跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 04:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳穎弘
研究生(外文):Ying-Hung Chen
論文名稱:使用原子力式顯微鏡的電性量測觀察氮化鎵表面的微觀電流特性
論文名稱(外文):Investigation of microscopic current conduction in GaN films by conductive atomic force microscopy
指導教授:蘇炎坤蘇炎坤引用關係盧炎田
指導教授(外文):Yan-Kuin SuYan-Ten Lu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:74
中文關鍵詞:氮化鎵導電原子力式顯微鏡
外文關鍵詞:GaNconductive atomic force microscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
  本篇論文中,我們使用原子力式顯微鏡配合導電探針去量測蝕刻和非蝕刻的氮化鎵表面微觀的電流傳導特性,由於表面形貌和相對的電流分布可同時獲得,我們可去探討其兩者之間的關係。首先,我們觀察使用低溫MBE成長在MOCVD成長的氮化鎵表面,發現在六角形洞偏軸的斜面上,其導電能力較其他部分還高,接著在使用氫氧化鈉於室溫下蝕刻後,發現電流變的較蝕刻前均勻許多,因此推測原電流分布不均的現象有可能是氮的分布不均勻所造成。

  再來我們使用ICP蝕刻獲得氮化鎵的奈米柱,其直徑約介於50奈米至200奈米間,不論由電特性或光的特性的量測,我們皆可觀察到由蝕刻所造成的表面效應。由導電的原子力式顯微鏡的量測結果,我們可發現電流均分布在離子轟擊所造成的蝕刻面,而在PL的光譜中,我們可發現由蝕刻所造成的施體-受體對(DAP),而且我們亦發現,當對表面作奈米尺寸的蝕刻後,其光譜較蝕刻前還要好。
 In the thesis, we use conductive atomic force microscopy (C-AFM) to map out local current variations on etched and as-grown GaN films, focusing on the effect of off-axis facet planes on current conduction. First, in the samples grown by MBE on MOCVD templates, we investigated the off-axis planes of the hexagonal holes show a higher conductivity than surrounding areas. After NaOH room-temperature etching, samples show more uniform current distribution than before. It indicated the inhomogeneous current might be caused by the non-uniform distribution of nitrogen.

 Second, GaN nanopillars of diameter ranging from 50 nm to 200 nm were fabricated by ICP etching. Both by electrical and optical measurements, the surface effect which was caused by plasma-induced damage was found. In C-AFM results, current on the etching surface was detected, while other surface was not. In PL results, etching induced DAPs were found. By nanometer-size etching, better optical properties were also observed.
Abstract (in Chinese)----------------------------------i
Abstract (in English)---------------------------------ii
Acknowledgement--------------------------------------iii
Contents----------------------------------------------iv
Figure Captions---------------------------------------vi
Table Captions---------------------------------------xii

Chapter 1. Introduction
1-1 Development of GaN---------------------------------1
1-2 Development of SPM---------------------------------2
1-3 Motivation-----------------------------------------3

Chapter 2. Theorem and Background
2-1 Surface Space-Charge and Surface States------------4
2-2 Dangling Bonds-------------------------------------5
2-3 Surface Transport
2-3-1 Surface Excess of Carriers-----------------------8
2-3-2 Surface Conductance------------------------------8
2-3-3 Field Effect of Surface Conductance--------------9

Chapter 3. Principle of Measurements
3-1 Atomic Force Microscope---------------------------11
3-2 Conductive Atomic Force Microscope----------------13
3-3 Scanning Electron Microscope----------------------15
3-4 Photoluminescence---------------------------------16

Chapter 4. Experimental techniques and Procedures
4-1 Sample Preparation
4-1-1 Group A : MBE GaN-------------------------------17
4-1-2 Group B : GaN-based nanopillars-----------------17
4-2 Experimental Procedures---------------------------18

Chapter 5. Results and Discussion
5-1 SEM image analyses--------------------------------20
5-2 C-AFM image analyses
5-2-1 Results of samples of Group A-------------------20
5-2-2 Results of sample c and sample d after NaOH-----23
5-2-3 Results of before NaOH compare with after NaOH--24
5-2-4 Samples of Group B 29
5-3 Photoluminescence Spectra-------------------------32

Chapter 6. Conclusions--------------------------------35

Figure------------------------------------------------37
Table-------------------------------------------------71
Reference---------------------------------------------72
[1] H. Amano et al., Metalorganic vapor phase epitaxial growth of high quality GaN films using an AlN buffer layer, Appl. Phys. Lett. 48, 353 (1986).
[2] Shuji Nakamura and Takashi Mukai, High-quality InGaN films grown on GaN films,Jpn. J. Appl. Physics. 31, L1457, (1992).
[3] Shuji Nakamura et al., Novel metalorganic chemical vapor deposition system for GaN growth, Appl. Phys. Lett. 58, 2021 (1991).
[4] Shuji Nakamura et al., Hole compensation mechanism of p-type GaN films, Jpn. J. Appl. Physics. 31, 1258 (1992).
[5] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Springer, New York, 1997).
[6] B. Gil, Group III Nitride Semiconductor Compounds (Oxford Science, 1998).
[7] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Surface Studies by Scanning Tunneling Microscopy, Phys. Rev. Lett. 49, 57 (1982).
[8] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, 7 × 7 Reconstruction of Si (111) Resolved in Real Space, Phys. Rev. Lett. 50, 120 (1983).
[9] G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Phys. Rev. Lett. 56, 930 (1986).
[10] Lander, J. J., Gobeli, G. W. , Morrison, J. (1963): J, Appl. Phys. 34, 2298.
[11] Bachmann, R. (1968): Phys. kondens. Materie 8, 31.
[12] Guichar, G. M., Sebenne, C., Garry, G., Balkanski, M. (1975): Le Vide 30, 97.
[13] Richter, E. (1963): Z. Naturforschung 18a, 39.
[14] Harrison, W. A. (1973): Phys. Rev. B8, 4487.
[15] M. Ali Omar, Elementary Solid State Physics, Addison-Wesley publishing company.
[16] Dawn A. Bonnell, Scanning Probe Microscopy and Spectroscopy, Wiley-VCH, p16, 2001.
[17] Y. Martin, C.C. Williams and H. K. Wickramadinghe, Jpn. J. Appl. Phys. 61, 4723(1987).
[18] F. J. Giessibl, Ch. Gerber, and G. Binnig, J. Vac. Sci. Technol. B 9, 984 (1991).
[19] P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, and H. G. Hansma, Tapping mode atomic force microscopy in liquids, Appl. Phys. Lett. 64, 1738 (1994).
[20] R. E. Thomson and J. Moreland: Development of highly conductive cantilevers for atomic force microscopy point contact measurements, J. Vac. Sci. Technol. B 13 (3), 1123 (1995).
[21] A. Bietsch, M. A. Schneider, M. E. Welland, and B. Michel: Electrical testing of gold nanostructures by conducting atomic force microscopy, J. Vac. Sci. Technol. B 18 (3), 1160 (2000).
[22] K. T. Liu, T. Tezuka, S. Sugita, Y. Watari, Y. Horikoshi, Y. K Su, and S. J. Chang, Modulated beam growth method for MBE grown GaN layers, J. Cryst. Growth 263, 400 (2004).
[23] J. W. P. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S. N. G. Chu, A. M. Sergent, R. N. Kleiman, L. N. Pfeiffer, and R. J. Molnar, Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes, Appl. Phys. Lett. 78. 1685 (2001).
[24] J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, and J. S. Speck, Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates, Appl. Phys. Lett. 81, 79 (2002).
[25] J. W. P. Hsu, M. J. Manfra, S. N. G. Chu, C. H. Chen. L. N. Pfeiffer, and R. J. Molnar, Effect of growth stoichiometry on the electrical activity of screw dislocations in GaN films grown by molecular-beam epitaxy, Appl. Phys. Lett. 78, 3980 (2001).
[26] B. S. Simpkins, E. T. Yu, P. Waltereit, and J. S. Speck, Correlated scanning Kelvin probe and conductive atomic force microscopy studies of dislocations in gallium nitride, J. Appl. Phys. 94, 1448 (2003).
[27] U. Karrer, O. Ambacher, and M. Stutzmann, Influence of crystal polarity on the properties of Pt/GaN Schottky diodes, Appl. Phys. Lett. 77, 2012 (2000).
[28] B. Heying, R. Averbeck, L. F. Chen, E. Haus, H. Riechert, and J. S. Speck, Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy, J. Appl. Phys. 88, 1855 (2000).
[29] D. Huang, P. Visconti, K. M. Jones, M. A. Reshchikov, F. Yun, A. A. Baski, T. King, and H. Morkoç, Dependence of GaN polarity on the parameters of the buffer layer grown by molecular beam epitaxy, Appl. Phys. Lett. 78, 4145 (2001).
[30] X. Q. Shen, T. Ide, S. H. Cho, M. Shimizu, S. Hara, and H. Okumura, Stability of N- and Ga-polarity GaN surfaces during the growth interruption studied by reflection high-energy electron diffraction, Appl. Phys. Lett. 77, 4013 (2000).
[31] A. R. Smith, R. M. Feenstra, D. W. Greve, M. S. Shin, M. Skowronski, J. Neugebauer, and J. E. Northrup, Determination of wurtzite GaN lattice polarity based on surface reconstruction, Appl. Phys. Lett. 72, 2114 (1998).
[32] Kenji Shiojima, Atomic force microscopy and transmission electron microscopy observations of KOH-etched GaN surfaces, J. Vac. Sci. Technol. B, Vol. 18, No. 1, 37 (2000).
[33] J. spradlin, S. Doğan, J. Xie, R. Molnar, A. A. Baski, and H. Morkoç, Investigation of forward and reverse current conduction in GaN films by conductive atomic force microscopy, Appl. Phys. Lett. 84, 4150 (2004).
[34] A. A. Pomarico, D. Huang, J. Dickinson, A. A. Baski, R. Cingolani, H. Morkoç, and R. Molnar, Current mapping of GaN films by conductive atomic force microscopy, Appl. Phys. Lett. 82, 1890 (2003).
[35] S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, III-nitrides: Growth, characterization, and properties, J. Appl. Phys. 87, 965 (2000).
[36] W. Gőtz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler, Activation energies of Si donors in GaN, Appl. Phys. Lett. 68, 3144 (1996).
[37] J. J. Song and W. Shan, in Group III Nitride Semiconductor Compounds, edited by B. Gil (Clarendon, Oxford, 1998), pp. 182~241.
[38] S. Strite and H. Morkoç, J. Vac. Sci. Technol. B 10, 1237 (1992).
[39] S. J. Pearton, J. W. Lee, J. D. MacKenzie, C. R. Abernathy, and R. J. Shul, Dry etch damage in InN, InGaN, and InAlN, Appl. Phys. Lett. 67, 2329 (1995).
[40] F. Demangeot, J. Gleize, J. Frandon, M. A. Renucci, M. Kuball, D. Peyrade, L. Manin-Ferlazzo, Y. Chen, and N. Grandjean, Optical investigation of micrometer and nanometer-size individual GaN pillars fabricated by reactive ion etching, J. Appl. Phys. 91, 6520 (2002).
[41] P. Perlin et al., Phys. Rev. Lett. 75, 296 (1995).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林清山、程炳林(1996)。國中生自我調整因素與學習表現之關係暨自我調整的閱讀理解教學策略效果之研究。教育心理學報,28,15-58。
2. 林清山、程炳林(1996)。國中生自我調整因素與學習表現之關係暨自我調整的閱讀理解教學策略效果之研究。教育心理學報,28,15-58。
3. 林啟超、謝智玲(2001)。高職學生之目標取向對學習策略與學習成就之關係研究。測驗統計年刊,9,131-168。
4. 吳靜吉、程炳林(1992)。激勵的學習策略量表之修訂。測驗年刊,39,59-78。
5. 林啟超、謝智玲(2001)。高職學生之目標取向對學習策略與學習成就之關係研究。測驗統計年刊,9,131-168。
6. 林啟超、謝智玲(2001)。高職學生之目標取向對學習策略與學習成就之關係研究。測驗統計年刊,9,131-168。
7. 毛國楠、程炳林(1993)。目標層次與目標導向對大學生自我調整學習歷程之影響。教育心理學報,26,85-106。
8. 毛國楠、程炳林(1993)。目標層次與目標導向對大學生自我調整學習歷程之影響。教育心理學報,26,85-106。
9. 毛國楠、程炳林(1993)。目標層次與目標導向對大學生自我調整學習歷程之影響。教育心理學報,26,85-106。
10. 吳靜吉、程炳林(1992)。激勵的學習策略量表之修訂。測驗年刊,39,59-78。
11. 吳靜吉、程炳林(1992)。激勵的學習策略量表之修訂。測驗年刊,39,59-78。
12. 林清山、程炳林(1996)。國中生自我調整因素與學習表現之關係暨自我調整的閱讀理解教學策略效果之研究。教育心理學報,28,15-58。
13. 侯玫如、程炳林、于富雲(2004)。國中生多重目標導向與其自我調整學習之關係。教育心理學報,3,221-248。
14. 侯玫如、程炳林、于富雲(2004)。國中生多重目標導向與其自我調整學習之關係。教育心理學報,3,221-248。
15. 侯玫如、程炳林、于富雲(2004)。國中生多重目標導向與其自我調整學習之關係。教育心理學報,3,221-248。