跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:ac57:fc92:1c8d:566e) 您好!臺灣時間:2025/01/14 08:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂宜芳
研究生(外文):Yi-Fang Lu
論文名稱:探討干擾素-γ及內毒素刺激誘導人類介白素12p35基因(IL-12p35)轉錄作用分子機轉之研究���n
論文名稱(外文):The Molecular Mechanism Studies of the IFN-γ and Endotoxin-induced Up-regulation of Human IL-12 p35 Gene
指導教授:袁俊傑袁俊傑引用關係
指導教授(外文):Chiun-Jye Yuan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生物科技系所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:58
中文關鍵詞:介白素12 p35基因干擾素-r內毒素
外文關鍵詞:IL-12 p35 GeneIFN-rendotoxin LPS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
介白素-12 ( Interleukin-12 )為抗原呈現細胞受到病原菌刺激後產生之細胞激素之一。主要之功能為活化自然殺手細胞及促使輔助型T細胞成熟。活化的介白素-12由p35及p40兩個次單元以雙硫鍵連接構成p70的異構雙體,其在先天性和後天性適應免疫反應上扮演很重要的橋樑。在抗原呈現細胞中,IL-12 p40基因表現之分子機轉已經廣泛被研究,而且已經找到一些重要的轉錄因子參與調控;相反的,在研究p35基因調控的領域上卻尚未明朗。然而,根據近期的一些研究指出,p35這個次單元的形成是決定產生活化的介白素-12的重要決定因素,而不是傳統認知的p40。因此在我們研究中,選殖了人類介白素12 p35啟動子區間-1183至+41,此區間之序列經由軟體比對發現除了目前已知之轉錄因子辨識位置之外,仍有一些與免疫相關之轉錄因子辨識區域可能存在。我們將啟動子區域序列自5’端選擇性截斷消去,再將這些不同長度之啟動子區域序列放置於蟲螢光酵素基因之前,來建構一系列的啟動區截斷型報導質體系統,以電穿孔方法將這些質體分別送入巨噬細胞中,再以干擾素�蚺峇漪r素刺激細胞做研究。
目前研究初步發現以IFN-�蚰�處理再以LPS作用處理細胞發現可以協同性地激活啟動子區間-595至-552及-440至-392,經由軟體比對分別可能為NF�羠,或 C/EBP (-579至-562)以及Oct-1(-410至-396)的辨識區間,所以顯示這些區間在IFN-r/LPS作用處理下會激活IL-12 p35基因的表現。往後,我們將進一步利用DNA結合親合性分析與電膠體位移實驗進而去探究在外來病原菌的刺激之下IL-12 p35基因作用的分子機轉。
Interleukin-12 (IL-12) is a pro-inflammatory cytokine secreted by antigen-presenting cells (APCs) in response to pathogen infections. The major functions of IL-12 are to induce the production of interferon-Interleukin-12 (IL-12) is a pro-inflammatory cytokine secreted by antigen-presenting cells (APCs) in response to pathogen infections. The major functions of IL-12 are to induce the production of interferon-Interleukin-12 (IL-12) is a pro-inflammatory cytokine secreted by antigen-presenting cells (APCs) in response to pathogen infections. The major functions of IL-12 are to induce the production of interferon-γ �� (IFN-γ ��), to activate natural killer cells, and to promote naïve T helper cells to functional type 1 T helper cells. Active IL-12 is a 70-kDa heterodimer of two subunits, p40 (40 kDa) and p35 (35 kDa), linked by disulfide bonds to form a p70 protein, and forms a link between innate resistance and adaptive immunity. The molecular mechanisms that regulate IL-12 p40 gene expression have been studied extensively. However, the regulation of the p35 gene expression is still obscure. Recent studies suggest that the expression of the p35 is a rate-limiting step for IL-12 heterodimer production. In our studies, we has cloned the promoter region -1183 to +41 of human IL-12 p35 gene containing several putative transcription factor binding elements with their DNA sequence confirmed. A set of luciferase reporter plasmids containing various length of human IL-12 p35 promoter were constructed and transfected into RAW264.7 cells to generate stable cell clones, which were futher used to study the molecular mechanisms underlying IFN-γ/LPS induced IL-12 p35 gene activation.
The preliminary study shows that the promoter region -595 to-552 and -440 to -392 are important for the IFN-γ-priming LPS-induced response. The regions, -595 to-552 and -440 to -392, may contain a NF�羠, or C/EBP binding site and Oct-1 binding site upon searching with MatInspector® and TESS, and may be essential for the up-regulation of IL-12 p35 gene in response to treatment of IFN-γ��/LPS. Further, we will confirm these results with DNA binding affinity assay and electrophoretic mobility shift assay to understand more about the regulation of IL-12 p35 gene, in response to pathogenic stimulation.
�� (IFN-γ��), to activate natural killer cells, and to promote naïve T helper cells to functional type 1 T helper cells. Active IL-12 is a 70-kDa heterodimer of two subunits, p40 (40 kDa) and p35 (35 kDa), linked by disulfide bonds to form a p70 protein, and forms a link between innate resistance and adaptive immunity. The molecular mechanisms that regulate IL-12 p40 gene expression have been studied extensively. However, the regulation of the p35 gene expression is still obscure. Recent studies suggest that the expression of the p35 is a rate-limiting step for IL-12 heterodimer production. In our studies, we has cloned the promoter region -1183 to +41 of human IL-12 p35 gene containing several putative transcription factor binding elements with their DNA sequence confirmed. A set of luciferase reporter plasmids containing various length of human IL-12 p35 promoter were constructed and transfected into RAW264.7 cells to generate stable cell clones, which were futher used to study the molecular mechanisms underlying IFN-γ/LPS induced IL-12 p35 gene activation.
The preliminary study shows that the promoter region -595 to-552 and -440 to -392 are important for the IFN-γ��-riming LPS-induced response. The regions, -595 to-552 and -440 to -392, may contain a NF�羠, or C/EBP binding site and Oct-1 binding site upon searching with MatInspector® and TESS, and may be essential for the up-regulation of IL-12 p35 gene in response to treatment of IFN-γ/LPS. Further, we will confirm these results with DNA binding affinity assay and electrophoretic mobility shift assay to understand more about the regulation of IL-12 p35 gene, in response to pathogenic stimulation.
�� (IFN-γ), to activate natural killer cells, and to promote naïve T helper cells to functional type 1 T helper cells. Active IL-12 is a 70-kDa heterodimer of two subunits, p40 (40 kDa) and p35 (35 kDa), linked by disulfide bonds to form a p70 protein, and forms a link between innate resistance and adaptive immunity. The molecular mechanisms that regulate IL-12 p40 gene expression have been studied extensively. However, the regulation of the p35 gene expression is still obscure. Recent studies suggest that the expression of the p35 is a rate-limiting step for IL-12 heterodimer production. In our studies, we has cloned the promoter region -1183 to +41 of human IL-12 p35 gene containing several putative transcription factor binding elements with their DNA sequence confirmed. A set of luciferase reporter plasmids containing various length of human IL-12 p35 promoter were constructed and transfected into RAW264.7 cells to generate stable cell clones, which were futher used to study the molecular mechanisms underlying IFN-γ/LPS induced IL-12 p35 gene activation.
The preliminary study shows that the promoter region -595 to-552 and -440 to -392 are important for the IFN-��-priming LPS-induced response. The regions, -595 to-552 and -440 to -392, may contain a NF�羠, or C/EBP binding site and Oct-1 binding site upon searching with MatInspector® and TESS, and may be essential for the up-regulation of IL-12 p35 gene in response to treatment of IFN-γ/LPS. Further, we will confirm these results with DNA binding affinity assay and electrophoretic mobility shift assay to understand more about the regulation of IL-12 p35 gene, in response to pathogenic stimulation.
中文摘要 i
Abstract ii
Acknowledgment iv
Contents v
Table contents vii
Figure Contents viii
Appendix Contents x
Introduction 1
Materials and Methods 7
I. Materials 7
Reagents 7
Primers and plasmids 8
II. Methods 8
Cell line and cell culture 8
Preparation of genomic DNA 9
Promoter subcloning and plasmids construction 10
Preparation of reporter plasmids stably trancfected cell lines 11
Luciferase Assay 13
Preparation of cell lysate 13
Luciferase assay 13
Protein assay 14
Western Blotting 14
DNA sequencing 15
Results 17
Discussion 23
Reference 28
[1] Janeway, C. A. Jr. (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today 13, 11–16.
[2] Giorgio Trinchieri. (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Review Immunol. 3, 133-146.
[3] Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, Loudon R, Sherman F, Perussia B, and Trinchieri G. (1989) Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med. 170, 827–846.
[4] Stern AS, Podlaski FJ, Hulmes JD, Pan YC, Quinn PM, Wolitzky AG, Familletti PC, Stremlo DL, Truitt T, Chizzonite R, et al. (1990) Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proc. Nat Acad. Sci. USA 87, 6808–6812.
[5] Ma, X., Chow, J. M., Gri, Giorgia., Carra, G., Gerosa, F. and Trinchieri, G. (1996) The interleukin 12 p40 gene promoter is primed by interferon-γ in monocytic cells. J. Exp. Med. 183, 147-157.
[6] Soiffer, R. J., Roberson M. J., Murray, C. and Ritz, J. (1993) Interleukin-12 augments cytolytic activity of peripheral blood lymphocytes from patients with hematologic and solid malignancies. Blood. 82, 2790-2796.
[7] Zeh, H. J. III., Hurd, S., Storkus, W. J. and Lotze, M. T. (1993) Interleukin 12 promotes the proliferation and cytolytic activity of immune effectors:implications for the immunotherapy of cancer. J. Immunother. 14, 155-161.
[8] Bigda, J., Mysliwska, J., Dziadzuszko, R., Bigda, J., Mysliswki, A. and Hellmann, A. (1993) Interleukin 12 augments natural killer cell mediated cytolytic in hairt cell leukemia. Leuk. Lymphoma 10, 121-125.
[9] Hill, H.C., Conway, T.F. Jr., Sabel, M.S., Jong, Y.S., Mathiowitz, E., Bankert, R.B., and Egilmez, N.K. (2002) Cancer Immunotherapy with Interleukin 12 and Granulocyte-Macrophage Colonystimulating Factor-encapsulated Microspheres: Coinduction of Innate and Adaptive Antitumor Immunity and Cure of Disseminated Disease1. Cancer Research 62, 7254–7263.
[10] Schwarze, J., Hamelmann, E., Cieslewicz, G., Tomkinson, A., Joetham, A., Bradley K, and Gelfand EW. (1998) Local treatment with IL-12 is an effective inhibitor of airway hyperresponsiveness and lung eosinophilia after airway challenge in sensitized mice. J. Allergy Clin. Immunol, 102, 86-93.
[11] Stirling, R. G. and Chung, K. F. (2000) New immunological approaches and cytokine targets in asthma and allergy. Eur. Respir. J. 16, 1158-1174.
[12] Sur, S., Bouchard, P., Holbert, D. and Van Scott, M. R. (2000) IL-12 inhibits airway reactivity to methacholine and respiratory failure in murine asthma. Exp. Lung Res. 26, 477-489.
[13] Babik, J.M., Adams, E., Tone, Y., Fairchild, P.J., Tone, M., and Waldmann, H. (1999) Expression of Murine IL-12 is regulated by translational control of the p35 subunit. J. Immunol. 162, 4069-4078.
[14] Oppmann, B., Lesley, R., Blom, B., Timans, J. C., Xu, Y., Hunte, B., Vega, F., Yu, N., Wang, J., Singh, K., Zonin, F., Vaisberg, E., et al.(2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725.
[15] Gillessen, S., Carvajal, D., Ling, P., Podlaski, F.J., Stremlo, D.L., Familletti, P.C., Gubler, U., Presky, D.H., Stern, A.S., and Gately, M.K. (1995) Mouse interleukin-12 (IL-12) p40 homodimer: a potent IL-12 antagonist. Eur J Immunol. 25, 200-206.
[16] Pflanz, S., Timans, J. C., Cheung, J., Rosales, R., Kanzler, H., Gilbert, J., Hibbert, L., Churakova, T., Travis, M., Vaisberg, E., Blumenschein, W. M., Mattson, J. D., et al. (2002) IL-27, a heterodimeric cytokine composed of EBI3 and novel p28 protein, induces proliferation of naïve CD4+ T cells. Immunity 16, 779–790.
[17] Goodridge, H.S., Harnett, W., Liew, F.Y. and Harnett, M. (2003) Differential regulation of interleukin-12 p40 and p35 induction via Erk mitogen-activated protein kinase-dependent and -independent mechanisms and the implications for bioactive IL-12 and IL-23 responses. Immunology 109 (3), 415-425.
[18] Belladonna, M.L., Renauld, J.C., Bianchi, R., Vacca, C., Fallarino, F., Orabona, C., Fioretti, M.C., Grohmann, U., and Puccetti P. (2000) IL-23 and IL-12 have overlapping, but distinct, effects on murine dentritic cells. J Immunol 168, 5448-5454.
[19] Mark P. Hayes, Finbarr J. Murphy, and Parris R. Burd. (1998) Interferon-�蛂Vdependent inducible expression of the human Interleukin-12 p35 gene in monocytes initiates from a TATA-containing promoter distinct from the CpG-rich promoter active in Epstein-Barr Virus-transformed lmphoblastoid cells. Blood 91, 4645-4651.
[20] Ma, X., and Trinchieri, G. (2001) Regulation of interleukin-12 production in antigen-presenting cells. Adv. Immunol. 79, 55–92.
[21] Heinzel, F.P., A.M. Hujer, F.N. Ahmed, and R.M. Rerko. (1997) In vivo production and function of IL-12 p40 homodimers. J. Immunol. 158, 4381–4388.
[22] Hochrein, H., O'Keeffe, M., Luft, T., Vandenabeele, S., Grumont, R.J., Maraskovsky, E., and Shortman, K. (2000) Interleukin (IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J. Exp. Med. 192, 823–833.
[23] Snijders, A., Hilkens, C.M., van der Pouw Kraan, T.C., Engel, M., Aarden, L.A., and Kapsenberg, M.L. (1996) Regulation of bioactive IL-12 production in lipopolysaccharide-stimulated human monocytes is determined by the expression of the p35 subunit. J. Immunol. 156, 1207–1212.
[24] Hayes, M.P., Wang. J., and Norcross, M.A. (1995) Regulation of interleukin-12 expression in human monocytes: Selective priming by interferon-γ of lipopolysaccharide-inducible p35 and p40 genes. Blood 86, 646-650.
[25] Lertmemongkolchai, G., Cai, G., Hunter, C. A. & Bancroft, G. J. (2001) Bystander activation of CD8+ T cells contributes to the rapid production of IFN-γ in response to bacterial pathogens. J. Immunol. 166, 1097–1105.
[26] Cui, J., Shin, T., Kawano, T., Sato, H., Kondo, E., Toura, I., Kaneko, Y., Koseki, H., Kanno, M., and Taniguchi, M. (1997) Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623–1626.
[27] Ohteki, T., Fukao, T., Suzue, K., Maki, C., Ito, M., Nakamura, M., and Koyasu, S. (1999) Interleukin-12-dependent interferon-γ production by CD8α+ lymphoid dendritic cells. J. Exp. Med. 189, 1981–1986.
[28] Airoldi, I., Gri, G., Marshall, J.D., Corcione, A., Facchetti, P., Guglielmino, R., Trinchieri, G., and Pistoia, V. (2000) Expression and function of IL-12 and IL-18 receptors on human tonsillar B cells. J. Immunol. 165, 6880–6888.
[29] Tone, Y., Thompson, S.A., Babik, J.M., Nolan, K.F., Tone, M., Raven, C., and Waldmann, H. (1996) Structure and chromosomal location of the mouse interleukin-12 p35 and p40 subunit genes. Eur. J. Immunol. 26, 1222–1227.
[30] Yoshimoto, T., Kojima, K., Funakoshi, T., Endo, Y., Fujita, T., and Nariuchi, H. (1996) Molecular cloning and characterization of murine IL-12 genes. J. Immunol. 156, 1082–1088.
[31] Grumont, R., Hochrein, H., O'Keeffe, M., Gugasyan, R., White, C., Caminschi, I., Cook, W., and Gerondakis, S. (2001) c-Rel regulates interleukin-12 p70 expression in CD8+ dendritic cells by specifically inducing p35 gene transcription. J. Exp. Med. 194, 1021–1032.
[32] Liu, J., Cao, S., Herman, L.M., and Ma, X. (2003) Differential regulation of interleukin (IL)-12 p35 and p40 gene expression and interferon (IFN)-�蛂Vprimed IL-12 production by IFN regulatory factor 1 J. Exp. Med. 198, 1265–1276.
[33] Goriely, S., Demonte, D., Nizet, S., De Wit, D., Willems, F., Goldman, M., and Van Lint, C. (2003) Human IL-12(p35) gene activation involves selective remodeling of a single nucleosome within a region of the promoter containing critical Sp1-binding sites. Blood 101, 4894-4902.
[34] Gorgoni, B., Maritano, D., Marthyn, P., Righi, M., and Poli, V. (2002) C/EBP�� gene inactivation causes both impaired and enhanced gene expression and inverse regulation of IL-12 p40 and p35 mRNAs in macrophages. J. Immunol. 168, 4055– 4062.
[35] Kollet, J., Witek, C., Gentry, J.D., Liu. X., Schwartzbach, S.D., and Petro TM. (2001) Deletional analysis of the murine IL-12 p35 promoter comparing IFN-�� and Lipopolysaccharide stimulation. J. Immunol. 167, 5653– 5663.
[36] Liu, J., Guan, X., Tamura, T., Ozato, K., and Ma, X. (2004) Synergistic Activation of Interleukin-12 p35 Gene Transcription by Interferon Regulatory Factor-1 and Interferon Consensus Sequence-binding Protein. J. Biol. Chem., 279, 55609-55617.
[37] Quandt, K., Frech, K., Karas, H., Wingender, E., and Werner T. (1995) New fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res, 23, 4878-4884.
[38] Dohr, S., Klingenhoff, A., Maier, H., Hrabe de Angelis, M., Werner, T., and Schneider, R. (2005) Linking disease-associated genes to regulatory networks via promoter organization. Nucleic Acids Res, 33, 864-872.
[39] D'Andrea, A., Rengaraju, M., Valiante, N.M., Chehimi, J., Kubin, M., Aste, M., Chan, S.H., Kobayashi, M., Young, D., and Nickbarg, E. (1992) Production of natural killer cell stimulatory factor (interleukin-12) by peripheral-blood mononuclear cells. J. Exp. Med. 176, 1387–1398.
[40] Lee, L., Stollar, E., Chang, J., Grossmann, J.G., O'Brien, R., Ladbury, J., Carpenter, B., Roberts, S., and Luisi, B. (2001) Expression of the Oct-1 transcription factor and characterization of its interactions with the Bob1 coactivator. Biochemistry, 40(22), 6580-6588.
[41] Ma, X., Neurath, M., Gri, G. and Trinchieri, G. (1997) Identification and characterization of a novel Ets-2-related nuclear complex implicated in the activation of the human interleukin-12 p40 gene promoter. J. Biol. Chem. 272, 10389–10395.
[42] Salkowski, C.A., Kopydlowski, K., Blanco, J., Cody, M.J., McNally, R., and Vogel, S.N. (1999) IL-12 is dysregulated in macrophages from IRF-1 and IRF-2 knockout mice. J. Immunol. 163, 1529–1536.
[43] Wang, I. M., Contursi, C. Masumi, A., Ma, X., Trincheri, G., and Ozato, K. (2000) An IFN-γ-inducible transcription factor, IFN consensus sequence binding protein (ICSBP), stimulates IL-12 p40 expression in macrophages. J. Immunol. 165, 271–279.
[44] Li, J. J. (2001) The development of NF-IL6 and NF-kB based drug screening system and its application on the study of Chinese traditional herbs. A thesis Submitted to National Chiao Tung university for the Degree of Master in Science.
[45] Xiong, H., Zhu, C., Li, F., Hegazi, R., He, K., Babyatsky, M., Bauer, A. J., and Plevy, S. E. (2004) Inhibition of interleukin-12 p40 transcription and NF-�羠 activation by nitric oxide in murine macrophages and dendritic cells. J. Biol. Chem. 279, 10776-10783.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文