跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 09:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭裕鈞
研究生(外文):Yu-Chun Peng
論文名稱:氮化鎵面射型雷射及微共振腔元件之研究
論文名稱(外文):Study of Microcavity LED and GaN-based VCSEL
指導教授:王興宗郭浩中郭浩中引用關係
指導教授(外文):S. C. WangH. C. Kuo
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:58
中文關鍵詞:氮化鎵面射型雷射發光二極體微共振腔
外文關鍵詞:GaNVCSELLEDMicrocavity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:518
  • 評分評分:
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是探討氮化鎵面射型雷射及微共振腔元件之設計、製作及其發光特性。我們首先利用模擬軟體進行複合式結構的氮化鎵面射型雷射之設計。接著,我們利用有機金屬氣相沉積系統成長具高反射率氮化鎵/鋁化鎵布拉格反射鏡之3λ氮化鎵系結構,並在此結構上以電子槍蒸鍍機蒸鍍高反射率之介電質反射鏡以完成面射型雷射結構之製作。針對此一結構我們在室溫下以光激發操作時,已觀察到雷射發光的現象,其臨界激發光能量密度為53 MJ/cm2 ,雷射光波長為448nm。此外我們亦針對此雷射之特性做了更深入之探討,諸如:發散角、極化程度、不同操作溫度之影響等…,經由實驗結果得知,我們已成功的製作出光激發氮化鎵面射型雷射。同時,我們亦針對此一結構導入製程以研發氮化鎵微共振腔元件。在充分運用各種半導體製程技術下,諸如:蝕刻、薄膜成長、歐姆接觸電極之蒸鍍等…,我們也成功的製作出氮化鎵微共振腔元件。此一元件在室溫20毫安培的電流注入下,發光波長在458.5nm,並具有一窄的光譜半高寬值為6.7nm。此外我們也針對此元件與一般的發光二極體及具下反射鏡之發光二極體元件做變溫操作及變電流操作之發光特性比較,亦發現氮化鎵微共振腔元件具有較佳的波長穩定性。此元件之特性說明了其結構及製程在發展電激發氮化鎵面射型雷射之可行性與潛力。
In this thesis, we report the design, fabrication and emission characteristics of GaN-based VCSEL and GaN-based MCLED. We grew the 3λ nitride-based structure with 25 pairs of AlN/GaN DBR by MOCVD, and then deposited 8 pairs of Ta2O5/SiO2 DBR by E-gun deposition to complete the full structure of GaN-based VCSEL. The fabricated structure was optically pumped at room temperature and the laser emission was observed. The threshold pumping energy was about 53 MJ/cm2 and the laser emission peak wavelength was about 448nm. It’s evidently that we have successfully fabricated the optically pumped GaN-based VCSEL. Besides, we also discuss the characteristics of optically pumped GaN-based VCSEL such as excitation energy - emission intensity curve (L-I), near field pattern (NFP), far field pattern (FFP), threshold carrier density (Nth), threshold gain(gth), degree of polarization (DOP), temperature dependent threshold and characteristic temperature (T0). We also fabricated the GaN-based MCLED following the success of optically pumped GaN-based VCSEL. The device showed the emission wavelength of 458.5nm and the narrowed spectral FWHM of 6.7nm at 20mA injected current. The MCLED also showed stable emission peak wavelength, while varying the injected current density and operating temperature. It indicated that a good resonant cavity was fabricated. Such MCLED could be the basis for electrically injected GaN-based VCSEL.
Reference

[1] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, Jpn. J. Appl. Phys., 34, L797 (1995)
[2] S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Lett., 64, 1687 (1994)
[3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto and H. Kiyoku, Appl. Phys. Lett., 70, 868 (1997)
[4] S. Nakamura, Science, 281, 956 (1998)
[5] S. Nakamura, S. Pearton and G. Fasol, The Blue Laser Diode: The Complete Story, Springer-Verlag, Berlin, (2000)
[6] S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, Taylor & Francis, (2000)
[7] Hadis Morkoc, Nitride Semiconductors and Devices, Springer-Verlag, Berlin, (1999)
[8] T. Someya, R.Werner, A. Forchel, M. Catalano, R. Cingolani and Y.Arakawa, Science, 285, 1905 (1999)
[9] T. Tawara, H. Gotoh, T. Akasaka, N. Kobayashi and T. Saitoh, Appl. Phys. Lett., 83, 830 (2003)
[10] Y.-K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, Jr., C. P. Kuo, M. R. Krames, R. S. Kern, C. Carter-Coman and F. A. Kish, Appl. Phys. Lett., 76, 1662 (2000)
[11] H. Zhou, M. Diagne, E. Makarona, A. V. Nurmikko, J. Han, K. E. Waldrip and J. J. Figiel, Electron. Lett., 36,1777 (2000)
[12] T. Someya, K. Tachibana, J. Lee, T, Kamiya and Y. Arakawa, Jpn. J. Appl. Phys., 37, L1424 (1998)
[13] J. M. Redwing, D. A. S. Loeber, N. G. Anderson, M. A. Tischler, and J. S. Flynn, Appl. Phys. Lett., 69, 1 (1996)
[14] S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, Appl. Phys. Lett., 83, 2121 (2003)
[15] M. Diagne, Y. He, H. Zhou, E. Makarona, A. V. Nurmikko, J. Han, K. E. Waldrip, J. J. Figiel, T. Takeuchi, and M. Krames, Appl. Phys. Lett., 79, 3720 (2001)
[16] Y. K. Song, M. Diagne, H. Zhou, A. V. Nurmikko, R. P. Scheider, Jr, and T. Takeuchi, Appl. Phys. Lett., 77, 1744 (2000)
[17] N. Nakada, M. Nakaji, H. Ishikawa, T. Egawa, M. Umeno, and T. Jimbo, Appl. Phys. Lett., 76, 1804 (2000)

[18] F. B. Naranjo, S. Fernandez, M. A. Sanchez-Garcia, F. Calle, and E. Calleja, Appl. Phys. Lett., 80, 2198 (2002)
[19] M. Diagne, Y. He, H. Zhou, E. Makarona, A. V. Nurmikko, J. Han, T. Takeuchi, and M. Krames, phys. stat. sol. (a), 188, 105 (2001)
[20] M. Arita, M. Nishioka, and Y. Arakawa, phys. stat. sol. (a), 194, 403 (2002)
[21] B. Roycroft, M. Akhter, P. Maaskant, P. D. Mierry, S. Fernandez, F. B. Naranjo, E. Calleja, T. M. Cormack, phys. stat. sol. (a), 192, 97 (2002)
[22] F. B. Naranjo, S. Fernandez, F. Calle, M. A. Sanchez-Garcia, and E. Calleja, phys. stat. sol. (a), 192, 341 (2002)
[23] H. H. Yao, C. F. Lin, H. C. Kuo, and S. C. Wang, J. Crystal Growth, 262, 151 (2004)
[24] C. F. Lin, H. H. Yao, J. W. Lu, Y. L. Hsieh, H. C. Kuo, S. C. Wang, J. Crystal Growth, 261, 359 (2004)
[25] H. E. Li and K. Iga, Vertical-Cavity Surface –Emitting Laser Devices, Springer-Verlag, Berlin, (2003)
[26] C. W. Wilmsen, H. Temkin, L. A. Coldren, Vertical-Cavity Surface-Emitting Lasers, Cambridge University Press (1999)
[27] J. Cheng and N. K. Dutta, Vertical-Cavity Surface-Emitting Lasers: Technology and Applications, Gordon and Breach Science Publishers (2000)
[28] K. Iga, F. koyama, and S. Kinoshita, IEEE J. Quantum Electron., 24, 1845 (1988)
[29] E. Hecht, Optics, Addison Wesley Longman (1998)
[30] 李正中, 薄膜光學與鍍膜技術, (1999)
[31] D. I. Babic and S. W. Corzine, IEEE J. Quantum Electron., 28, 514 (1992)
[32] H. Benisty, H. D. Neve, and C. Weisbuch, IEEE J. Quantum Electron., 34, 1612 (1998)
[33] H. Benisty, H. D. Neve, and C. Weisbuch, IEEE J. Quantum Electron., 34, 1632 (1998)
[34] D. Delbeke, R. Bockstaele, P. Bienstman, R. Baets, and H. Benisty, J. Select. Topics Quantum Electron., 8, 189 (2002)
[35] K. Iga and S. Kinoshita, Process Technology for Semiconductor Lasers, Springer-Verlag, Berlin, (1996)
[36] L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, John Wiley & Sons, Inc (1995)
[37] W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals, Springer-Verlag, Berlin, (1999)
[38] S. L. Chuang, Physics of Optoelectronic Devices, John Wiley & Sons, Inc (1995)

[39] K.Iga, Proceedings of the First International Symposium on blue lasers and light emitting diodes, Th-11 (1996)
[40] T. Ive, O. Brandt, H. Kostial, T. Hesjedal, M. Ramsteiner, and K. H. Ploog, Appl. Phys. Lett., 85, 1970 (2004)
[41] P. Mackowwiak and W. Nakwaski, J. Physics D: Applied Physics 33, 642 (2000)
[42] P. Mackowwiak and W. Nakwaski, J. Physics D: Applied Physics 34, 954 (2001)
[43] P. Mackowwiak, T. Czyszanowski, R. P. Sarzala, M. Wasiak, and W. Nakwaski, Opto-Electron. Rev., 11, 119 (2003)
[44] G. W. Wood, U. Ozgur, H. O. Everitt, F. Yun, and H. Morkoc, phys. stat. sol. (a), 188, 793 (2001)
[45] E. D. Palik, Handbook of Optical Constants of Solids, Academic Press Inc (1985)
[46] G. Yu, G. Wang, H. Ishikawa, and M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, Appl. Phys. Lett., 70, 3209 (1997)
[47] S. Nakamura, IEEE J. Selec. Topic Quantum Electron., 3, 712 (1997)
[48] S. H. PARK, Jpn. J. Appl. Phys., 42, L 170 (2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top