(18.204.227.34) 您好!臺灣時間:2021/05/17 05:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張倍榮
研究生(外文):Bei-Rong Chang
論文名稱:混合GOD+BSA酵素感測層之金氧半結構乾式血糖感測器
論文名稱(外文):Dry-Type Glucose Sensor Using MOS Structure with GOD+BSA as The Sensing Layer
指導教授:吳幼麟
指導教授(外文):Dr.You-Lin Wu
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:生物醫學科技研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:81
中文關鍵詞:感測器葡萄糖酵素
外文關鍵詞:sensorglucoseenzyme
相關次數:
  • 被引用被引用:0
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本篇論文是以金氧半電容為基礎元件,利用混合之BSA(牛血清蛋白)+GOD(葡萄糖氧化脢)為檢測層,再使用固定化技術將酵素層作交聯(cross-link)製作成乾式葡萄糖感測器。我們針對不同的葡萄糖濃度之溶液作量測,研究中使用金氧半電容之電流-電壓(I-V)特性及低頻電容-電壓(C-V)特性來進行感測器特性之瞭解。依據實驗結果得知,在不同葡萄糖濃度溶液的I-V量測方面,感測膜之靈敏度(靈敏度)在滴入待測溶液20分鐘時於閘極電壓為VG =+4V和VG =+5V條件下分別約為0.72 pA/M 和 0.8 pA/M。另外,我們可以發現葡萄糖濃度愈高的溶液,其電流的漂移量愈大,這可能是因為較高的葡萄糖濃度有比較高的氫離子濃度,這些氫離子經與檢測層反應並且吸附於SiO2感測膜表面,造成漂移量的增加。
在C-V量測方面,亦可得到類似的結果,當滴有葡萄糖溶液使得SiO2感測膜表面有較多的氫離子吸附,造成低頻的C-V曲線向左偏移(shift)。本論文之實驗顯示,不同葡萄糖濃度的C-V曲線是有順序呈現的。
因為C-V曲線呈是一個往負電壓shift 的現象,所以我們認為透過酵素層反應出的 離子附著在SiO2感測膜上是主要的原因。由平帶電壓的變化與莫爾濃度可算出感測器的靈敏度,若以C-V曲線之平帶電壓作為感測量時,我們可以算出感測器的平帶電壓靈敏度為1.074 V/M 。
由於高葡萄糖濃度(0.5M~2M)的實驗數據可發現感測器對於葡萄糖的量測是可行且穩定的,所以我們更進一步量測低葡萄糖濃度的範圍至低於0.5M以下。我們更清楚的觀察出不同葡萄糖濃度的確會造成C-V曲線產生變化,由平帶電壓與莫爾濃度可算出感測器在低葡萄糖濃度下之靈敏度為34.4 mV/100mM 。
實驗的數據顯示,我們所提出之簡單金氧半架構搭配GOD+BSA之酵素層,經由其I-V 及C-V之量測,確實可以被用來偵測不同葡萄糖濃度的溶液,雖然I-V的變化量是非常微小的,卻非常規律且按順序排列,而且C-V之變化量到是有不錯的反應,且非常的穩定,與先前實驗室學長所作的pH-sensor 作比較,使用GOD+BSA酵素層在穩定性部分有相當大幅度的提升。
ABSTRACT

This thesis is based on the MOSC using the mixed BSA (Albumin serum Bovine ) and GOD(Glucose Oxidase) to be a sensitive layer and cross-linking the oxidase layer by using the immobilization technique to product a dry Glucose sensor.
We measured different concentration of Glucose solution and used the MOSC characteristic, I-V and Low Frequency C-V respectively, to research different Glucose concentration measurements.
According to experiment results, in the I-V measurement of different Glucose concentration, sensitivities of the sensitive layer are 0.72PA/M and 0.8PA/M respectively in the condition of Vg=+4V and Vg=+5V when we titrate the solution 20 minis later. Otherwise, we also found that if we increased the concentration of the Glucose solution, its amount of the current shift would become greater. This maybe the higher concentration of Glucose solution has more Hydrogen ion concentration and these Hydrogen ions adsorb on the interface of the SiO2 sensitive layer to increase the shift amount.
We could get similar results in the C-V measurement. When titrated Glucose solution make the surface of SiO2 sensitive layer get more Hydrogen ions absorption and this situation would make the Low-Frequency C-V curve shift to the left. This thesis experiments appeared that C-V curves with different Glucose concentration were order in displays.
Because the C-V curve exhibitions are phenomena of shift into the negative voltage, we think that those Hydrogen ions , reacting through the enzyme layer, adsorbing on the SiO2 sensitive film is a major reason.
We could calculate from its Flat-Band voltage variations and mole concentration that the approximate sensitivity of the sensor is 1.074V/M.
Owing to experiment data of high Glucose concentration (0.5M-2M) we could find the sensor was available and stable for measuring Glucose. So we further measured low Glucose concentration range which was below 0.5M.
We clearly observed that different Glucose concentration would cause Flat-Band variations indeed. We could calculate from the Flat-Band voltage and mole concentration that the sensitivity was 34.4mV/100mM under low Glucose concentration.
According the experiment data we thought this simple MOSC structure with GOD+BSA enzyme layer we proposed could be used to measure different Glucose concentration solution via its I-V and C-V measurement. Although the change amount of I-V was extreme small, it was very regular and arranged in order, and furthermore C-V variations had good response and expressed stably.
Comparing with the PH-sensor which was designed by predecessors of our lab, using the GOD+BSA enzyme layer has quite improvement about the part of stability substantially.
目次
第一章:緒論
1.1 研究動機(糖尿病發病機制)----------------------9
1.2 研究背景(ISFET 與MOSFET之差異)---------------12
1.3 Basic principles of glucose-sensor------------16
1.4 glucose-sensor之原理(固定化技術) -------------19
第二章:glucose-sensor 感測器之製作
2.1樣品製作---------------------------------------32
2.2 量測流程---------------------------------------35
第三章:結果與討論
3.1 I-V曲線之探討---------------------------------41
3.2 C-V曲線之探討---------------------------------42
3.3 平帶電壓之探討---------------------------------44
第四章:結論與未來工作
4.1結論-------------------------------------------46
4.2未來工作----------------------------------------48
參考文獻---------------------------------------------49
參考文獻

[1]Jung-Chuan Chou and Chen-Yu Weng ,“ sensitivty and hysteresis effect in Al2O3 gate pH-ISFET,”Materials Chemistry and Physics, 71 , (2001), pp.120-124.
[2]Jung-Chuan Chou and Yii-Fang Wang ,“Temperature Characteristic of a-Si:H Gate ISFET ,” Materials Chemistry and Physics, 70, (2001), pp.107-111.
[3]“BIOSENSOR PRINCIPLES AND APPLICATIONS ”edited by Loic J.Blum and Pierre R .Coulet.
[4] Chung-Lin Wu,Jung-Chuan Chou ,Wen-Yaw Chung ,Tai-Ping Sun ,and Shen-Kan Hsiung , “Study on SnO2/Al/SiO2/Si ISFET with a metal light shield,”Materials Chemistry and Physics, 63, (2000), pp.153-156.
[5] A.Fanigliulo, P.Accossato, M. Adami, M. Lanzi, S.Martinoia,S.Paddeu,M.T.Parodi,A.Rossi,M.Sartore,M.Grattarola, and C.Nicolini, “Comparison between a LAPS and an FET-based sensor for cell-metabolism detection” Sensors and Actuators, B 32, (1996), pp.41-48.
[6]Jung-Chuan Chou and Jung-Lung Chiang,“Study on the amorpHous tungsten trioxide ion-sensitive field effect transistor ”Sensors and Actuators, B 66, (2000), pp.106-108.
[7] Li-Lun Chi, Jung-Chuan Chou, Wen-Yaw Chung, Tai-Ping Sun,and Shen-Kan Hsiung“Study on extended gate field effect transistor with tin oxide sensing membrane” Materials Chemistry Physics, 63, (2000). Pp.19-23.
[8] B.Palan, F.V.Santos , J.M.Karam, B.Courtois, and M. Husak, “New ISFET sensor interface circuit for biomedical applications” Sensors and Actuators, B 57, (1999),pp.63-68.
[9] Jung-Chuan Chou and Yii-Fang Wang, “Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol-gel method” Sensors and Actuators ,B 86, (2002), pp.58-62.
[10]Jung-Lung Chiang , Shiun-Sheng Jan, Jung-Chuan Chou, and Ying-Chung Chen, “Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorpHous tungsten oxide” ,Sensors and Actuators B 76, (2001), pp.624-628.
[11]Jung-Chuan Chou, Yii-Fang Wang, and Jin-Sung Lin, “Temperature effect of a-Si:H pH-ISFET” Sensors and Actuators, B 62, (2000), pp. 92-96.
[12]Jung-Chuan Chou, and Ching-Nan Hsiao, “ Drift behavior of ISFETs with a-Si:H-SiO2 gate insulator”Materials Chemistry and Physics, 63, (2000), pp.270-273.
[13]Jung-Chuan Chou, Kai-Ye Huang, and Jin-Sung Lin,“Simulation of time-dependent effects of pH-ISFETs ”Sensors and Actuators, B 62, (2000), pp.88-91.
[14]Jung-Chuan Chou , and Ching-Nan Hsiao ,“The hysteresis and drift effect of hydrogenated amorpHous silicon for ISFET,”Sensors and Actuators, B 66, (2000), pp.181-183.
[15]Byunt-Ki Sohn ,Byunt-Woog Cho , Chang-Soo Kim , Dae-Hyuk Kwon ”ISFET glucose and sucrose sensors by using platinum electrode and pHoto-crosslinkable polymers”sensors and Actuators B 41 (1997) pp.7-11。.
[16]Jie Lin , Dong Liu “An optical PH sensor with a linear response over broad range ”, Analytica Chimica Acta 408 (2000) pp.49-55.
[17] 微生物酵素工程學,陳國誠著,藝軒/民78。
[18] http://www。bio-drchip。com。tw/chip_origin。asp(晶宇 生物科技實業股份有限公司)
[19] Peter B. Luppa, Lori J. Sokoll, and Daniel W. Chan, “ Immunosensors-principles and applications to clinical chemistry ”Clinica Chimica Acta , 314, (2001), pp.1-26.
[20] Sabine Koch, Peter Woias, Eva Kudlich, and Blanka Zimmerer, “The ISFET-based measurement of the streaming potential as a novel biosensor principle ”Sensors and Actuators, B 34, (1996), pp.289-294.
[21] Podaru, C . Bostam, C.;Malide, C. Neagoe, O. Simion, M.; Popescu, G. Gargancinc, D. Tzetci, N. 1996, “ An ampero- metric glucose
biosensor ”Semiconductor Conference, 1996. International ,Volume: 1 , 9-12 Oct.
Pages:101 - 104 vol.1。
[22] Keun-Yong Park, Sang-BoK Choi, Minho Lee ,Byung-Ki Sohn , Sie-Young Choi “ISFET sensor system with fast recovery characteristics by employing electrolysis ”sensor and Actuators B 83 (2002) pp.90-97
[23] Aizawa, M., Seyama, T., Fueki. F. Shiokawa.
J., Suzuki. S., 1983, “In Proceedings of the International Meeting of Chemical Sensors”Fukuoka,
Elsevier: Amsterdam, pp.683.
[24] 陳克紹、曹永偉編譯,感測器原理與應用技術,全華科技圖書股份有限公司。
[25]IEEE SENSOR CONFERENCE TORONTO, OCTOBER 2003
ISFET, Theory and Practice Bergveld Em, University of Twente, Fac.EE, MESA+ Research Institute,Box 217, 7500 AE Enschede .
[27]“PHysical organic chemistry” Isaacs , Neil S.
Longman Scientific & Technical : Wiley & Sons 1995
[28] “A Novel pH sensor Based on MOS Capacitor”黃領君2004.
[29] “All solid type ISFET glucose sensor with fast response and high sensitivity characteristics”
Chae-Hyang Lee , Hwa-Il Seo b , Young-Chul Lee c, Byung-Woog Cho c , Hoon Jeong a,Byung-Ki Sohn. Sensors and Actuators B 64 2000 37–41 .
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊