|
Aroian RV, Koga M, Mendel JE, Ohshima Y, and Sternberg PW. (1990). The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature 348, 693-699
Barbieri MA, Roberts RL, Gumusboga A, Highfield H, Alvarez- Bernstein E, Causy AA, Hammond SM, and Hannon GJ. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366
Biesova Z, Piccoli C, and Wong WT. (1997). Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth. Oncogene 14, 233- 241
Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, and Parson SJ. (1999). c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J. Biol. Chem. 274, 8335–8343
Bonfini L, Migliaccio E, Pelicci G, Lanfrancone L, and Pelicci PG. (1996). Not all Shc's roads lead to Ras. Trends Biochem Sci. 21,
Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, Hoflack B, and Zerial M. (1992). The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715–728
Buday L, and Downward J. (1993). Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73, 611–620
Calderwood DA, Fujioka, and de Pereda JM, et al. (2003). Integrin cytoplasmic domain interactions with phosphotyrosine-binding domains:A structural prototype for diversity in integrin signaling. PNAS 100, 2272-2277
Carpenter G, King L, Jr, and Cohen S. (1978). Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature 276, 409–410
Chardin P, Camonis JH, Gale NW, van Aelst L, Schlessinger J, Wigler MH, and Bar-Sagi D. (1993). Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 260, 1338–1343
Cooper JA, and Howell B. (1993). The when and how of Src regulation. Cell 73, 1051–1054
Di Fiore PP, Scita G. (2002). Eps8 is the midst of GTPases. Int. J. Biochem. Cell Biol. 34, 1178-1183
Dominguez C, Wells A, and Stahl PD. (2000). Epidermal growth factor and membrane trafficking. EGF receptor activation of endocytosis requires Rab5a. J. Cell Biol. 151, 539–550
Emlet DR, Moscatello DK, Ludlow LB, and Wong AJ. (1997). Subsets of epidermal growth factor receptors during activation and endocytosis. J. Biol. Chem. 272, 4079–4086
Ettenberg SA, Keane MM, Nau MM, Frankel M, Wang LM, Pierce JH, and Lipkowitz S. (1999). cbl-b inhibits epidermal growth factor receptor signaling. Oncogene 18, 1855–1866
Fazioli F, Minichiello L, Matoska V, Castagnino P, Miki T, Wong WT, and Di Fiore PP. (1993). Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J. 12, 3799-3808
Fazioli F, Minichiello L, Matoska V, Castagnino P, Miki T, Wong WT, and Di Fiore PP. (1993). Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J. 12, 3799-3808
Ferguson KM, Lemmon MA, Schlessinger J, and Sigler PB. (1995). Structure of the high affinity complex of inositol triphosphate with a phospholipase C pleckstrin homology domain. Cell 83, 1037-1046
Gallo R, Provenzano C, Carbone R, Di Fiore PP, Castellani L, Falcone G, and Alema S. (1997). Regulation of the tyrosine kinase substrate Eps8 expression by growth factors, v-Src and terminal differentiation. Oncogene 15, 1929-1936
Gruenberg J, and Maxfield FR. (1995). Membrane transport in the endocytic pathway. Curr. Opin. Cell Biol. 7, 552–563
Hammond SM, Boettcher S, Caudy AA, Kobayashi R, and Hannon GJ. (2001). Argonaute 2, a link between genetic and biobhemical analyses of RNAi. Science 293, 1146-1150
Hubbard SR, Wei L, Ellis L, and Hendrickson WA. (1994). Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372, 746–754
Innocenti M, Frittoli E, Ponzanelli I, Falck JR, Bracmann SM, Di Fiore P P, and Scita G. (2003). Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. J. Cell Biol. 160, 17-23
Innocenti M, Tenca P, Frittoli E, Faretta M, Tocchetti A, Di Fiore PP, and Scita G. (2003). Mechanisms through which Sos-1 coordinates the activation of Ras and Rac. J. Cell Biol. 156, 125-136
Ion A, Crosby AH, Kremer H, Kenmochi N, Van Reen M, Fenske C, Van Der Burgt I, Brunner HG, Montgomery K, Kucherlapati RS, Patton MA, Page C, Mariman E, and Jeffery S. (2000). Detailed mapping, mutation analysis, and intragenic polymorphism identification in candidate Noonan syndrome genes MYL2, DCN, Eps8, and RPL6. J. Med. Genet. 37, 884–886
Lax I, Bellot F, Howk R, Ullrich A, Givol D, and Schlessinger J. (1989). Functional analysis of the ligand binding site of EGF- receptor utilizing chimeric chicken/human receptor molecules. EMBO J. 8, 421–427
Karlsson T, Songyang Z, Landgren E, Lavergne C, Di Fiore PP, Anafi M, Pawson T, Cantley LC, Claesson-Welsh L, and Welsh M. (1995). Molecular interactions of the Src homology 2 domain protein Shb with phosphotyrosine residues, tyrosine kinase receptors and Src homology 3 domain proteins. Oncogene, 10, 1475-1483
Kishan KV, Scita G., Wong WT, Di Fiore PP, and Newcomer ME. (1997). The SH3 domain of Eps8 exists as a novel intertwined dimmer. Nat Struct Biol. 4, 739-43
Lanzetti L, Rybin V, Malabarba MG, Christoforidis S, Scita G, Zerial M, and Di Fiore PP. (2000). The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature 408, 374–377
Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, Lavi S, Iwai K, Reiss Y, Ciechanover A, Lipkowitz S, and Yarden Y. (1999). Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4, 1029–1040
Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon WY, Beguinot L, Geiger B, and Yarden Y. (1998). c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663-3674
Maa M-C, Hsieh C-Y, and Leu T-H. (2001). Overexpression of p97Eps8 leads to cellular transformation: implication of pleckstrin homology domain in p97Eps8-mediated ERK activation. Oncogene 19, 106-112
Maa M-C, Lai J-R, Lin R-W, and Leu T-H. (1999). Enhancement of tyrosyl phosphorylation and protein expression of eps8 by v-Src. Biochim. Biophys. Acta. 1450, 341-351
Marsh M, and McMahon HT. (1999). The structural era of endocytosis. Science 285, 215–220
Marshall CJ. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80,179-185
Matoskova B, Wong WT, Nomura N, Robbins KC, and Di Fiore PP. (1996). RN-tre specifically binds to the SH3 domain of eps8 with high affinity and confers growth advantage to NIH3T3 upon carboxy-terminal truncation. Oncogene 12, 2679–2688
Matoskova B, Wong WT, Salcini AE, Pelicci PG, and Di Fiore PP. (1995). Constitutive phosphorylation of eps8 in tumor cell lines: relevance to malignant transformation. Mol Cell Biol. 15, 3805-3812
Matoskova B, Wong WT, Seki N, Nagase T, Nomura N, Robbins KC, and Di Fiore PP. (1996). RN-tre identifies a family of tre-related proteins displaying a novel potential protein binding domain. Oncogene 12, 2563-2571
McManus MT, and Sharp PA. (2002). Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3, 737-747
Mongiovi AM, Romano PR, Panni S, Mendoza M, Wong WT, Musacchio A, Cesareni G, and Di Fiore PP. (1999). A novel peptide- SH3 interaction. EMBO J. 18, 5300– 5309
Mosmann T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 65, 55-63
Olivier JP, Raabe T, Henkemeyer M, Dickson B, Mbamalu G, Margolis B, Schlessinger J, Hafen E, and Pawson T. (1993). A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 73, 179–191
Owen DJ, and Luzio JP. (2000). Structural insights into clathrin- mediated endocytosis. Curr. Opin. Cell Biol. 12, 467–474
Pitcher JA, Touchara K, Payne ES, and Lefkowitz RJ. (1995). Pleckstrin homology domain-mediated membrane association and activation of the ß-adrenergic receptor kinase requires coordinate interaction with Gß? subunits and lipid. J. Biol. Chem. 270, 11707-11710
Provenzano C, Gallo R, Carbone R, Di Fiore PP, Falcone G, Castellani L, and Alema S. (1998). Eps8, a tyrosine kinase substrate, is recruited to the cell cortex and dynamic F-actin upon cytoskeleton remodeling. Exp Cell Res. 242, 186-200
Rozakis-Adcock M, Fernley R, Wade J, Pawson T, and Bowtell D. (1993). The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 363, 83–85
Rozakis-Adcock M, McGlade J, Mbamalu G, Pelicci G, Daly R, Li W, Batzer A, Thomas S, Brugge J, and Pelicci PG. (1992). Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature 360, 689-692
Salcini AE, McGlade J, Pelicci G, Nicoletti I, Pawson T, and Pelicci PG. (1994). Formation of Shc-Grb2 complexes is necessary to induce neoplastic transformation by overexpression of Shc proteins. Oncogene 9, 2827-2836
Schlessinger J. (2002). Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110, 669–72
Scita G, Nordstrom J, Carbone R, Tenca P, Giardina G, Gutkind S, Bjarnegard M, Betsholtz C, and Di Fiore PP. (1999). Eps8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290-293
Scita G, Tenca P, Areces LB, Tocchetti A, Frittoli E, Giardina G, Ponzanelli I, Sini P, Innocenti M, and Di Fiore PP. (2001). An effector region in Eps8 is responsible for the activation of the
Rac-specific GEF activity of Sos-1 and for the proper localization of the Rac-based actin-polymerizing machine. J. Cell Biol. 154, 1031-1044
Sibilia M, and Wagner EF. (1995). Strain-dependent epithelial defects in mice lacking the EGF receptor. Science 269, 234-238 Sordella R, Bell DW, Haber DA, and Settleman J. (2004). Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305, 1163-1167
Sorkin A, and Waters CM. (1993). Endocytosis of growth factor receptors. Bioessays 15, 375-382
Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, Yee D, LaMantia C, Mourton T, Herrup K, and Harris RC. (1995). Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269, 230-234
Tocchetti A, Confalonieri S, Scita G, Di Fiore PP, and Betsholtz C. (2003). In silico analysis of the EPS8 gene family: genomic organization, expression profile, and protein structure. Genomics 81, 234–244
Touhara K, Inglese J, Picher JA, Shaw G, and Lefkowitz RJ. (1994). Binding of G protein beta gamma-subunits to pleckstrin homology domains. J. Biol. Chem. 269, 10217-10220
van de Loosdrecht AA, Beelen RH, Ossenkoppele GJ, Broekhoven MG, and Langenhuijsen MM. (1994). A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J. Immunol. Methods 174, 311-320
van der Geer P, Hunter T, and Lindberg RA. (1994). Receptor protein-tyrosine kinases and their signal transduction pathways. Annu. Rev. Cell Biol. 10, 251-337
Whitmarsh AJ, and Davis RJ. (1998). Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem. Sci. 23, 481–485
Wiley HS, Herbst J, Walsh BJ, Lauffenburger DA, Rosenfeld MG, and Gill GN. (1991). Role of tyrosine kinase activity in endocytosis, compartmentation and downregulation of the EGF receptor. J. Biol. Chem. 266, 11083-11094
Wong WT, Carlomagno F, Druck T, Barletta C, Croce CM, Huebner K, Kraus MH, and Di Fiore PP. (1994). Evolutionary conservation of the eps8 gene and its mapping to human chromosome 12q23-q24. Oncogene, 9, 3057-3061
Yarden Y, and Sliwkowski MX. (2001). Untangling the ErbB signalling network. Nat. Rev. Mol. Cell. Biol. 2, 127–137
Zamore PD, Tuschl T, Sharp PA, and Bartel DP. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33
Zerial M, and McBride H. (2001). Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2, 107-117
Zwick E, Hackel PO, Prenzel N, and Ullrich A. (1999). The EGF receptor as central transducer of heterologous signalling systems. Trends Pharmacol. Sci. 20, 408–412
|