogen-producing sludge.” Applied Microbiology and Biotechnology 58, 112-128. (2002)
Fang, H. H. P., Zhang, T. and Liu, H.. “Microbial diversity of a mesophilic hydrogen-producing sludge.” Applied Microbiology and Biotechnology 58, 112-128. (2002)
Frederick, M. A. (1999). Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology 4th ed. New York, Wiley.
Fumiaki, T., J. D. Chang, N. Mizukami, S. T. Tatsuo, and H. Katsushige. 1993. Isolation of a hydrogen-producing bacterium Clostridium beijerinckii strain AM21B, from termites. Can. J. Microbiol. 39:726-730.
G.L. Millier. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31(3), pp. 426-428.
Girbal, L., and P. Soucaille. 1994. Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. J. Bacteriol. 176: 6433-6438.
Gottschalk, G. 1985. Bacterial Metabolism 2nd. Springer-Verlag New York Inc. p.276.
Guwy, A. J., F. R. Hawkes, D. L. Hawkes, and A. G. Rozzi. (1997). Hydrogen production in a high rate fluidized bed anaerobic digester. Wat. Res., 21(6), 1291-1298.
Herbert, D., P. J. Philipps., and R. E. Strange. (1971). Carbohydrate analysis. Methods Enzymol. 5B: 265-277.
Herbert, D., R. Elsworth, and R. C. Telling. 1956. The continuous culture of bacteria; a theoretical and experimental study. J. gen. Microbiol. 14:601-622.
Heyndrickx, M., De Vos, P., De Ley, J. 1991. Fermentation characteristics of Clostridium pasteurianum LMG 3285 grown on glucose and mannitol. J. Appl. Bacteriol. 70:3233-3241.
Hippe, H., J. R. Andreesen, and G. Gottschalk. 1991. The genera Clostridium, pp:1800-1978. In: Albert, B., G. T. Hans, D. Martin, H. Wim, and K. Karl-Heinz (eds.), The prokaryotes. Vol II. Springer-Verlag, New York.
J.H. Reith, R.H. Wijffels and H. Barten “Bio-Methane and Bio-Hydrogen” 2003 Dutch Biological Hydrogen Foundation on behalf of the contributing authors.
John W Peters “Structure and mechanism of iron-only hydrogenases” Current Opinion in Structural Biology 1999, 9:670–676
John W. Peters (1999) Structure and mechanism of iron-only hydrogenase. Current opinion in Structural Biology. Vol. 9, 670-676
Julian I. Rood, Bruce A. McCalne, J. Glenn Songer, Richard W. Titball. (1997) The Clostridia: molecular biology and pathogenesis. Academic press.
Kalia, V. C., S. R. Jain, A. Kumar, and A. P. Joshi. 1994. Fermentationof bio-waste to H2 by Bacillus lichenoformis. World J. Microbiol. Biotechnol. 10:224-227.
Kataoka, N., A. Miya., and K. Kiriyama. (1997). Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria. Proc. of the 8th International Conference on anaerobic digestion, 2, 383-390.
Kataoka, N., A. Miya., and K. Kiriyama. 1997. Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria. Proc. of the 8th International Conference on anaerobic digestion, 2, 383-390.
Kim TU, Gu BG, Jeong JY, Byun SM, Shin YC. (1995) Purification and characterization of a maltotetraose forming alkaline aamylase from an alkalophilic Bacillus sp. GM8901. Appl Environ Microbiol;61:3105/12
Kumar, N and D. Das. 2000. Production and purification of alpha-amylase from hydrogen -producing Enterobacter cloacae IIT-BT 08. Bioprocess Eng.;23,:pp.205-208.
Kuo-Shing Lee, Ji-Fang Wu, Yung-Sheng Lo, Yung-Chung Lo, Ping-Jei Lin, Jo-Shu Chang (2004) Anaerobic Hydrogen Production With an Efficient Carrier-Induced Granular Sludge Bed Bioreactor. Biotechnology and Bioengineering, Vol. 87, No. 5, 2004
Kuo-Shing Lee, Yung-Sheng Lo, Yung-Chung Lo, Ping-Jei Lin, Jo-Shu Chang (2003)H2 Production with anaerobic sludge using activated-carbon supported packed-bed bioreactors. Biotechnology Letters 25, 133-138
Lane, D. J. (1991). 16S/23S rRNA squencing. In: Nucleic Acid Techniques in Bacterial Systematics. Stackebrandt, E. and M. Goodfellow, (eds.), John Wiley and sons, New York. pp. 115-175.
Lay, J. J. (2000). Modeling and optimization of anaerobic digested sludge converting stach to hydrogen. Biotechnol Bioeng. 68: 269-278.
Lay, J. J. (2001). Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol and Bioeng ., 74(4):280-287.
Lay, J. J. 2001. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol and Bioeng ., 74(4):280-287.
Lay, J. J., Y. J. Lee, and T. Noike. (1999). Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Wat. Res. 11: 2579-2586.
Lay, J. J., Y. J. Lee, and T. Noike. 1999. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Wat. Res. 11: 2579-2586.
Lee, Y. J., T. Miyahara, and T. Noike. 2001. Effect of iron concentration on hydrogen fermentation. Bioresour Technol. 80: 227-231.
Liang, T. M., S. S. Cheng, and K. L. Wu. 2001a. Hydrogen production of chloroform inhibited granular sludge. Proc. of the IWA 2001 WATERQUAL Asia-Pacific Regional Conference, 1, Fukuoka, Japan. pp.863-868.
Lily, M. D., and P. Dunnill (1971). Biochemical Reactors. Process Biochem.. 6(8):29-32
Liu J. K., Liu, C. H. and Lin, C. S. (1997) The role of nitrogenase in a cyanide-degrading Klebsiella oxytoca strain. Proc. Natl. Sci. Counc. Repub. China 2:37-42
McInerney, M. J. 1988. Anaerobic hydrolysis and fermentation of fats and proteins. In: Biology of anaerobic microorganisms, Zehnder, A.J.B. (ed.), New York: Wiley.
Miller, D. N., J. E. Bryant, E. L. Madsen, and W. C. Ghiorse. (1999). Evaluation and optimatization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65:4715-5724.
Miyake, J. 1998. Biohydrogen. Zaborsky et al. (eds), Plenum Press, New York.
Mizuno, O., R. Dinsdale, F. R. Hawkes, D. L. Hawkes, and T. Noike. (2000). Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol. 73: 59-65.
Owen, W. F., Stuckey, D. C., Herly, JR. J. B., Young, L.Y., McCarty, P. L., (1979) “Bioassay for monitoring biochemical methane potential and anaerobic toxicity”, Water Res. 13, 485-492
Rachman, M. A., Y. Nakashimada, T. Kakizono, and N. Nishio. 1998. Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl. Microbiol. Biotechnol. 49:450-454.
Rani Gupta, Paresh Gigras, Harapriya Mohapatra, Vineet Kumar Goswami, Bhavna Chauhan, Microbial α-amylases: a biotechnological perspective, Process Biochemistry, Vol. 38 (2003) 1599-1616
Roychoudhruy, S., S. J. Parulekar, and W. A. Weigand. (1989)Cell Growth andα-Amylase Production Characteristic. Biotechnol. Bioeng. Vol.33, pp. 197-206.
Schwermann B, Pfau K, Liliensiek B, Schleyer M, Fischer T, Bakker(1994) EP. Purification, properties and structural aspects of a thermoacidophilic a-amylase from Alicyclobacillus acidocaldarius ATCC 27009. Insight into acidostability of proteins. Eur J Biochem ;226:981/91.
Sparling, R., D. Risbey, and H. M. Poggi-Varaldo. (1997). Hydrogen production from inhibited anaerobic composters. Int. J. Hydrogen Energy, 36(6/7), 41-47.
Speelmans, G., B. Poolman, T. Abee, and W. N. Konings. (1993). “Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions.” Proc. Natl. Acad. Sci. USA. 90, pp.7975-7979
Taguchi, F., Mizukami, N., Haseguwa, K., Saito-taki, T. and Morimoto, M. (1994) Effect of amylase accumulation on hydrogen production by Clostridium beijerinckii, strain AM21B. J. of fermentation and bioengineering. Vol. 77, No. 5, 565-567.
Taguchi, F., N. Mizukami, T. Saito-Takio, and K. Hasrgawa. 1995. Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No 2. Canadian Journal of Microbiology. 41: 536-540.
Tanisho, S., and Y. Ishiwata. (1994). Continuous hydrogen production from molasses by the bacterium Enterobacter aerogen. Int. J. Hydrogen Energy. 19: 807-812.
Tanisho, S., and Y. Ishiwata. 1994. Continuous hydrogen production from molasses by the bacterium Enterobacter aerogen. Int. J. Hydrogen Energy. 19: 807-812.
Tanisho, S., M. Kuromoto, and N. Kadokura. (1998). Effect of CO2 removal on hydrogen production by fermentation. Int. J. Hydrogen Energy. 23: 559-563.
Tanisho, S., M. Kuromoto, and N. Kadokura. 1998. Effect of CO2 removal on hydrogen production by fermentation. Int. J. Hydrogen Energy. 23: 559-563.
Tanisho, S., N. Wakao, and Y. Kosako. 1983. Biological hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energy. 16: 529-530.
Terracciano, J.S., W. J. A. Schreurs, and E. R. Kashket. “Membrance H+ conductance of Clostridium thermoaceticum and Clostridium thermoaceticum.” Appl. Environ. Microbiol. 53, pp.782-786(1987)
Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi. 2001. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl. Microbiol. Biotechnol. 57: 555-562.
Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi. 2001. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl. Microbiol. Biotechnol. 57: 555-562.
Ueno, Y., S. Otauka, and M. Morimoto. (1996). Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. Journal of Fermentation and Bioengineering. 82: 194-197.
Vihinen M, Mantsala P. (1989) Microbial amylolytic enzymes. Crit Rev Biochem Mol Biol;24:329/418.
Wang,Y. F., S. S. Cheng, I C. Tseng, M. D. Bai, and C. J. Hsiao. 2003. Comparison of Microbial Diversity of Hydrogen Fermentation Bioreactors Degrading Multiple Substrates (Glucose and Peptone). IWA Conference on ENVIRONMENTAL BIOTECHNOLOGY.
Yokoi, H., S. Mori, J. Hirose, S. Hayashi, and Y. Takasaki. 1998. H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol. Lett. 20:895-899.
Zhang, T., H. Liu, and H. H. P. Fang. 2003. Biohydrogen production from starch in wastewater under thermophilic condition. Journal of Environmental Management 69:149–156
Zwietering, M. H., I. Jongenburger, F. M. Rombouts, and K. Van’t Riet. (1990). Modeling of bacteria growth curve. Appl. Environ. Microbio. 56(6), pp.1875-1881.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top