跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 00:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧尚頡
研究生(外文):Shang-Chieh Lu
論文名稱:鈍化具奈米級表面粗糙度的鈦合金對纖維細胞初期黏附之影響
論文名稱(外文):Passivation Effects of Initial Fibroblast Adhesion to Titanium Alloy with Nano Roughness
指導教授:王清正李澤民李澤民引用關係
指導教授(外文):Ching-Cheng WangTzer-Min Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:製造工程研究所碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:34
中文關鍵詞:細胞刮取儀掃描式探針顯微鏡細胞黏附強度纖維細胞鈦六鋁四釩
外文關鍵詞:Ti6Al4VfibroblastCell adhesive forceSPMCytodetachment
相關次數:
  • 被引用被引用:4
  • 點閱點閱:382
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
  本研究針對具奈米等級表面粗糙度的鈦六鋁四釩合金經由不同表面鈍化處理和纖維細胞初期黏附關係進行探討。四種試片表面處理分別為:試片表面未鈍化處理 (HC)、400度高溫爐處理 (HT)、100度去離子水處理 (HA)以及體積濃度34%硝酸處理 (HP)。利用X光光電子分析儀分析試片氧化膜化學性質;利用掃描試探針顯微鏡量測試片奈米化等級表面型態及粗糙度;利用接觸角量測儀評估試片氧化膜表面溼潤性;利用細胞刮取儀評估試片與纖維母細胞初期(三小時)黏附強度;利用多功能掃描式電子顯微鏡觀察纖維母細胞初期表面型態。從XPS以及接觸角量測結果顯示鈦六鋁四釩奈米表面溼潤性和其表面Ti-OH group含量相關。當試片表面溼潤性越高時,纖維母細胞初期黏附強度也隨之提高;從SPM結果顯示鈦六鋁四釩試片經由不同鈍化處理會改變表面粗糙度,其範圍為1.9~7.4nm;利用細胞刮取技術,纖維母細胞在四種不同表面鈍化處理的初期黏附強度為54~103nN。本實驗結果顯示鈦六鋁四釩合金經由不同表面鈍化處理,試片表面Ti-OH basic group含量、濕潤性、粗糙度均不相同,進而影響纖維母細胞在試片奈米表面上的初期細胞黏附強度和細胞型態。
 This study aims at investigating the initial adhesive force between fibroblasts and passivated Ti6Al4V alloy of nano-surface roughness. Effects of four passivation treatments were examined: non-treated (HC), heated in 400°C air (HT), aged in 100°C de-ionized water (HA), and immersed in volume 34% nitric acid (HP). The chemical property of surface oxide is measured by X-ray Photoelectron Spectroscopy (XPS); the nano-surface roughness and morphology is measured by Scanning Probe Microscope (SPM); the surface wettability is measured by static contact angle assessment method; the initial adhesive force is measured by cytodetachment method; images of cell morphology is taken by Multi Scanning Electron Microscopy (M-SEM). The surface wettability is related to the content of basic Ti-OH group on the nano-surface of Ti6Al4V alloy. It has been observed that the higher the contact angle, the stronger the cell adhesion. By using SPM, it has been observed that different passivation treatments would modify the surface roughness of Ti6Al4V alloy differently, from 1.9nm to 7.4nm. By applying cytodetachment method, the initial cell adhesive force of fibroblasts was measured to be within 54 to 103nN for four different passivation treatments. Experimental results showed that different passivation treatment yielded different contents of basic Ti-OH group, wettability, and surface roughness, and they differently influenced the initial cell adhesive force and morphology of fibroblast on specimens of nano roughness.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
第二章 文獻探討 3
第三章 實驗材料與方法 7
3.1試片表面處理 7
3.1.1 試片表面研磨 7
3.1.2 試片表面拋光 7
3.1.3 試片表面鈍化 7
3.1.4 試片表面高壓滅菌 8
3.2 鈦六鋁四釩試片表面分析 8
3.2.1 表面型態分析 8
3.2.2 接觸角量測(Contact Angle) 8
3.3 細胞培養 9
3.4 細胞刮取實驗 9
3.4.1 夾具 10
3.4.2 細胞刮取儀 12
3.5 細胞型態觀察 13
3.5.1細胞固定所需藥品 13
3.5.2 細胞固定 14
3.5.3 臨界點乾燥 14
3.6 統計分析 15
第四章 結果 16
4.1 XPS分析結果 16
4.2 試片表面粗糙度與表面型態 17
4.3 試片接觸角量測 20
4.4 細胞黏附 22
4.5 細胞型態觀察 25
第五章 討論與結論 26
5.1 討論 26
5.1.1細胞黏附強度 26
5.1.2 試片表面濕潤性和化學性質對纖維細胞黏附影響 26
5.1.3 試片表面粗糙度對纖維細胞黏附影響 28
5.2 結論 29
參考文獻 30
[1] T. M. Lee, E. Chang, and C.Y. Yang, “Attachment and proliferation of neonatal rat calvarial osteoblasts on Ti6Al4V: effect of surface chemistries of the alloy,” Biomaterials, Vol. 25, pp. 23-32, 2004.

[2] T. M. Lee and E. Chang, “Surface characteristics of Ti6Al4V alloy: effect of materials, passivation and autoclaving,” Journal of material science: materials in medicine, Vol. 9, pp. 439-448, 1998.

[3] T. M. Lee and E. Chang, “Effect of passivation on the dissolution behavior of Ti6Al4V and vacuum-brazed Ti6Al4V in Hank’s solution Part I Ion release,” Journal of material science: materials in medicine, Vol. 10, pp. 541-548, 1999.

[4] T. M. Lee and E. Chang, “Effect of surface chemistries and characteristics of Ti6Al4V on the Ca and P adsorption and ion dissolution in Hank’s ethylene diamine tetra-acetic acid solution,” Biomaterials, Vol. 23, pp. 2917-2925, 2002.

[5] X. Zhu, J. Chen, L. Scheideler, R. Reichl, and J. G.. Gerstorfer, “Effects of topography and composition of titanium surface oxides on osteoblasts responses,” Biomaterials, Vol. 25, pp. 4087-4103, 2004.

[6] M. F. Maitz, M. T. Pham, and E. Wieser, “Blood compatibility of titanium oxides with various crystal structure and element doping,” Journal of biomaterials applications, Vol. 17, pp. 303-319, 2003.

[7] M. Manso, S. Ogueta, J. P. Rigueiro, J. P. Garcia, and J. M. M. Duart, “Testing biomaterials by the in-situ evaluation of cell response,” Biomolecular Engineering, Vol. 19, pp. 239-242, 2002.

[8] L. Ponsonnet, K. Reybier, N. Jaffrezia, V. Comte, C. Lagneau, M. Lissac, and C. Martelet, “Relationship between surface properties(roughness, wettability) of titanium and titanium alloys and cell behaviour,” Materials Science and Engineering, Vol. 23, pp. 551-560, 2003.

[9] C. H. Ku, D. P. Pioletti, M. Browne, and P. J. Gregson, “Effect of different Ti-6Al-4V surface treatments on osteoblasts behaviour,” Biomaterials, Vol. 23, pp. 1447-1454, 2002.

[10] E. Eisenbarth, D. Velten, K. S. Meuser, P. Linez, V. Biehl, H. Duschner, J. Breme, and H. Hildebrand, “Interactions between cells and titanium surfaces,” Biomolecular Engineering, Vol. 19, pp. 243-249, 2002.

[11] K. Derhami, J. F. Wolfaardt, A. Wennerberg, and P. G. Scott, “Quantifying the adherence of fibroblasts to titanium and its enhancement by substrate-attached material,” Journal of Biomedical Material Research, Vol. 52, pp. 315-322, 2000.



[12] O. Zinger, K. Anselme, A. Denzer, P. Habersetzer, M. Wieland, J. Jeanfils, P. Hardouin, and D. Landolt, “Time-independent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography,” Biomaterials, Vol. 25, pp. 2695-2711, 2004.

[13] F. Luthen, R. Lange, P. Becker, J. Rychly, U. Beck, and J. G. B. Nebe, “The influence of surface roughness of titanium on β1- and β3-integrin adhesion and the organization of fibronectin in human osteoblastic cells,” Biomaterials, Vol. 26, pp. 2423-2440, 2005.

[14] D. D. Deligianni, N. D. Katsala, P. G.. Koutsoukos, and Y. F. Missirlis, “Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength,” Biomaterials, Vol. 22, pp. 87-96, 2001.

[15] D. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. F. Missirlis, “Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption,” Biomaterials, Vol. 22, pp. 1241-1251, 2001.

[16] K. Anselme, “Osteoblast adhesion on biomaterials,” Biomaterials, Vol. 21, pp. 667-681, 2000.

[17] J. W. Lee, T. H. Kim, K. D. Park, K. S. Jee, J. W. Shin, and S. B. Hahn, “Importance of integrin β1-mediated cell adhesion on biodegradable polymers under serum depletion in mesenchymal stem cells and chondrocytes,” Biomaterials, Vol. 25, pp. 1901-1909, 2004.

[18] C. D. Reyes and A. J. Garcia, “A centrifugation cell adhesion assay for high-throughput screening of biomaterial surfaces,” Journal of biomedical materials research, Vol. 67A, pp. 328-333, 2003.

[19] K. S. Furukawa, T. Ushida, T. Nagase, H. Nakamigawa, T. Noguchi, T. Tamaki, J. Tanaka, and T. Tateishi, “Quantitative analysis of cell detachment by shear stress,” Materials Science and Engineering, Vol. 17C, pp. 55-58, 2001.

[20] N. F. Owens, D. Gingell, and P. R. Rutter, “Inhibition of cell adhesion by a synthetic polymer adsorbed to glass shown under defined hydrodynamic stress,” Journal of Cell Science, Vol. 87, pp. 667-675, 1987.

[21] A. J. Garcia, P. Ducheyne, and D. Boettieger, “Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials,” Biomaterials, Vol. 18, pp. 1091-1098, 1997.

[22] A. Yamaomto, S. Mishima, N. Maruyama, and M. Sumita, “Quantitative evaluation of cell attachment to glass, polysryrene, and fibronectin- or collagen-coated polystyrene by measurement of cell adhesive shear force and cell detachment energy,” Journal of Biomedical Materials Research, Vol.50, pp. 114-124, 2000.

[23] K. A. Athanasiou, B. S. Thoma, D. R. Lanctot, D. Shin, C. M. Agrawal, and R. G. Lebaron, “Development of the cytodetachment technique to quantify mechanical adhesiveness of the single cell,” Biomaterials, Vol. 20, pp. 2405-2415, 1999.
[24] G. Sagvolden, I. Giaever, E. O. Petteersen, and J. Feder, “Cell adhesion force microscopy,” Proc. Natl. Acad. Sci, Vol. 96, pp. 471-476, 1999.

[25] A. Yamamoto, S. Mishima, N. Maruama, and M. Sumita, “A new technique for direct measurement of the shear force necessary to detach a cell from a material,” Biomaterials, Vol. 19, pp. 871-879,1998.

[26] Y. J. Kim, J. W. Shin, K. D. Park, J. W. Lee, N. Yui, S. A. Park, K. S. Jee, and J. K. Kim, “A study of compatibility between cells and biopolymeric surfaces through quantitative measurements of adhesive forces,” J. Biomater. Sci. Polymer. Edn, Vol. 14, pp. 1311-1321, 2003.

[27] Schwartz Z and Boyan BD, “Underlying mechanisms at the bone-biomaterial interface,” Journal of Cellular Biochemistry, Vol. 56, pp. 340-347, 1994.

[28] P. T. de Oliveria, and A. Nanci, “Nanotexturing of titanium-based surfaces upregulates expressions of bone sialoprotein and osteopontin by cultured osteogenic cells,” Biomaterials, Vol. 25, pp. 403-413, 2004.

[29] H. H. Huang, C. T. Ho, T. H Lee, T. L. Lee, K. K. Liao, and F. L. Chen, “Effect of surface roughness of ground titanium on initial cell adhesion,” Biomolecular Engineering, Vol. 21, pp. 93-97, 2004.

[30] L. Ponsonnet, V. Comte, A. Othmane, C. Lagneau, M. Charbonnier, M. Lissac, and N. Jaffrezic, “Effect of surface topography and chemistry on adhesion, orientation and growth of fibroblasts on nickel-titanium substrates,” Materials Science and Engineering, Vol. 21, pp. 157-165, 2002.

[31] P. G. Korovessis and D. D. Deligianni, “Role of Surface of Titanium Versus Hydroxyapatite on Human Bone Marrow Cells Response,” Journal of Spinal Disorders& Techniques, Vol. 15, No. 2, pp. 175-183, 2002.

[32] K. Anselme, M. Bigerelle, B. Noel, A. Iost, and P. Hardouin, “Effect of grooved titanium substratum on human osteoblastic cell growth,” Journal of Biomedical Material Research, Vol. 60, pp. 529-540, 2002.

[33] J. C. Keller, G. B. Schneider, C. M. Stanford, and B. Kellogg, “Effects of Implant Microtopography on Osteoblast Cell Attachment,” Implant Dentistry, Vol. 12, pp. 175-181, 2003.

[34] P. J. ter Brugge, S. Dieudonne, and J. A. Jansen, “Initial interaction of U2OS cells with noncoated and calcium phosphate coated titanium substrates,” Journal of Biomedical Material Research, Vol. 61, pp. 399-407, 2002.

[35] C. Wirth, V. Comte, C. Lagneau, P. Exbrayat, M. Lissac, N. J. Renault, and L. Ponsonnet, “Nitinol surface roughness modulates in vitro cell response: a comparison between fibroblasts and osteoblasts,” Materials Science and Engineering, Vol. 25, pp. 51-60, 2005.

[36] K. Anselme, P. Linez, M. Bigerelle, D. L. Maguer, A. L. Maguer, P. Hardouin, H. F. Hidebrand, A. Iost, and J. M. Leroy, “The relative influence of the topography and chemistry of Ti6Al4V surfaces on osteoblastic cell behaviour,” Biomaterials, Vol. 21, pp. 1567-1577, 2000.

[37] K. Anselme, M. Bigerelle, B. Noel, E. Dufresne, D. Judas, A. Iost, and P. Hardouin, “Quantitative and quantitative study of human osteoblast adhesion on materials with various surface roughness,” Journal of Biomedical Material Research, Vol.49, pp. 155-166, 2000.

[38] P. L. Bataillon, F. Monchau, M. Bigerelle, and H. F. Hildebrand, “In vitro MC3T3 osteoblast adhesion with respect to surface roughness of Ti6Al4V substrates,” Biomolecular Engineering, Vol. 19, pp.133-141, 2002.

[39] R. Lange, F. Luthen, U. Beck, J. Rychly, A. Baumann, and B. Nebe, “Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material,” Biomolecular Engineering, Vol. 19, pp. 255-261, 2002.

[40] T. J. Webster, R. W. Siegel, and R. Bizios, “Design and evalution of nanophase alumina for orthopedic/dental applications,”Nanostructured Materials, Vol. 12, pp. 983-986, 1999.

[41] T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel, and R. Bizios, “Specific proteins mediate enhanced osteoblasts adhesion on nanophase ceramics,” Journal of Biomedical Materials Research, vol. 51, pp. 475-483, 2000.

[42] T. J. Webster, R. W. Siegel, and R. Bizios, “Osteoblast adhesion on nanophase ceramics,”Biomaterials, Vol. 20, pp.1221-1227, 1999.

[43] T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel, and R. Bizios, “Enhanced functions of osteoblasts on nanophase ceramics,” Biomaterials, Vol. 21, pp.1803-1810, 2000.

[44] K. L. Elias, R. L. Price, and T. J. Webster, “Enhanced functions of osteoblasts on nanometer diameter carbon fibers,” Biomaterials, vol. 23, pp.3279-3287, 2002.

[45] R. L. Price, K. Ellison, K. M. Haberstroh, and T. J. Webster, “Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts,” Journal of Biomedical Materials Research, Vol. 70A, pp. 129-138, 2004.

[46] T. J. Webster and J. U. Ejiofor, “Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo,” Biomaterials, Vol. 25, pp. 4731-4739, 2004.

[47] B.Feng, J. Y. Chen, S. K. Ql, L. He, J. Z. Zhaq, X. D. Zhang, “Characterization of surface oxide films on titanium and bioactivity,” Journal of Materials Science: Materials in Medicine, Vol. 13, pp. 457-464, 2002.


[48] K. Webb, V. Hlady, and P. A. Tresco, “Relative importance wettability and charged functional groups on NIH-3T3 fibroblast attachment, spreading, and cytoskeletal organization,” Journal of Biomedical Material Research, Vol. 41, pp. 422-430, 1998.

[49] B. Feng, J. Weng, B. C. Yang, S. X. Qu, and X. D. Zhang, “Characterization of surface oxide films on titanium and adhesion of osteoblast,” Biomaterials, Vol. 24, pp. 4663-4670, 2003.

[50] J. H. C. Wang, E. S. Grood, J. Florer, and R. Wenstrup, “Alignment and proliferation of MC3T3-E1 osteoblasts in microgrooved silicone substrata subjected to cyclic stretching,” Journal of Biomechanics, Vol. 33, pp. 729-735, 2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. [7]. 王冬信, “電子業超純水循環系統”, 化工技術, 第 16 期, 1994.07, p.52 ~ p.61
2. 3.凌鳳儀、陳承先,華沙公約體系的發展與概況,民航季刊第1卷第3期,1999年9月。
3. 17.譚湘龍,從國際航空法的觀點論代碼共用,民航季刊第1卷第3期,1999年9月。
4. 16.譚湘龍,電子機票在華沙公約體系下所衍生的相關法律問題,民航季刊,第1卷第4期,1999年12月。
5. 15.劉鐵錚,航空運送人對旅客損害賠償責任之研究(下),政大法學評論第12期,1975年10月。
6. 14.劉鐵錚,航空運送人對旅客損害賠償責任之研究(上),政大法學評論第11期,1974年12月。
7. 13.劉春堂,論國際航空運送人有限責任,保險專刊第16輯,1989年6月。
8. 12.鄭森耀,航空保險的歷史和市場,保險專刊第27輯,1992年3月。
9. 11.鄭森耀,航空責任保險,保險專刊第31輯,1993年3月。
10. 10.蔣文育、張志清、梁金樹,電子簽章法於航空客運網路訂位系統之問題與因應之道,民航季刊第5卷第2期,2003年6月。
11. 8.彭明敏,關於國際空運之國際立法,台大社會科學論叢第11輯,1966年6月。
12. 6.張有恆、陳方元,航空策略聯盟之探討,民航季刊第4卷第3期,2000年9月。
13. [9]. 許如助、王冬信, “過濾技術在半導體工業之應用“, 化工技術, 第 65 期, 1998.08, p.186 ~ 195
14. 5.張有恆、林宜欣,航空保險理論與實務之研究,民航季刊第6卷第3期,2004年9月。
15. [8]. 吳明全, “善用水資源從建立合理水價做起”, 環耕(Proeco), 雙月刊, 1997. 01/02,