跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/14 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張正宏
研究生(外文):Cheng-Hung Chang
論文名稱:植入式多極神經銬電極表面處理
論文名稱(外文):Surface Modification of Implantable Multi-Polar Nerve Cuff Electrode
指導教授:陳家進陳家進引用關係
指導教授(外文):Jia-Jin Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:醫學工程研究所碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:86
中文關鍵詞:蛋白質吸附自我組成有機薄膜微機電電極阻抗原子力顯微鏡細胞黏著微電極
外文關鍵詞:MEMSmicroelectrodeprotein absorptioncell adhesionAFMimpedanceself-assembled monolayers
相關次數:
  • 被引用被引用:2
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
  神經銬狀電極是一種被廣泛應用於神經義肢的微電極,它應用電刺激與神經訊號量測技術來恢復受損的周邊神經系統功能。當電極植入體內後,因生物分子與電極表面的作用,常造成電極阻抗上升使得電極效能不佳;我們應用微機電製程技術製造並測試新的多極式神經銬狀電極,電極由自我組成有機薄膜表面處理的微電極與聚亞醯胺基材所構成,經過處理的電極表面能在分子層級控制生物分子的沾黏附著,實驗中應用不同碳鍊長度的有機薄膜分子化學合成在電極表面來探討蛋白質吸附與細胞黏著現象。

  在蛋白質吸附實驗中,自我組成有機薄膜在電極表面提供了一個疏水性的環境,可減緩蛋白質的初始吸附與後續堆疊,降低電極阻抗的上升,電極阻抗的改變主要是容抗所造成與蛋白質堆疊過程有關;表面處理能降低部分蛋白質在電極表面的吸附,此效應與薄膜分子碳鍊長度相關,在未處理金面上則緊密的吸附上蛋白質層。

  在細胞黏著實驗中,自我組成有機薄膜增加了電極表面的水滴接觸角與初始電極阻抗,它提供了一個低離子強度的表面使得細胞無法完全的吸附黏著;為了探討液相環境裡的表面單細胞黏著力學,我們應用三角形懸臂樑的原子力顯微鏡探針,測試刮起細胞所需的力與工,結果顯示刮起細胞所需的力與工在未處理的金面上遠大於有機薄膜處理的金面並與薄膜分子碳鍊長度相關。

  電極效能退化問題一直是影響植入系統成功與否的關鍵,在本研究中嘗試應用自我組成有機薄膜表面處理改質技術產生蛋白質與細胞難吸附的電極表面,改善植入式神經電極性能;實驗證明多極神經電極在表面處理後能降低蛋白質與細胞的沾黏吸附。
Abstract
 Nerve cuff electrodes are one of the electrode types utilized in neuroprosthetic applications. The microelectrode spiraled as a cuff type can be used for restoring nerve function via electrical stimulation or nerve signal sensing on the peripheral nerve. However, an increase of electrode impedance might occur during implantation, which will decrease the electrode performance. The crucial factor comes from the interface between the biomolecule and the surface of microelectrode. A new thin film multi-polar spiral cuff electrode, composed of self-assembled monolayer (SAMs) treated electrodes and flexible polyimide substrate, was manufactured and tested. Since the gold electrodes after the SAMs treatment can control the interactions of the biomolecule-electrode surface at the molecular scale, SAMs of varied chain lengths adsorbed upon Au-coated nerve microelectrodes were employed for protein absorption and cell adhesion studying.

 In protein absorption study, thin-film SAMs treatment upon Au/polyimide (PI) surface of the microelectrode provided a hydrophobic characteristic, which retarded protein adsorption at the initial stage and subsequent pile-up (or thickening) process. The protein-resistant effect exhibited comparable for SAMs of different chain lengths adsorbed upon Au/PI surfaces. The increase of electrode impedance as a function of protein deposition time was mainly correlated with the addition of reactance that was associated with the pile-up thickness of the deposited protein. Particularly the SAMs-modified surface was capable to detach a significant portion of the accumulated protein from the protein-deposited SAMs/Au/PI, whereas the protein-deposited layers exhibited firm adhesion upon Au/PI surface.

 In cell adhesion study, thin-film SAMs adsorbed on Au/PI provided a passive or hydrophobic surface that increased water contact angle and initial total impedance, or therefore decreased cell coverage rate. Thin-film SAMs as a dense-packed spacer provided with a relatively low ionic strength that resulted in incomplete cell sealing. To study cell-surface interactions, cell detachment test used a triangular probe tip of AFM cantilever was experimented in medium containing a comparable single cell. Overall, both the peaks forces (Fcell) and the work required to remove a comparable single cell from the anchoring domain correspond well with the increased length of alkyl chains adsorbed upon Au/PI, which was much smaller than those of the pristine surface.

 This work thus approaches to establish a consistent means to create protein-resistant and cell-repulsive characteristics on the microelectrode surface. It is therefore very promising to apply thin film SAMs adsorbed upon Au-coated surface for bio-invasive devices that have the need of functional electrical stimulations or sensing nerve signals during chronic implantation.
Table of Contents
Chinese Abstract..........................................................................................................................i
Abstract.......................................................................................................................................ii
Acknowledgments......................................................................................................................iv
Table of Contents........................................................................................................................v
List of Tables...........................................................................................................................viii
List of Figures............................................................................................................................ix

Chapter 1 Introduction................................................................................................................1
1.1 Introduction to neural prostheses..........................................................................................1
1.2 Introduction to implantable nerve cuff electrodes................................................................2
1.3 Considerations of electrode implants....................................................................................4
1.4 Surface modification techniques...........................................................................................6
1.5 The kinetics of interfacial reaction of the microelectrode....................................................8
1.6 Motivation and specific aims..............................................................................................10

Chapter 2 Materials and Methods.............................................................................................12
2.1 Fabrication of multi-polar spiral cuff microelectrode.........................................................12
2.2 Surface modification of Au substrate..................................................................................19
2.3 Sample characterization by contact angle measurement.....................................................21
2.4 Chemistry of the modified surface......................................................................................21
2.5 Protein adsorption along time and protein detachment test................................................24
2.6 Cell culture and cell coverage rate on SAMs/Au/PI...........................................................24
2.7 Measurement of AC impedance for cuff microelectrode....................................................27
2.7.1 Measurement of AC impedance for the protein absorption on electrode........................27
2.7.2 Measurement of AC impedance for the cell proliferation on electrode...........................27
2.8 Cell detachment test using a probe tip of AFM cantilever..................................................28

Chapter 3 Results......................................................................................................................33
3.1 Contact angles of SAMs treated surface.............................................................................33
3.2 Pristine SAMs/Au/PI surfaces............................................................................................35
3.3 Measurement of AC impedance for the cuff microelectrode..............................................37
3.3.1 Measurement of AC impedance for the protein absorption on electrode........................37
3.3.2 Measurement of AC impedance for the cell proliferation on electrode...........................42
3.4 Surface morphology and adhesion of protein on the microelectrode surfaces...................46
3.5 Cell adhesion test................................................................................................................51
3.6 Cell detachment test............................................................................................................54

Chapter 4 Discussion................................................................................................................57
4.1 Protein adsorption relaed to total impedance on the respective surface.............................57
4.2 Kinetics of protein adsorption.............................................................................................59
4.3 Surface morphology and adhesion of protein on the microelectrode surfaces...................60
4.4 Cell adhesion on a reaction surface.....................................................................................61
4.5 Cell adhesion related to total impedance on the respective surface....................................64
4.6 Cell adhesion and cell detachment process.........................................................................65

Chapter 5 Conclusions..............................................................................................................68

Chapter 6 Furture Prospective...................................................................................................71
6.1 Plasma-induced graft copolymerization on polymer surface..............................................71
6.2 Cell adhesion test by shear stress under flow......................................................................75

References.................................................................................................................................77
References

1.Aoyagi Y, Mushahwar VK, Stein RB, Prochazka A. Movements elicited by electrical stimulation of muscles, nerves, intermediate spinal cord, and spinal roots in anesthetized and decerebrate cats. IEEE Transactions on Rehabilitation Engineering. 2004; 12(1): 1-11.
2.Stieglitz T, Schuettler M, Schneider A, Valderrama E, Navarro X. Noninvasive measurement of torque development in the rat foot: measurement setup and results from stimulation of the sciatic nerve with polyimide-based cuff electrodes. IEEE Transactions on Rehabilitation Engineering. 2003; 11(4): 427-37.
3.Haugland MK, Lickel A, Haase J, Sinkjaer T. Control of FES thumb force using slip information obtained from the cutaneous electroneurogram in quadriplegic man. IEEE Transactions on Rehabilitation Engineering. 1999; 7(2): 215-21.
4.Haugland MK, Hoffer JA, Slip information provided by nerve cuff signals: application in closed-loop control of functional electrical stimulation. IEEE Transactions on Rehabilitation Engineering. 1994; 2(1): 29-36.
5.Wise KD, Anderson DJ, Hetke JF, Kipke DR, Najafi K. Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proceedings of the IEEE. 2004; 92(1): 76-97.
6.Loeb GE, Zamin CJ, Schulman JH, Troyk PR. Injectable microstimulator for functional electrical stimulation. Medical & Biological Engineering & Computing. 1991; 29: 13-21.
7.Sahin M, Struijk JJ, Sinkjar T. Signal, noise, and artifacts in dual-cuff nerve recordings. IEEE Transactions on Rehabilitation Engineering. 1999; 7(2): 289-99.
8.Rousche PJ, Pellinen DS, Pivin DP Jr, Williams JC, Vetter RJ, kirke DR. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Transactions on Rehabilitation Engineering. 2001; 48(3): 361-71.
9.Smith BT, Mulcahey MJ, Betz RR. Development of an upper extremity FES system for individuals with C4 tetraplegia. IEEE Transactions on Rehabilitation Engineering. 1996; 4(4): 264-70.
10.Fujita K, Handa Y, Hoshimiya N, Ichie M. Stimulus adjustment protocol for FES-induced standing in paraplegia using percutaneous intramuscular electrodes. IEEE Transactions on Rehabilitation Engineering. 1995; 3(4): 360-66.
11.Schmit BD, Mortimer JT. The effects of epimysial electrode location on phrenic nerve recruitment and the relation between tidal volume and interpulse interval. IEEE Transactions on Rehabilitation Engineering. 1999; 7(2): 150-58.
12.Boyer S, Sawan M, Abdel-Gawad M, Robin S, Elhilali MM. Implantable selective stimulator to improve bladder voiding: design and chronic experiments in dogs. IEEE Transactions on Rehabilitation Engineering. 2000; 8(4): 464-70.
13.Tai C, Jiang D. Selective stimulation of smaller fibers in a compound nerve trunk with single cathode by rectangular current pulses. IEEE Transactions on Biomedical Engineering. 1994; 41(3): 286-91.
14.Bhadra N, Kilgore KL. Direct current electrical conduction block of peripheral nerve. IEEE Transactions on Biomedical Engineering. 2004; 12(3): 313-24.
15.Rutten WLC, Smit JPA, Frieswijk TA, Bielen JA, Brouwer ALH, Buitenweg JR, Heida C. Neuro-electronic interfacing with multielectrode arrays. IEEE Engineering in Medicine and Biology Magazine. 1999; 18(3): 47-55.
16.Leventhal DK, Durand DM. Chronic measurement of the stimulation selectivity of the flat interface nerve electrode. IEEE Transactions on Biomedical Engineering. 2004; 51(9): 1649-58.
17.Grill WM, Mortimer JT. Stability of the input-output properties of chronically implanted multiple contact nerve cuff stimulating electrodes. IEEE Transactions on Biomedical Engineering. 1998; 6(4): 364-73.
18.Nam Y, Chang JC, Wheeler BC, Brewer G.J. Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures. IEEE Transactions on Biomedical Engineering. 2004; 51(1): 158-65.
19.Mathieson K, Kachiguine S, Adams C, Cunningham W, Gunning D, O'Shea V, Smith M, Chichilnisky EJ, Litke AM, Sher A, Rahman M. Large-area microelectrode arrays for recording of neural signals. IEEE Transactions on Nuclear Science. 2004; 51(5): 2027-31.
20.Weiland JD, Anderson DJ, Humayun MS. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Transactions on Biomedical Engineering. 2002; 49(12): 1574-79.
21.Takahashi H, Ejiri T, Nakao M, Nakamura N, Kaga K, Herve T. Microelectrode array on folding polyimide ribbon for epidural mapping of functional evoked potentials. IEEE Transactions on Biomedical Engineering. 2003; 50(4): 510-16.
22.Motta PS, Judy JW. Multielectrode microprobes for deep-brain stimulation fabricated with a customizable 3-D electroplating process. IEEE Transactions on Biomedical Engineering. 2005; 52(5): 923-33.
23.Rousche PJ, Pellinen DS, Pivin DP, Williams JC, Vetter RJ. Flexible polyimide based intraacortical electrode arrays with bioactive capability. IEEE Transactions on Biomedical Engineering. 2001; 48(3): 361-71.
24.Zealear DL, Garren KC, Rodriguez RJ, Reyes JH, Shan Huang, Dokmeci MR, Najafi K. The biocompatibility, integrity, and positional stability of an injectable microstimulator for reanimation of the paralyzed larynx. IEEE Transactions on Biomedical Engineering. 2001; 48(8): 890-97.
25.Peterson DK, Nochomovitz ML, Stellato TA, Mortimer JT. Long-term intramuscular electrical activation of the phrenic nerve: safety and reliability. IEEE Transactions on Biomedical Engineering. 1994; 41(12): 1115-26.
26.Rosengren A, Wallman L, Danielsen N, Laurell T, Bjursten LM. Tissue reactions evoked by porous and plane surfaces made out of silicon and titanium. IEEE Transactions on Biomedical Engineering. 2002; 49(4): 392-99.
27.Sahin M, Haxhiu MA, Durand DM, Dreshaj IA. Spiral nerve cuff electrode for recordings of respiratory output. Journal of Applied Physiology. 1997; 83: 317-23.
28.Branner A, Stein RB, Fernandez E, Aoyagi Y, Normann RA. Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve. IEEE Transactions on Biomedical Engineering. 2004; 51(1): 146-57.
29.Mrksich M, Whitesides GM. Using self-assembled monolayers to understand the interactions of man-made surface with protein and cells. Annual Review of Biophysics and Biomolecular Structure. 1996; 25: 55-78.
30.Stelzle M, Wagner R, Jagermann W. Ultrathin organic films for biocompatible low-impedance pacemaker electrode. International Conference of the IEEE Engineering in Medicine and Biology Society. 1996; 1: 114-16.
31.Himmel HJ, Weiss K, Jaeger B, Dannenberger O, Grunze M, Woell C. Ultrahigh vacuum study on the reactivity of organic surfaces terminated by OH and COOH groups prepared by self-assembly of functionalized alkanethiols on Au substrates. Langmuir. 1997; 13: 4943-47.
32.Jung C, Dannenberger O, Buck M, Grunze M. Self-Assembled Monolayers from organosulfur compounds: A comparison between sulfides, disulfides, and thiols. Langmuir. 1998; 14(5): 1103-07.
33.Gupta AK, Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Transactions on NanoBioscience. 2004; 3(1): 66-73.
34.Dubois LH, Nuzzo RG. Synthesis, structure, and properties of model organic surface. Annual Review of Physical Chemistry. 1992; 43: 437-63.
35.Whitessides GM, Gorman CB. Self-assenbled monolayers: models for organic surface chemistry. Handbook of surface imageing and visualization. CRC Press. 1995; 713-732.
36.Liu X, McCreery DB, Carter RR, Bullara LA, Yuen TG.H, Agnew WF. Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. IEEE Transactions on Rehabilitation Engineering. 1999; 7(3): 315-26.
37.Akers JM, Peckham PH, Keith MW, Merritt K. Tissue response to chronically stimulated implanted epimysial and intramuscular electrodes. IEEE Transactions on Rehabilitation Engineering. 1997; 5(2): 207-20.
38.Schwendel D, Hayashi T, Dahint R, Pertsin A, Grunze M, Steitz R, Schreiber F. Interaction of Water with Self-Assembled Monolayers: Neutron Reflectivity Measurements of the Water Density in the Interface Region. Langmuir 2003; 19(6): 2284-93.
39.Israelachvili J, WennerstrÖm H. Role of hydration and water structure in biological and colloidal interactions. Nature 1996; 379: 219-25.
40.Vogler EA. Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science. 1998; 74: 69-117.
41.Du Q, Freysz Y, Shen R. Surface Vibrational Spectroscopic Studies of Hydrogen Bonding and Hydrophobicity. Science. 1994; 264: 826-28.
42.Scatena LF, Brown MG, Richmond GL. Water at Hydrophobic Surfaces: Weak Hydrogen Bonding and Strong Orientation Effects. Science 2001; 292: 908-12.
43.Sung J, Kim D, Whang CN, Oh-e M, Yokoyama H. Sum-Frequency Vibrational Spectroscopic Study of Polyimide Surfaces Made by Spin Coating and Ionized Cluster Beam Deposition. Journal of Physical Chemistry B2004; 108 (30): 10991-96.
44.Chen L, Fenter P, Nagy KL, Schlegel ML, Sturchio NC. Fourier-Expansion Solution of Atom Distributions in a Crystal Using X-Ray Standing Waves. Physical Review Letters. 2001; 85: 15-20.
45.Chang CH, Liao JD, Chen JJJ, Ju MS, Lin KCC. Alkanethiolate self-assembled monolayers as functional spacers to resist protein adsorption upon Au-coated nerve microelectrode. Langmuir 2004; 20(26): 11656-63.
46.Kao, W. J. In vivo biocompatibility of gelatin-based hydrogels and interpenetrating networks. Biomaterials. 2002; 13(2): 1353-67.
47.Arenkov P, Kukhtin A, Gemmell A, Voloshchuk S, Chupeeva V, Mirzabekov A. Protein Microchips: Use for Immunoassay and Enzymatic Reactions. Analytical Biochemistry. 2000; 278(2): 123-31.
48.Dalby MJ, Yarwood SJ, Johnstone HJH, Affrossman S, Riehle MO. Fibroblast signaling events in response to nanotopography: a gene array study. IEEE Transactions on Nanobioscience. 2002; 1(1): 12-17.
49.Palsson, B, Ø.; Bhatia, S. N. Tissue engineering. Pearson Prentice Hall 2004; 74-104.
50.Wu CC, Su HW, Lee CC, Tang MJ, Su FC. Quantitative measurement of changes in adhesion force involving focal adhesion kinase during cell attachment, spread, and migration. 2005; 329(1): 256-65.
51.Ju MS, Chien HC, Chen GS, Lin CCK, Chang CH, Chang CW. Design and fabrication of multi-microelectrode array for neural prosthesis. Journal of Medical and Biomedical Engineering. 2002; 22(1): 33-40.
52.Heister K, Zharnikov M, Grunze M, Johansson LSO. Adsorption of Alkanethiols and Biphenylthiols on Au and Ag Substrates: A High-Resolution X-ray Photoelectron Spectroscopy Study. Journal of Physical Chemistry B. 2001; 105(19): 4058-61.
53.Liao JD, Wang MC, Weng CC, Klauser R, Frey S, Zharnikov M, Grunze M. Modification of Alkanethiolate Self-Assembled Monolayers by Free Radical-Dominant Plasma. Journal of Physical Chemistry B. 2002; 106(1): 77-84.
54.Wang MC, Liao JD, Weng CC, klauser R, Frey S, Zharnikov M , Grunze M. The Effect of the Substrate on Response of Thioaromatic Self-Assembled Monolayers to Free Radical-Dominant Plasma. Journal of Physical Chemistry B. 2002; 106(24): 6220-26.
55.Wang MC, Liao JD, Weng CC, klauser R, Shaporenko A, Grunze M, Zharnikov M. Modification of Aliphatic Monomolecular Films by Free Radical Dominant Plasma: The Effect of the Alkyl Chain Length and the Substrate. Langmuir. 2003; 19(23): 9774-80.
56.http://www.nanoworld.com
57.Heister K, Zharnikov M, Grunze M, Johannson LSO, Ulman A. Characterization of X-ray Induced Damage in Alkanethiolate Monolayers by High-Resolution Photoelectron Spectroscopy. Langmuir. 2001; 17(1): 8-11.
58.Heister K, Rong H, Buck M, Zharnikov M, Grunze M, Johansson LSO. Odd-Even Effects at the S-Metal Interface and in the Aromatic Matrix of Biphenyl-Substituted Alkanethiol Self-Assembled Monolayers. Journal of Physical Chemistry B. 2001; 105(29): 6888-94.
59.Himmelhaus M, Gauss I, Buck M, Eisert F, Wöll C, Grunze MJ. Adsorption of docosanethiol from solution on polycrystalline silver surfaces: an XPS and NEXAFS study. Journal of Electron Spectroscopy and Related Phenomena. 1998; 92: 139-49.
60.Brewer NJ, Foster TT, Leggett GJ, Alexander M R, McAlpine, E. Comparative Investigations of the Packing and Ambient Stability of Self-Assembled Monolayers of Alkanethiols on Gold and Silver by Friction Force Microscopy. Journal of Physical Chemistry B. 2004; 108 (15): 4723-28.
61.Chen C, Allison S. Boundary Element Modeling of the Primary Electroviscous Effect of Dilute Sodium Poly(styrenesulfonate) in Monovalent Salt Solutions. Macromolecules. 2001; 34 (23): 8397-98.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊