跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/11 02:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林峻毅
研究生(外文):Chun-Yi Lin
論文名稱:雷射輔助直寫式壓印技術對週期性結構之參數探討
論文名稱(外文):Parametric Investigation of Laser-Assisted Direct Imprinting (LADI) Technology for Periodic Structures
指導教授:蕭飛賓
指導教授(外文):Fei-Bin Hsiao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微機電系統工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:64
中文關鍵詞:準分子脈衝雷射石英母模壓印深度壓印力量雷射能量密度雷射輔助直接壓印
外文關鍵詞:Laser-assisted Direct ImprintingLaser FluenceImprinted PressureImprinted DepthExcimer laser
相關次數:
  • 被引用被引用:1
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
隨著半導體科技快速的發展,傳統光學微影技術在現有的ArF(波長為193奈米),搭配許多精密解析度增益技術,在製作奈米等級線寬時已經將近到達其物理極限,並且也造成成本上的負擔。奈米壓印由於其高產量和低成本,在奈米結構和製程上的重要性與可行性,已在學術界和產業界造成廣泛的研究與討論,並且是奈米科技上重要的研究課題。雷射輔助直接壓印技術則是奈米壓印技術在近年來的重大突破;在雷射輔助直接壓印技術裡,我們使用KrF準分子脈衝雷射(雷射波長248奈米而脈衝時間為30奈秒)當作輔助材料加熱融化的熱源。並使用以做好微米或奈米等級圖案的高透光率石英當作母模,將石英母模跟欲壓印材料接觸並且預加壓力,而後從石英正上方施加準分子雷射,當基材產生融化現象時,預施壓力在基材上的石英母模會因為融化的矽在短時間內填滿模具上的圖案,並且重新成形。其間,僅耗時數百奈秒,製程快速;可以省去一般奈米壓印所需的蝕刻阻擋層的塗佈、加溫壓印,以及後續的蝕刻製程,直接複製母模之負向圖案在矽基板上面,大大的縮短奈米壓印的時間。從半導體製程而言,縮減了光阻塗佈、曝光、顯影及蝕刻等手續,也不需要昂貴高成本的解析度增益技術。
本文將研究雷射加工平台的建置,並且藉由設計平台來探討加工參數對於製程上的影響,包括了雷射能量密度(laser fluence)和壓印壓力對於壓印深度的影響,本文挑選雷射能量密度0.7∼1.2 J/cm2而壓印力量為2∼9 kg,藉以探討三者之間的互相影響。經由後續實驗的量測,壓印後的外觀及壓印深度與雷射能量密度及壓印壓力相關。
As the rapid development of semiconductor technology, the feature size which is smaller than 100nm has reached its limitation. At the present exposure wavelength, ArF (193nm in wavelength), optical photolithography technique with several resolution- enhancement techniques has already reached its physical limitation and the escalating cost has become a burden for many companies. Nano-imprinting Lithography (NIL) has been considered as the most promising technique for nano-scaled fabrication and patterning. Recently, a new approach known as Laser-Assisted Direct Imprinting (LADI) has been proposed and demonstrated as an even more efficient way for direct nanofabrication and nanopatterning. In this study, we focused on silicon materials and utilized a single KrF excimer laser pulse (248 nm wavelength and 30 ns pulse duration) as the heating source. Molds of micro-scaled size have been prepared using conventional photolithography techniques. A working platform based on an Excimer Laser Micro-Machining system is constructed for LADI process. The influence of laser fluence and the imprinted pressure on the resulting structures was verifying by varying the laser fluence (0.7∼1.2 J/cm2) and the imprinted load (2∼9 kg). The results have shown that the morphology and the imprinted depth were directly related to the laser fluence and the imprinted pressure.
中文摘要...............................................I
Abstract..............................................II
致謝.................................................III
Contents..............................................IV
List of Tables........................................VI
List of Figures......................................VII
Symbols Descriptions.................................XIV


Chapter 1 Introduction
1.1 Preface............................................1
1.2 Literature Survey..................................3
1.3 Motivation........................................11
1.4 Thesis Outlines...................................14

Chapter 2 Experimental Procedure
2.1 Mold Fabrication..................................15
2.1.1 Beforehand Preparation.........................15
2.1.2 Photolithography...............................18
2.1.3 Dry etching and Dicing.........................21
2.2 Laser-Assisted Direct Imprinting (LADI)...........26
2.2.1 Excimer Laser Micro-Machining System...........26
2.2.2 Designed Working Platform......................29
2.2.3 Process for LADI...............................31

Chapter 3 Results and Discussions
3.1 Results...........................................33
3.1.1 Surface appearance.............................33
3.1.2 Imprinted depth................................44
3.2 Discussions.......................................50

Chapter 4 Conclusions and Future Perspective
4.1 Conclusions.......................................56
4.2 Future Perspective................................58

References............................................59
自述..................................................64
[1] G. E. Moore, “Cramming more components onto integrated circuits”, Electronics, Volume 38, Number 8, April 19, 1965.
[2] http://www.intel.com/research/silicon/mooreslaw.htm
[3] M. V. Klein, “Optics”, Wiley, New York, 1970.
[4] S. Okazaki, “Resolution limits of optical lithography”, Journal of vacuum science technology B, 9, 2829-2833, 1991.
[5] T. Ito and S. Okazaki, “Pushing the limits of lithography”, Nature, 406, 1027-1031, 2000.
[6] http://www.technologyreview.com/articles/print_version/emerging0203.asp
[7] S. Y. Chou, P. R. Kraus and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers”, Applied Physics Letters, 67(21), 3114-3116, 1995.
[8] P. R. Krauss and S. Y. Chou, “Fabrication of planar quantum magnetic disk structure using electron beam lithography, reactive ion etching, and chemical mechanical polishing”, Journal of Vacuum Science and Technology B, 13(6), 2850-2852, 1995.
[9] S. Y. Chou, P. R. Kraus and P. J. Renstrom, “Nanoimprint lithography”, Journal of Vacuum Science and Technology B, 14(6), 4129-4133, 1996.
[10] S. Y. Chou, P. R. Kraus and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution”, Science, 272, 85-87, 1996.
[11] L. J. Guo, P. R. Krauss and S. Y. Chou, “Nanoscale silicon field effect transistors fabricated using imprinting lithography”, Applied Physics Letters, 71, 1881-1883, 1997.
[12] H. Ten, A. Gibertson, and S. Y. Chou, “Roller nanoimprint lithography”, Journal of Vacuum science and Technology B, 16(6), 3926-3928, 1998.
[13] M. D. Austin and S. Y. Chou, “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography”, Applied Physics Letters, 81(23), 4431-4433, 2002.
[14] W. Zhang and S. Y. Chou, “Fabrication of 60-nm transistors on 4-in wafer using nanoimprint at all lithography levels”, Applied Physics Letters, 83(8), 1632-1634, 2003.
[15] W. Wu, J. Gu, H. X. Ge, C. Keimel and S. Y. Chou, “Room-temperature Si single-electron memory fabricated by nanoimprint lithography”, Applied Physics Letters, 83(11), 2268-2270, 2003.
[16] T. K. Whidden, D. K. Ferry, M. N. Kozicki, E. Kim, A. Kumar, J. Wilbur, and G. M. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE”, Nanotechnology, 7, 447-451, 1996.
[17] D. W. Wang, S. G. Thomas, K. L. Wang, Y. Xia and G. M. Whitesides, “Nanometer scale patterning and pattern transfer on amorphous Si, crystalline Si, and SiO2 surfaces using self-assembled monolayers”, Applied Physics Letters, 70(12), 1593-1595, 1997.
[18] X. M. Zhao, Y. Xia and G. M. Whitesides, “Soft lithographic methods for nano-fabrication”, Journal of Materials Chemistry, 7(7), 1069-1074, 1997.
[19] Y. Xia and G. M. Whitesides, “Soft lithography”, Angewandte Chemie International Edition, 37(5), 550-575, 1998.
[20] M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, “Fabrication of nanostructures using a UV-based imprint technique”, Microelectronic Engineering, 53(1-4), 233-236, 2000.
[21] M. Otto, M. Bender, B. Hadam, B. Spangenberg, and H. Kurz, “Characterization and application of a UV-based imprint technique”, Microelectronic Engineering, 57-58, 361-366, 2001.
[22] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G. Willson, “Step and flash imprint lithography: a new approach to high-resolution patterning”, Proceedings of the SPIE's 24th International Symposium on Microlithography: Emerging Lithographic Technologies III, Santa Clara, CA, Vol. 3676, Part One, 379-389, 1999.
[23] P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, M. Stewart, J. Ekerdt, S.V. Sreenivasan, J.C. Wolfe, C.G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography”, Journal of Vacuum Science and Technology B, 17(6), 2965-2969, 1999.
[24] M. Colburn, A. Grot, M. Amistoso, B. J. Choi, T. Bailey, J. Ekerdt, S.V. Sreenivasan, J. Hollenhorst, C. G. Willson, “Step and flash imprint lithography for sub-100nm patterning”, 2000 SPIE's 25th International Symposium Microlithography: Emerging Lithographic Technologies III. Feb. 28 - Mar. 3, 2000 Santa Clara, CA.
[25] T. Bailey, B. J. Choi, M. Colburn, A. Grot, M. Meissl, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, C.G. Willson, “Step and flash imprint lithography: template surface treatment and defect analysis”, Journal of Vacuum Science and Technology B, 18(6), 3572-3577, 2000.
[26] http://www.molecularimprints.com/Technology/technology2.html
[27] http://www.molecularimprints.com/Technology/stepandrepeat.html
[28] S. Y. Chou, C. Keimel and J. Gu, “Ultrafast and direct imprint of nanostructures in silicon”, Nature, 417, 835-837, 2002.
[29] R. Fabian Pease, “Imprint offer Moore”, Nature, 417, 802-803, 2002.
[30] S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. song, Y. F. Lu, and T. C. Ching, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects”, Journal of Applied Physics, 92(5), 2495-2500, 2002.
[31] L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, J. Shi and J. C. Li, “Fabrication of hemispherical cavity arrays on silicon substrates using laser-assisted nanoimprinting of self-assembled particles”, Nanotechnology, 15, 333-336, 2004.
[32] L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, and X. Y. Chen, “Parametric investigation of laser nanoimprinting of hemispherical cavity arrays”, Journal of Applied Physics, 96(9), 5144-5151, 2004.
[33] Q. Xia, C. Keimel, H. Ge, Z. Yu, W. Wu and S. Y. Chou, “Ultrafast patterning of nanostructures in polymers using laser assisted nanoimprinting lithography”, Applied Physics Letters, 83(21), 4417-4419, 2003.
[34] V. Grigaliūnas, S. Tamulevičius, R. Tomašiūnas, V. Kopustinskas, A. Guobienė, D. Jucius, “Laser pulse assisted nanoimprint lithography”, Thin Solid Films, 13-15, 453-454, 2004.
[35] Y. Lu, D. B. Shao, and S. C. Chen, “Laser-assisted photothemal imprinting of nanocomposite”, Applied Physics Letters, 85(9), 1604-1606, 2004.
[36] F. B. Hsiao, D. B. Wang, C. P. Jen, Y. C. Lee and C. H. Chuang, “Numerical Investigation of Phase-Change Heat Diffusion for Laser-Assisted Direct Nano Imprint Processing”, Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, Volume 3, Chapter 9, pp. 598, 2005
[37] X. Hong, “Introduction to semiconductor manufacturing technology”, Prentice Hall, Upper Saddle River, N. J., 2001.
[38] M. Madou, “Fundamentals of Microfabrication”, CRC Press, Boca Raton, Florida, pp. 53, 2nd, 2002.
[39] K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water”, Materials Science and Engineering A, 372, 145-162, 2004.
[40] J. Brannon, “Excimer laser ablation and etching”, New York, N. J., Education Committee, American Vacuum Society, Chapter 2, 1993.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top