|
[1] T. M. Lee, E. Chang, and C.Y. Yang, “Attachment and proliferation of neonatal rat calvarial osteoblasts on Ti6Al4V: effect of surface chemistries of the alloy,” Biomaterials, Vol. 25, pp. 23-32, 2004.
[2] T. M. Lee and E. Chang, “Surface characteristics of Ti6Al4V alloy: effect of materials, passivation and autoclaving,” Journal of material science: materials in medicine, Vol. 9, pp. 439-448, 1998.
[3] T. M. Lee and E. Chang, “Effect of passivation on the dissolution behavior of Ti6Al4V and vacuum-brazed Ti6Al4V in Hank’s solution Part I Ion release,” Journal of material science: materials in medicine, Vol. 10, pp. 541-548, 1999.
[4] T. M. Lee and E. Chang, “Effect of surface chemistries and characteristics of Ti6Al4V on the Ca and P adsorption and ion dissolution in Hank’s ethylene diamine tetra-acetic acid solution,” Biomaterials, Vol. 23, pp. 2917-2925, 2002.
[5] X. Zhu, J. Chen, L. Scheideler, R. Reichl, and J. G.. Gerstorfer, “Effects of topography and composition of titanium surface oxides on osteoblasts responses,” Biomaterials, Vol. 25, pp. 4087-4103, 2004.
[6] M. F. Maitz, M. T. Pham, and E. Wieser, “Blood compatibility of titanium oxides with various crystal structure and element doping,” Journal of biomaterials applications, Vol. 17, pp. 303-319, 2003.
[7] M. Manso, S. Ogueta, J. P. Rigueiro, J. P. Garcia, and J. M. M. Duart, “Testing biomaterials by the in-situ evaluation of cell response,” Biomolecular Engineering, Vol. 19, pp. 239-242, 2002.
[8] L. Ponsonnet, K. Reybier, N. Jaffrezia, V. Comte, C. Lagneau, M. Lissac, and C. Martelet, “Relationship between surface properties(roughness, wettability) of titanium and titanium alloys and cell behaviour,” Materials Science and Engineering, Vol. 23, pp. 551-560, 2003.
[9] C. H. Ku, D. P. Pioletti, M. Browne, and P. J. Gregson, “Effect of different Ti-6Al-4V surface treatments on osteoblasts behaviour,” Biomaterials, Vol. 23, pp. 1447-1454, 2002.
[10] E. Eisenbarth, D. Velten, K. S. Meuser, P. Linez, V. Biehl, H. Duschner, J. Breme, and H. Hildebrand, “Interactions between cells and titanium surfaces,” Biomolecular Engineering, Vol. 19, pp. 243-249, 2002.
[11] K. Derhami, J. F. Wolfaardt, A. Wennerberg, and P. G. Scott, “Quantifying the adherence of fibroblasts to titanium and its enhancement by substrate-attached material,” Journal of Biomedical Material Research, Vol. 52, pp. 315-322, 2000.
[12] O. Zinger, K. Anselme, A. Denzer, P. Habersetzer, M. Wieland, J. Jeanfils, P. Hardouin, and D. Landolt, “Time-independent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography,” Biomaterials, Vol. 25, pp. 2695-2711, 2004.
[13] F. Luthen, R. Lange, P. Becker, J. Rychly, U. Beck, and J. G. B. Nebe, “The influence of surface roughness of titanium on β1- and β3-integrin adhesion and the organization of fibronectin in human osteoblastic cells,” Biomaterials, Vol. 26, pp. 2423-2440, 2005.
[14] D. D. Deligianni, N. D. Katsala, P. G.. Koutsoukos, and Y. F. Missirlis, “Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength,” Biomaterials, Vol. 22, pp. 87-96, 2001.
[15] D. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. F. Missirlis, “Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption,” Biomaterials, Vol. 22, pp. 1241-1251, 2001.
[16] K. Anselme, “Osteoblast adhesion on biomaterials,” Biomaterials, Vol. 21, pp. 667-681, 2000.
[17] J. W. Lee, T. H. Kim, K. D. Park, K. S. Jee, J. W. Shin, and S. B. Hahn, “Importance of integrin β1-mediated cell adhesion on biodegradable polymers under serum depletion in mesenchymal stem cells and chondrocytes,” Biomaterials, Vol. 25, pp. 1901-1909, 2004.
[18] C. D. Reyes and A. J. Garcia, “A centrifugation cell adhesion assay for high-throughput screening of biomaterial surfaces,” Journal of biomedical materials research, Vol. 67A, pp. 328-333, 2003.
[19] K. S. Furukawa, T. Ushida, T. Nagase, H. Nakamigawa, T. Noguchi, T. Tamaki, J. Tanaka, and T. Tateishi, “Quantitative analysis of cell detachment by shear stress,” Materials Science and Engineering, Vol. 17C, pp. 55-58, 2001.
[20] N. F. Owens, D. Gingell, and P. R. Rutter, “Inhibition of cell adhesion by a synthetic polymer adsorbed to glass shown under defined hydrodynamic stress,” Journal of Cell Science, Vol. 87, pp. 667-675, 1987.
[21] A. J. Garcia, P. Ducheyne, and D. Boettieger, “Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials,” Biomaterials, Vol. 18, pp. 1091-1098, 1997.
[22] A. Yamaomto, S. Mishima, N. Maruyama, and M. Sumita, “Quantitative evaluation of cell attachment to glass, polysryrene, and fibronectin- or collagen-coated polystyrene by measurement of cell adhesive shear force and cell detachment energy,” Journal of Biomedical Materials Research, Vol.50, pp. 114-124, 2000.
[23] K. A. Athanasiou, B. S. Thoma, D. R. Lanctot, D. Shin, C. M. Agrawal, and R. G. Lebaron, “Development of the cytodetachment technique to quantify mechanical adhesiveness of the single cell,” Biomaterials, Vol. 20, pp. 2405-2415, 1999. [24] G. Sagvolden, I. Giaever, E. O. Petteersen, and J. Feder, “Cell adhesion force microscopy,” Proc. Natl. Acad. Sci, Vol. 96, pp. 471-476, 1999.
[25] A. Yamamoto, S. Mishima, N. Maruama, and M. Sumita, “A new technique for direct measurement of the shear force necessary to detach a cell from a material,” Biomaterials, Vol. 19, pp. 871-879,1998.
[26] Y. J. Kim, J. W. Shin, K. D. Park, J. W. Lee, N. Yui, S. A. Park, K. S. Jee, and J. K. Kim, “A study of compatibility between cells and biopolymeric surfaces through quantitative measurements of adhesive forces,” J. Biomater. Sci. Polymer. Edn, Vol. 14, pp. 1311-1321, 2003.
[27] Schwartz Z and Boyan BD, “Underlying mechanisms at the bone-biomaterial interface,” Journal of Cellular Biochemistry, Vol. 56, pp. 340-347, 1994.
[28] P. T. de Oliveria, and A. Nanci, “Nanotexturing of titanium-based surfaces upregulates expressions of bone sialoprotein and osteopontin by cultured osteogenic cells,” Biomaterials, Vol. 25, pp. 403-413, 2004.
[29] H. H. Huang, C. T. Ho, T. H Lee, T. L. Lee, K. K. Liao, and F. L. Chen, “Effect of surface roughness of ground titanium on initial cell adhesion,” Biomolecular Engineering, Vol. 21, pp. 93-97, 2004.
[30] L. Ponsonnet, V. Comte, A. Othmane, C. Lagneau, M. Charbonnier, M. Lissac, and N. Jaffrezic, “Effect of surface topography and chemistry on adhesion, orientation and growth of fibroblasts on nickel-titanium substrates,” Materials Science and Engineering, Vol. 21, pp. 157-165, 2002.
[31] P. G. Korovessis and D. D. Deligianni, “Role of Surface of Titanium Versus Hydroxyapatite on Human Bone Marrow Cells Response,” Journal of Spinal Disorders& Techniques, Vol. 15, No. 2, pp. 175-183, 2002.
[32] K. Anselme, M. Bigerelle, B. Noel, A. Iost, and P. Hardouin, “Effect of grooved titanium substratum on human osteoblastic cell growth,” Journal of Biomedical Material Research, Vol. 60, pp. 529-540, 2002.
[33] J. C. Keller, G. B. Schneider, C. M. Stanford, and B. Kellogg, “Effects of Implant Microtopography on Osteoblast Cell Attachment,” Implant Dentistry, Vol. 12, pp. 175-181, 2003.
[34] P. J. ter Brugge, S. Dieudonne, and J. A. Jansen, “Initial interaction of U2OS cells with noncoated and calcium phosphate coated titanium substrates,” Journal of Biomedical Material Research, Vol. 61, pp. 399-407, 2002.
[35] C. Wirth, V. Comte, C. Lagneau, P. Exbrayat, M. Lissac, N. J. Renault, and L. Ponsonnet, “Nitinol surface roughness modulates in vitro cell response: a comparison between fibroblasts and osteoblasts,” Materials Science and Engineering, Vol. 25, pp. 51-60, 2005.
[36] K. Anselme, P. Linez, M. Bigerelle, D. L. Maguer, A. L. Maguer, P. Hardouin, H. F. Hidebrand, A. Iost, and J. M. Leroy, “The relative influence of the topography and chemistry of Ti6Al4V surfaces on osteoblastic cell behaviour,” Biomaterials, Vol. 21, pp. 1567-1577, 2000.
[37] K. Anselme, M. Bigerelle, B. Noel, E. Dufresne, D. Judas, A. Iost, and P. Hardouin, “Quantitative and quantitative study of human osteoblast adhesion on materials with various surface roughness,” Journal of Biomedical Material Research, Vol.49, pp. 155-166, 2000.
[38] P. L. Bataillon, F. Monchau, M. Bigerelle, and H. F. Hildebrand, “In vitro MC3T3 osteoblast adhesion with respect to surface roughness of Ti6Al4V substrates,” Biomolecular Engineering, Vol. 19, pp.133-141, 2002.
[39] R. Lange, F. Luthen, U. Beck, J. Rychly, A. Baumann, and B. Nebe, “Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material,” Biomolecular Engineering, Vol. 19, pp. 255-261, 2002.
[40] T. J. Webster, R. W. Siegel, and R. Bizios, “Design and evalution of nanophase alumina for orthopedic/dental applications,”Nanostructured Materials, Vol. 12, pp. 983-986, 1999.
[41] T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel, and R. Bizios, “Specific proteins mediate enhanced osteoblasts adhesion on nanophase ceramics,” Journal of Biomedical Materials Research, vol. 51, pp. 475-483, 2000.
[42] T. J. Webster, R. W. Siegel, and R. Bizios, “Osteoblast adhesion on nanophase ceramics,”Biomaterials, Vol. 20, pp.1221-1227, 1999.
[43] T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel, and R. Bizios, “Enhanced functions of osteoblasts on nanophase ceramics,” Biomaterials, Vol. 21, pp.1803-1810, 2000.
[44] K. L. Elias, R. L. Price, and T. J. Webster, “Enhanced functions of osteoblasts on nanometer diameter carbon fibers,” Biomaterials, vol. 23, pp.3279-3287, 2002.
[45] R. L. Price, K. Ellison, K. M. Haberstroh, and T. J. Webster, “Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts,” Journal of Biomedical Materials Research, Vol. 70A, pp. 129-138, 2004.
[46] T. J. Webster and J. U. Ejiofor, “Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo,” Biomaterials, Vol. 25, pp. 4731-4739, 2004.
[47] B.Feng, J. Y. Chen, S. K. Ql, L. He, J. Z. Zhaq, X. D. Zhang, “Characterization of surface oxide films on titanium and bioactivity,” Journal of Materials Science: Materials in Medicine, Vol. 13, pp. 457-464, 2002.
[48] K. Webb, V. Hlady, and P. A. Tresco, “Relative importance wettability and charged functional groups on NIH-3T3 fibroblast attachment, spreading, and cytoskeletal organization,” Journal of Biomedical Material Research, Vol. 41, pp. 422-430, 1998.
[49] B. Feng, J. Weng, B. C. Yang, S. X. Qu, and X. D. Zhang, “Characterization of surface oxide films on titanium and adhesion of osteoblast,” Biomaterials, Vol. 24, pp. 4663-4670, 2003.
[50] J. H. C. Wang, E. S. Grood, J. Florer, and R. Wenstrup, “Alignment and proliferation of MC3T3-E1 osteoblasts in microgrooved silicone substrata subjected to cyclic stretching,” Journal of Biomechanics, Vol. 33, pp. 729-735, 2000.
|